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Abstract

Representing the health state of a region is a helpful tool to highlight spatial

heterogeneity and localize high risk areas. For ease of interpretation and

to determine where to apply control procedures, we need to clearly identify

and delineate homogeneous regions in terms of disease risk, and in partic-

ular disease risk hot spots. However, even if practical purposes require the

delineation of different risk classes, the classification does not correspond to

a reality and is thus difficult to estimate. Working with grouped data, a first

natural choice is to apply disease mapping models. We apply a usual disease

mapping model, producing continuous estimations of the risks that requires a

post-processing classification step to obtain clearly delimited risk zones. We

also apply a risk partition model that build a classification of the risk levels
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in a one step procedure. Working with point data, we will focus on the scan

statistic clustering method. We illustrate our article with a real example

concerning the Bovin Spongiform Encephalopathy (BSE)1 an animal disease

whose zones at risk are well known by the epidemiologists. We show that in

this difficult case of a rare disease and a very heterogeneous population, the

different methods provide risk zones that are globally coherent. But, related

to the dichotomy between the need and the reality, the exact delimitation of

the risk zones, as well as the corresponding estimated risks are quite different.

Keywords: Classification, Disease Mapping, Epidemiology, Generalized

Potts Model, Spatial clustering, Hidden Markov Random Field,

1. Introduction

Efficient disease control requires correct understanding of the determi-

nants and dynamics of the disease. The first questions to ask are: Where are

the high risk populations located? Are these locations structured in space?

If so, how? Therefore, the analysis of the geographical variations of a disease

and their cartographical representation is an important step in epidemiology.

Representing the health state of a region offers interesting insights into the

mechanism underlying the spread of a disease. It allows to highlight spatial

heterogeneity, localize high risk areas (i.e. important contaminations) and

identify potential sources of a disease. To go further and help to determine

protection measures, we need to clearly identify and delineate homogeneous

1Abbreviations used in the article: Bovin Spongiform Encephalopathy (BSE);
Model of Besag, York and Mollié (BYM model); Conditionally Auto-Regressive
(CAR); Expectation-Maximization algorithm (EM algorithm); Monte-Carlo EM algorithm
(MCEM algorithm)
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regions in terms of disease risk, and in particular disease risk hot spots.

In this article, we will illustrate and comment our purpose with the ex-

ample of Bovine Spongiform Encephalopathy (BSE) in France between July

2001 and December 2005. This sudden, non contagious and unexpected dis-

ease (see Anderson et al. (1996); Ducrot et al. (2008)) threatened bovine

production in Europe and has been intensively studied (for spatial analyses,

see e.g. Abrial et al. (2005); Allepuz et al. (2007) or Paul et al. (2007)). To

guarantee confidentiality, the exact localization of the cases are not avail-

able. Thus, the territory of France is divided into n = 1264 hexagons of 23

km width, in which cases and population are counted (see Figure 1(a) and

(b)). In our BSE example, as in most of applications, the different zones

INSERT FIG 1 ABOUT HERE

Figure 1: Real data set: BSE in France. (a) Number of cases for the study period, (b)

Cattle population map, and (c) Simple estimation of the risk: standardized incidence rate.

(available in color online)

at risk we want to determinate do not correspond to an underlying reality,

but are only needed by the epidemiologists for ease of interpretation, and to

determine where to apply control procedures. As we will illustrate it with

our BSE example, this difference between our requirements and the reality

may imply estimation difficulties. Moreover, this example has been chosen

to compare the behavior of the different methods in a challenging scenario

with very low risk values, small numbers of observed cases and population

sizes that increase the estimation difficulties.

Since we work with grouped data, a natural choice is to apply disease

mapping models, such as presented in Section 2. In Section 2.1, we present
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one of the most commonly used disease mapping models, producing a con-

tinuous estimation of the risk that does not clearly delimit zones of different

disease risk. However, we can apply a post-processing classification step that

delineate different zones in the map. The risk partition model presented in

Section 2.2 build a classification of the risk levels in a one step procedure.

Although our data are aggregated, we can also consider them as point data.

Section 3 present one of the most used clustering method for point data

based on the scan statistic. In Section 4, we illustrate the performance of

these different methods in determining hot spots for the BSE risk in France.

A discussion ends the paper in Section 5.

2. Disease mapping models

As in our example, epidemiological data are frequently aggregated count

data: for each unit i (i ∈ S = {1, . . . , n}) observed cases of a given disease

are counted (yi) and compared to the population size (ni) in this area. We

denote by Yi the random variable associated with yi. A natural simple es-

timation of the risk is the common maximum likelihood estimate computed

independently in each unit: the incidence rate. The absolute epidemiolog-

ical risk θi, the probability that an individual in i ∈ S is contaminated by

the disease, is estimated by the raw incidence rate pi = yi/ni. The relative

risk ri measures the departure of the local risk from the empirical mean risk

over the whole spatial area. It is estimated by the standardized incidence

rate ρi = yi/ei, where ei = nip is the expected number of cases for an ho-

mogeneous risk p = (
∑n

i=1 yi)/(
∑n

i=1 ni). These estimations (see ρi for the

BSE example in Figure 1(c)) produce noisy maps difficult to interpret with
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over dispersion (isolated high risk values) and very extreme values of the

risk (many have either null values or estimated risks that are more than 70

times higher than the mean overall risk). It is therefore clear that spatial

dependencies have to be taken into account when analyzing such location

dependent data, in order to produce smoothed maps.

Most statistical methods for risk mapping of aggregated data dedicated

to non contagious diseases, are based on a Poisson log-linear mixed model

(see e.g. Mollié (1999); Pascutto et al. (2000) or Lawson et al. (2000)). The

model proposed by Besag, York and Mollié (1991) (or BYM model) presented

in Section 2.1 is one of the most popular approaches, but inference results in

a real-valued estimation of the risk at each location, see Figure 2(a). One of

INSERT FIG 2 ABOUT HERE

Figure 2: Standard disease mapping model (BYM) applied to BSE data: a continuous

estimation of the risks. (available in color online)

the main reported limitations (e.g. by Green and Richardson (2002)) is that

local discontinuities in the risk field are not modeled leading to potentially

over-smoothed risk maps. Also, in some cases, as in animal epidemiology (see

e.g. Abrial et al. (2005)), a coarser spatial representation of risk is needed

in which locations with similar risk values are grouped. Section 2.2 is then

devoted to risk partition models.

2.1. Standard disease mapping models

The expected number of cases ei (for i ∈ S) are assumed to be known

and constant during the study period. Since disease mapping is generally

applied to rare and non contagious diseases such as cancer, the number of ob-
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served cases are usually modeled by Poisson distributions: Yi ∼ Poisson(eiri)

for i ∈ S, where ri is the unknown relative disease risk (see Besag et al.

(1991)). This first level accounts for the local variability, i.e. the intra-

area variability. A second level accounts for the spatial dependence be-

tween areas through a log-linear mixed model. The spatial variation in log-

relative risk ui = log(ri) is modeled with a Gaussian intrinsic Conditionally

Auto-Regressive (CAR) Markov random field prior (Ui)i∈S with distribution

Ui|Uj , j 6= i ∼ N (Ūi, σ
2/mi), where Ūi =

∑

j 6=iwijUj/mi. The weight matrix

{wij : i, j ∈ S} generally corresponds to a 0-1 neighboring in which wij = 1

for neighbors and 0 otherwise (usually areas that share a common boundary

are defined as neighbors). In this case, mi =
∑n

j=1wij is the number of

neighbors of area i. The amount of smoothing in the random effects Ui, is

controlled by the unknown precision parameter τ = 1/σ2: a small value in-

duces little smoothing, while an infinite value forces all ui’s (so all the risks)

to be equal. The log-linear mixed model can also incorporate, at this second

level, the effect of covariates and a random effect accounting for unstructured

heterogeneity, see e.g. Pascutto et al. (2000) or Lawson et al. (2000). At a

third level, a Gamma non-informative prior is usually adopted for τ . Estima-

tion of the posterior distribution of the relative risks is achieved by sampling

from posterior distributions using Markov chain Monte Carlo methods.

The BYM model has been widely used and extended for disease mapping.

In particular, the intrinsic CAR being an improper prior, two variants have

been proposed (see MacNab (2010)): the proper CAR prior (see e.g. Lagazio

et al. (2003)) and the Leroux et al. (2000) CAR prior (see also e.g. Ugarte

et al. (2009)). Recent developments in risk mapping concern spatio-temporal
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mapping (see e.g. Knorr-Held and Richardson (2003) or Robertson et al.

(2010)) and multivariate disease mapping (see e.g. Knorr-Held et al. (2002)

or MacNab (2010)).

2.2. Risk partition models

Grouped representations have the advantage of providing clearly delim-

ited areas for different risk levels. This is helpful for decision-makers to in-

terpret the risk structure and determine protection measures such as culling,

movement restriction, mass vaccination, etc. These areas at risk can be

considered as clusters (see Knorr-Held and Rasser (2000)), but we prefer

the interpretation as risk classes, since geographically separated areas can

have similar risks and be grouped in the same risk class. Using the tradi-

tional BYM model, risk classes are commonly determined with an additional

post-processing classification step (see e.g. Abrial et al. (2005) or Allepuz

et al. (2007)), as in Figure 2(b) for the BSE example. Including the risk

partition in the risk estimation procedure, the goal is to assign, to each geo-

graphical unit, one of K possible risk levels (e.g. the absolute risk levels) in

θ = {θ1, . . . , θK}. These risk levels are themselves unknown and need to be

estimated. Therefore, the data is naturally divided into observed variables

Y = {Y1, . . . , Yn} (numbers of cases) and unobserved or hidden variables

Z = {Z1, . . . , Zn}, so that Zi = k when region i is assigned to risk level

θk. As already mentioned, in the case of a non contagious and rare dis-

ease, a common assumption (see Section 2.1) is that for an area i ∈ S,

Yi comes from a Poisson(niθZi
) with the following class dependent distri-

butions: P (Yi = yi|Zi = k, θ) = exp(−ni θk)(ni θk)
yi/yi!. Concerning the

hidden field Z, which encodes the spatial correlation characterizing disease

maps, the dependencies between neighboring Zi’s are modeled by assuming

that the joint distribution of Z is a discrete Markov random field on the graph

connecting different locations (as is usual in Hidden Markov random fields,

we restrict the neighborhood to pair-wise interactions to facilitate computa-
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tion and interpretation):

P (Z = z|α, IB) ∝ exp





∑

i∈S

αzi +
∑

i∈S

∑

j∈Vi

IBzi,zj



 , (1)

where Vi is the set of neighbors of i. Here adjacent regions i and j are defined

as neighbors. Parameter α = [α1, . . . , αK ]
T is a K-dimensional vector which

acts as a weight for the different values of zi. IB is a K×K symmetric matrix

which encodes spatial interactions between the different classes.

If, in addition to a null α, IB = b IK where b is a real positive value and

IK the K × K identity matrix, we get the Potts model commonly used for

image segmentation. Note that this standard Potts model used by Green

and Richardson (2002) and Alfó et al. (2009) for classified disease mapping

is often suited for clustering tasks since it tends to favor neighbors that are

in the same class (i.e have the same risk level). However this model penalizes

two neighbors that have different risk levels with the same penalty whatever

the difference between these risk levels. Nevertheless, for disease mapping, it

is unlikely to observe a very low risk area just next to a very high risk area.

Thus, IB matrices that are different from b IK have been proposed to encode

higher penalties when the risk levels are very different, and produce smooth

gradation of the risks. Assuming an ordering of the classes, in the sense that

θk < θk+1, new IBs’ penalize pairs of classes k and l at neighboring sites

according to the distance between the two classes: the closer the two classes,

the higher the probability of observing this configuration. The grad-1 IB

proposed in Charras-Garrido et al. (2011) is based on the absolute distance:

IBk,l = b(1 − |k − l|/(K − 1)). The grad-2-neg IB is based on the squared

distance: IBk,l = b(1−(k−l)2/(K−1)) and is a variant of the grad-2 described
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in Charras-Garrido et al. (2011). For K ≥ 3, it has the particularity that

some terms in the IB matrix are negative. In these two cases, the probability

of observing two given classes in neighboring areas always decreases with

the distance between these two classes. The semi-grad IB proposed in Azizi

et al. (2011) consists of a matrix with three non zero diagonals: IBk,k = b

for all k = 1, . . . , K, IBk,l = b/2 when |k − l| = 1 and IBk,l = 0 otherwise.

This last one can be seen either as a simplification of the grad-1 model in

which all pairs of risk classes far apart are equally weighted, or as a variant

of the Potts model where the zero penalty is pushed a unit further. In these

four matrices, parameter b can be interpreted as the strength of interaction

between neighbors. The higher b, the more weight is given to the neighbors’

influence. Here, the correlation only depends on the distance between the

risk classes of two adjacent units, but other IB definitions are quite easy to

construct and to interpret depending on the targeted application.

For an epidemiologist, the first output of interest is the risk map, i.e. the

values of the risk class assignments Z, followed by the values of the risk θ.

To recover z, a Maximum Posterior Marginal (MPM) principle consisting of

assigning each region i to the class k that maximizes P (Zi = k|y,Ψ) with

Ψ = (θ,α, b) is considered. In order to perform these maximizations, we

have to estimate the parameters Ψ which are usually unknown: the risks

θ, the classes weights α and the smoothing strength b. For estimation,

the Expectation-Maximization (EM) algorithm is applied (Dempster et al.

(1977)) using two approximations: the Monte-Carlo EM (MCEM) algorithm

proposed by Wei and Tanner (1990) as in Charras-Garrido et al. (2011) and

a Mean Field approximation of EM presented in Celeux et al. (2003) as in
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Azizi et al. (2011).

3. Clustering methods for point data

Our data are aggregated and a natural choice is to apply disease mapping

models. Although, for comparison purposes, we can also consider our data

as point data and apply clustering methods. Let X1, . . . , XM be random

variables that denote the spatial coordinates of M observed events. The

objective of clustering methods for point data is to identify, if they exist,

the zones in which the concentration of events is abnormally high, usually

named clusters. To assess the significance of a supposed cluster, the observed

concentration is usually compared with the concentration observed under the

null hypothesis H0 that the events are sampled independently from the un-

derlying population density, generally a Poisson distribution in epidemiology.

As the monitoring tools get improved and the computational capacities

increase, the methods for individual data become more and more applica-

ble. Existing spatial methods are often derived from one-dimensional cluster

detection methods, which are mainly applied to temporal point processes.

For example, the techniques introduced by Kelsall and Diggle (1995a,b) are

based on a kernel intensity estimation of the events process. The method of

Besag and Newell (1991) is based on the k nearest neighbor and the p-value

of observing k or more cases within the neighboring area is computed by a

Poisson probability given the population at risk in the area. The analysis

is repeated for different values of k and a cluster is detected if its statistical

significance (with a correction of the p-value) persisted over three values of k.

As noticed for example by d’Aignaux et al. (2002), this method may provide
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false clusters because of multiple testing.

As in the temporal setting, the most popular approach is the scan statistic

adapted to the spatial setting by Kulldorff (1997). It relies on the general-

ized likelihood-ratio test statistic of H0 against a piecewise constant density

alternative. To apply this method, one needs to set the family of the possible

clusters, for example all the discs centered on a point of a predefined grid.

The radius of each circle is generally set to vary continuously from zero to an

upper limit (e.g. less than 50% of the total area). This predefined shape of

the cluster can be an important limitation since, in the real world, an excess

of events may be recorded along a river for example. An alternative has

been proposed recently: Kulldorff et al. (2006) investigated a wide family of

elliptic windows with predetermined shape, angle and center. The ultimate

solution would be to consider all the convex envelopes including any subset

of the events locations. However, this becomes computationally infeasible

when the number of events is large. The statistical significance of the largest

likelihood (for positive clusters or the lowest likelihood for negative clusters)

is assessed by determining its distribution under the null hypothesis through

Monte Carlo simulation.

4. Results on the BSE data set

BSE is a non contagious neurodegenerative disease in cattle. It is trans-

mitted by meat and bone meal. Since there is no direct transmission and

no vector, the spatial analysis are important to understand and explain the

geographical localization of the cases. The cases in our data set occurred be-

tween July 1, 2001 and December 31, 2005, although at that time the meat
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and bone meal had been already forbidden for cattle in France.

We first compare the results obtained with the risk partition model, for

the four IB matrices presented in Section 2.2, and two estimation methods:

MCEM and Mean-Field EM. We use approximations of the Bayesian Infor-

mation Criterion (BIC) to determine the number K of classes: that proposed

by Stanford and Raftery (2002) when using the MCEM algorithm, and that

proposed by Forbes and Peyrard (2003) when applying Mean Field EM. The

selected number K, the corresponding BIC values and the α and b estima-

tions are presented in Table 1. For the MCEM algorithm, K = 2 is chosen

for all IB matrices. Note that when K = 2 all the models are identical and

IB = bIK . The resulting map is shown in Figure 3(a). For the Mean Field

EM algorithm, K = 3 is chosen for all IB matrices. The resulting maps are

shown in Figure 3(b) for grad-1 and semi-grad, which are identical in this

case, in Figure 3(c) for grad-2-neg and in Figure 3(d) for Potts. To facilitate

the maps comparison in Figure 3, the estimated risk values, which differ from

one map to another, are associated to colors going continuously from green

(lowest risks) to red (highest risks) through yellow (medium risks).

The b values (Table 1) are higher for Mean Field EM with lower (i.e

better) BIC values too. Since for K ≥ 3, the grad-2-neg IB matrix has

negative terms, for large b values, neighboring locations belonging to the

same risk class are strongly favored while they are strongly penalized if they

correspond to distant risk levels. In terms of risk mapping, the more likely

maps should then minimize the common borders between the lowest and the

highest risk classes. However, this is not what is observed in Figure 3(c)

because this interaction effect is compensated by the fact that the middle
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Algorithm MCEM Mean Field EM

IB model all models grad-1 grad-2-neg Potts

K 2 3 3 3

Parameters 4 6 6 6

Loglikelihood −787 −788 −788 −785

BIC 1592 1589 1589 1586

α (0, 0) (0, 0.3, 1) (0,−147.3,−0.8) (0, 1.2, 1.16)

b 0.68 2.32 15.4 8.15

Table 1: BSE data set: Number of free parameters, Selected number of classes K using

BIC, log-likelihood and BIC values, α and b estimations using the different IB models and

implementations.

risk level has a much smaller α weight than the two others. Indeed, when

K = 3, the middle risk level is the only alternative to prevent the penalized

borders to occur. The interpretation of the parameter values for the grad-2-

neg model when K ≥ 3 is more complex and does not correspond to the same

intuition as the other Potts variants which model only positive interactions.

INSERT FIG 3 ABOUT HERE

Figure 3: BSE data set: Different estimated risk maps with the risk partition model; (a)

all models using MCEM; (b) grad-1 & semi-grad, (c) grad-2-neg, and (d) Potts model using

Mean Field EM. To facilitate the maps comparison, the estimated risk values, which differ

from one map to another, are associated to colors going continuously from green (lowest

risks) to red (highest risks) through yellow (medium risks). (available in color online)

The maps presented in Figure 3 globally retrieve the three known zones

at risk located in the Brittany (West), the Center, the Alps (East) and the

South-West, corresponding to the regions expected by the experts and high-

lighted in previous works (see Abrial et al. (2005)). Indeed, it is suspected
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that the BSE risk can be explained by a cross-contamination with an ingre-

dient used in poultry or pig feed, and in these regions there is a high density

of monogastric species (Abrial et al. (2005)), e.g. pigs and poultry, and meat

and bone meal were used to feed these species Paul et al. (2007). With all

models and MCEM (Figure 3(a)), and with grad-1 (i.e. also semi-grad since

K = 3) and Mean Field EM (Figure 3(b)), the different zones at risk are

particularly well separated. The maps obtained with grad-2-neg and Mean

Field EM (Figure 3(c)), and with Potts and Mean Field EM (Figure 3(d))

are similar regarding the lowest risk region going from the North-East to the

South-Center. Potts and Mean Field EM (Figure 3(d)) present misleading

risks in the South-East, where there is little population and no observed cases,

as well as in Corsica. This island, with only a few units has no neighborhood

with the rest of France, which limits spatial regularization. The grad-2-neg

and Mean Field EM (Figure 3(c)) present a low risk in the South-East, and,

in contrast to the other maps (except the BYM model, see Figure 2), an

unimportant risk in the North. With the BYM model (see Figure 2), the

known zones at risk are also retrieved, but a counterintuitive risk is recov-

ered in some regions with low population and no observed cases, in particular

in the South-East. Also this model produces estimated risk values so close to

each other that BIC suggests only one class. These close risk values and their

smoothness explain why in all the presented maps there are few risk classes

and why the classifications are quite different since it is difficult to determine

a cutting point. In particular in Figure 2(b), where we choose K = 3 to

be consistent with most of the maps of Figure 3, the two highest risks are

almost equal and the corresponding classes are difficult to distinguish.
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Although globally coherent, these different maps does not delineate ex-

actly the same zones. From a modeling viewpoint, classifying risk values into

a finite number of levels and homogeneous areas may not correspond to the

underlying reality in which risk values are more likely to vary smoothly across

the different geographical units. However, as already mentioned, the need for

such a classification is expressed by epidemiologists as it helps interpretation

and decision-making. The main issue in rare disease cases is that counts are

relatively small with a large number of zero values. It may follow that spatial

information is only mildly supported by the observed data. Estimated risks

are very small and close to each other, making the separation into different

regions difficult and somewhat unstable. Each method actually define its own

risk classes, which feature specific boundaries. Indeed the risk values associ-

ated to each class are different from one model to another. In this case, we

suspect the BYM model to produce smooth maps that essentially reflect the

CAR prior while the risk partition models hesitate between various solutions

(as illustrated in Figure 3) that are not so different in terms of likelihood or

quality of fit to the observed data. Aware of this issue, in the case of the

Mean Field EM implementation, a number of initializations (see Azizi et al.

(2011)) have been carried out and the highest likelihood result, displayed in

Figure 3(b), have been selected. The MCEM implementation should be less

sensitive to initialization but convergence is more difficult to diagnose. The

map of Figure 3(b) can therefore be considered as our reference result. As

already observed, important zones are clearly and accurately detected there.

In the other maps of Figures 3, the same features are recovered with a differ-

ent precision. The two classes of Figure 3(a) roughly correspond to the fusion
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of two of the regions in (b) with more discontinuous but geographically close

borders. For the other maps, important borders are missing either in the

South-East or between South and North in the West. For the Potts model

maps (Figure 3 (c)), the issue is not only missing borders but also irrelevant

additional ones which seem to be prevented by the risk gradation modeling.

We then apply the spatial scan statistic (see Figure 4) detailed in Section 3

for circular clusters and for ellipsoidal clusters. With this method, among the

INSERT FIG 4 ABOUT HERE

Figure 4: BSE data set: clustering with the Kulldorff’s scan statistics for circular clusters

on right panel and ellipsoidal clusters on left panel.

four known regions at risk, only the Brittany (West) is retrieved as a cluster.

The Center, the Alps (East) and the South-West, are not detected as positive

clusters. Moreover, these zones considered as at risk are partly included in

the negative clusters detected, i.e. highlighted as having a low BSE risk.

This may be related to the fixed shapes of the clusters. With the same

cause, we can also remark that each detected cluster include large zones that

does not belong to the region under study, corresponding either to the sea or

to adjacent countries. It is not satisfying to include such regions with no data

in the idea to propose zones where to apply protection measures. Moreover,

we can see on left panel of Figure 4 that positive and negative clusters can

be superimposed, which is very counterintuitive. With this method, we can

only identify risk hot spots but we have no measure of the risks associated

to these zones, although it can also be an important information.
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5. Discussion

For practical purposes we are interested in the delineation of different

zones at risk. As illustrated with the BSE real data set, the general pattern

and the known zones at risk are globally retrieved by most of the tested

methods. In particular, the risk partition models provide maps where risk

zones are more clearly delimited, especially with semi-grad (or grad-1) and

Mean Field EM. The models are flexible in that they can be easily adapted to

different epidemiological situations and all parameters are easy to interpret.

In particular, the interpretation of the IB matrix in terms of neighborhood

interaction allows users to design their own spatial smoothing. The BYM

model produces maps that are too smooth: for a very rare disease in very

heterogeneous population, such as in our BSE data set, it tends to estimate

similar risks that are difficult to classify. Excessively high risks are also es-

timated in regions with very small populations. The risk partition models

appear less sensitive to heterogeneous or very small populations. The cluster-

ing method for point data identify less zones than the other methods. Their

shapes are fixed and are thus less interesting in the aim to precisely delineate

regions where to apply control procedures. Moreover, this method does not

associate a risk value to each highlighted region.

Risk zones facilitate interpretation of disease maps for epidemiologists,

and they are needed with the aim to determine where to apply control pro-

cedures. Thus, such a classification is difficult to estimate since it does not

correspond to an underlying reality of boundaries with a jump of the risk

value. Thus, each method actually define its own risk classes, which fea-

ture specific boundaries. This probably explain most of differences that can
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be noticed among the estimated maps which illustrate our paper. However,

even if differences are noticed in the exact delimitation of the regions and

the corresponding estimated risk values, all classified risk maps globally high-

light the same zones at risk. The maps obtained by the risk partition model

appear to more correspond to the practical requirements, with more clear

zones, and would preferably be used in this context.

References

Abrial, D., Calavas, D., Jarrige, N., Ducrot, C., 2005. Poultry, pig and the risk of BSE

following the feed ban in France - A spatial analysis. Vet. Res. 36, 615–628.
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