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Introduction

We propose a family of multivariate heavy-tailed distributions that allow variable marginal
amounts of tailweight. The originality comes from introducing multidimensional instead
of univariate scale variables for the mixture of scaled Gaussian family of distributions. In
contrast to most existing approaches, the derived distributions can account for a variety
of shapes and have a simple tractable form with a closed-form probability density function
whatever the dimension. We examine a number of properties of these distributions and
illustrate them in the particular case of Pearson type VII and t tails. For these latter cases,
we provide maximum likelihood estimation of the parameters and illustrate their modelling
flexibility on clustering examples for several simulated and real data sets.

A Gaussian scale mixture distribution is a distribution of the form:

p(y;µ,Σ, θ) =

∫

∞

0

NM(y;µ,Σ/w) fW (w; θ) dw (1)

where NM( . ;µ,Σ/w) denotes the M-dimensional Gaussian distribution with mean µ and
covariance Σ/w and fW is the probability distribution of a univariate positive variable W
referred to hereafter as the weight variable.

The extension we propose consists then of introducing the parameterization of the scale
matrix into Σ = DADT , where D is the matrix of eigenvectors of Σ and A is a diagonal
matrix with the corresponding eigenvalues of Σ. The matrix D determines the orientation
of the Gaussian and A its shape. Such a parameterization has the advantage to allow an
intuitive incorporation of the multiple weight parameters. We propose to set the scaled
Gaussian part in (1) to NM(y;µ,D∆wAD

T ) , where ∆w = diag(w−1
1 , . . . , w−1

M ) is the
M×M diagonal matrix whose diagonal components are the inverse weights {w−1

1 , . . . , w−1
M }.

When the weights are all one, a standard multivariate Gaussian case is recovered. The
generalization we propose is therefore to define:

p(y;µ,Σ,θ) =

∫

∞

0
. . .

∫

∞

0
NM(y;µ,D∆wAD

T ) fw(w1 . . . wM ;θ) dw1 . . . dwM (2)

where fw is now a M-variate density function to be further specified. In the following
developments, we will consider only independent weights, i.e. with θ = {θ1, . . . , θM},
fw(w1 . . . wM ; θ) = fW1

(w1; θ1) . . . fWM
(wM ; θM).

Another generative way to see this construction which is useful for simulation consists
of simulating an M-dimensional Gaussian variable X = [X1 . . .XM ]T with mean zero and
covariance matrix equal to the identity matrix and to consider M independent positive
variables W1, . . . ,WM with respective distributions fWm

(wm; θm). Then the vector

Y = µ+DA1/2[X1/
√
W 1, . . . , XM/

√
WM ]T (3)

follows one of the distributions below depending on the choice of fWm
. For example, setting

fWm
(wm) to G(wm; νm/2, νm/2) leads to a generalization of the multivariate t-distribution.

Some illustrations in the bivariate case are given in Figure 1 for different parameters values.
In particular, we use for D a parameterization via an angle ξ so that D11 = D22 = cos ξ
and D21 = −D12 = sin ξ, where Dmd denotes the (m, d) entry of matrix D. The next two
sections provide two other examples.
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Appendix A: A multivariate K distribution

Eltoft et al. [2006] consider the case of a single weight variable with an Inverse Gamma
distribution InvG(α, γ) and define the so-called multivariate K model. We can generalize
the work of Eltoft et al. [2006] with a distribution denoted by MK by introducing multiple
weights. For fWm

taken as an Inverse Gamma distribution InvG(wm;αm, γm) in equation
(2), it follows that:

MK(y;µ,Σ,α,γ) =

(

2

π

)M/2 M
∏

m=1

(Γ(αm)A
1

2

m)−1γαm

m Kαm−

1

2

((
2γm
Am

)
1

2 [DT (y−µ)]m)

(

[DT (y − µ)]m
(2Amγm)1/2

)αm−

1

2

,

where Kq( . ) denotes the modified Bessel function of the second kind and order q.

Appendix B: A multivariate NIG distribution

When W−1
m in equation (2) is assumed to follow an Inverse Gaussian distribution we recover

the NIG distribution with the skewness parameter set to 0. To recover the more general NIG
distribution we have to generalize equation (1) to both a scale and location mixture (variable

Z below corresponds now to W−1): p(y;µ,Σ, θ) =

∫

∞

0

NM(y;µ + zΣβ, zΣ) fZ(z; θ) dz,

where β is an additional M-dimensional vector parameter for skewness. Using the decom-
position of the scale matrix Σ, our generalized multivariate pdf is then given by

p(y;µ,Σ,θ) =

∫

∞

0
. . .

∫

∞

0
NM(y;µ +D∆zAD

Tβ,D∆zAD
T ) fz(z1 . . . zM ;θ) dz1 . . . dzM ,

where∆z = diag(z1, . . . zM). Using expression (6) in the main paper, this can be equivalently
written as

p(y;µ,Σ, θ) =

M
∏

m=1

∫

∞

0

N1([D
T (y − µ)]m; zmAm[D

Tβ]m, zmAm) fZm
(zm) dzm .

Using the parameterization in Karlis and Santourian [2009], if we set fZm
(zm) to an Inverse

Gaussian distribution IG(zm; γm, δm), it follows that our generalization of the multivariate
NIG distribution with γ = {γ1, . . . , γM} and δ = {δ1, . . . , δM} is:

MNIG(y;µ,Σ,β,γ, δ)=
M
∏

m=1

δm exp(δmγm + [DT (y − µ)]m [DTβ]m)
αm

πqm
K1(αmqm) (4)

with α2
m = γ2

m + Am[D
Tβ]2m and q2m = δ2m + A−1

m [DT (y − µ)]2m . An illustration of such a
distribution is given in Figure 2. The difference between our generalized NIG as given in
formula (4) and the standard multivariate NIG, where there are only single values of γ and
δ [Karlis and Santourian, 2009], is illustrated also in Figure 2.
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Appendix C: Mean and covariance matrix

Denoting X̃ = [X1/
√
W 1 . . .Xm/

√
WM ]T , the general expressions are:

E[Y] = µ+DA1/2E[X̃] and V ar[Y] =DA1/2V ar[X̃]A1/2DT .

Therefore, the expectation exists and is equal to µ if νm > 1 in the t-distribution case and
if αm > 1/2 for the Pearson VII case. The expectation is not defined otherwise. Similarly
for the covariance matrix, in the t-distribution case, if all νm > 2 then

V ar[Y] =DA1/2diag (ν1/(ν1 − 2), . . . νM/(νM − 2))A1/2DT .

While for the Pearson VII distribution, if all αm > 1, it follows that

V ar[Y] = DA1/2diag (γ1/(α1 − 1), . . . γM/(αM − 1))A1/2DT .

Appendix D: Characteristic function

Denote by φY the characteristic function of a random vector Y. It follows from (3) that,

∀t ∈ R
M , φY(t) = E[exp(itTY)] = exp(itTµ)

M
∏

m=1

φX̃m
([A1/2DT t]m) . In the Pearson VII

case, φX̃m
is the characteristic function of a 1D distribution P(0, 1, αm, γm). It can be shown

as in [Witkovský, 2001] that ∀t ∈ R, φX̃m
(t) = Γ(αm)

−12−αm+1Kαm
(
√
2γm|t|)(

√
2γm|t|)αm ,

where Kq( . ) denotes the modified Bessel function of the second kind and order q. The
t-distribution case follows easily by replacing αm and γm by νm/2.

Appendix E: Local dependence function

When M = 2, the local dependence function D(y1, y2) of a bivariate distribution introduced
by Holland and Wang [1987] is the mixed partial derivative of the log density. It is defined
whenever the log density is a mixed differentiable function:

D(y1, y2) =
∂2 log f(y1, y2)

∂y1∂y2
=

1

f(y1, y2)

[

∂2f(y1, y2)

∂y1∂y2
−

∂ log f(y1,y2)
∂y1

∂ log f(y1,y2)
∂y2

f(y1, y2)

]

.

Holland and Wang [1987] introduced the local dependence function as a continuous analogue
of the concept of local cross-product ratios for discrete variables. It has a number of proper-
ties and motivations (see also Jones [1996]). In particular Holland and Wang [1987] showed
that, under some mild regularity conditions, any bivariate distribution may be specified
by marginal distributions and the local dependence function. Jones [1996] also motivated
the local dependence function from the point of view of localizing the Pearson correlation
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coefficient. For our bivariate MP when µ = 0 the local dependence function is:

DMP(y1, y2) = −(2α1 + 1)D11D21
2A1γ1 − (y1D11 + y2D21)

2

(2A1γ1 + (y1D11 + y2D21)2)2

−(2α2 + 1)D22D12
2A2γ2 − (y1D12 + y2D22)

2

(2A2γ2 + (y1D12 + y2D22)2)2
(5)

and simplifies with αm = γm = νm/2 for theMS case. Figure 3 displays the local dependence
functions for examples of the MS distribution. In the MS case, it is easily seen from
(5) that when the dofs ν1 and ν2 tend to infinity, D(y1, y2) tends to a constant equal to
ρ(1 − ρ2)−1(Σ11Σ22)

−1/2 where Σ11 and Σ22 denotes respectively the variance of Y1 and Y2

and ρ is the Pearson correlation coefficient. This constant value of D is the local dependence
function of a bivariate Gaussian distribution whose covariance structure is defined by ρ,Σ11

and Σ22 and this is consistent with the fact that our MS distribution tends to a bivariate
Gaussian when the dof parameters increase to infinity. Local dependence is positive in the
positive and negative quadrants and negative in the other quadrants. This amounts to a
positive association between absolute values of the marginal random variables. In particular,
Figure 3 (b) illustrates the effect of one of the dof becoming large which implies part of the
local dependence function to become flat.

Appendix F: Maximum likelihood estimation of param-

eters

F.1: Details on the M step

For the updating of ψ = {µ,D,A,α,γ}, the M-step consists of two independent steps for
(µ,D,A) and (α,γ) respectively:

(µ,D,A)(r+1) = arg max
µ,D,A

E[log p(y|W;µ,D,A)|y,ψ(r)] (6)

= arg max
µ,D,A

N
∑

i=1

E[log p(yi|Wi;µ,D,A)|yi,ψ
(r)] (7)

= arg min
µ,D,A

N
∑

i=1

(

(yi − µ)TD∆̄
(r) −1
i A−1DT (yi − µ) + log |A|

)

, (8)

where ∆̄
(r)
i = diag(1/w̄

(r)
i1 , . . . , 1/w̄

(r)
iM). In the second line (7) above, p(yi|Wi;µ,D,A) is

Gaussian with covariance D∆wi
ADT so that log p(yi|Wi;µ,D,A) is linear in the Wim’s

which after taking the expectation leads to a linear expression (8) in terms of the w̄
(r)
im ’s.

5



(α,γ)(r+1) = argmax
α,γ

E[log p(W;α,γ)|y,ψ(r)] (9)

= argmax
α,γ

N
∑

i=1

M
∑

m=1

E[log p(Wim;αm, γm))|yi,ψ
(r)]

= argmax
α,γ

(

M
∑

m=1

N(αm log γm − log Γ(αm) + (αm − 1)Υ(α(r)
m + 1/2))

−
M
∑

m=1

N
∑

i=1

(

(αm − 1) log

(

γ(r)
m +

1

2

[D(r) T (yi − µ(r))]2m

A
(r)
m

)

+ γmw̄
(r)
im

)

)

where Υ( . ) is the Digamma function that verifies E[logW ] = Υ(α)−log γ when W follows a

Gamma G(α, γ) distribution. The Digamma function also satisfies d log Γ(α)
dα

= Γ(α)−1 dΓ(α)
dα

=
Υ(α).

F.2: Details on the updating of A

The updating of A uses the following corollary.

Corollary: The (M ×M) diagonal matrix A minimizing trace(SA−1)+α log |A| where S
is a M×M symmetric definite positive matrix and α is a positive real number is A = diag(S)

α
.

To apply it, we need to show that
N
∑

i=1

M
(r)
i is a symmetric positive definite matrix. Indeed,

omitting the (r) superscript, we have: MT
i = ∆

−
1

2

i DTViD∆
−

1

2

i = Mi because Vi = (yi −
µ)(yi −µ)T is symmetric and for all x > 0,xT

N
∑

i=1

Mix =
N
∑

i=1

(∆
−

1

2

i x)TDTViD(∆
−

1

2

i x) > 0

because DTViD is positive definite.

F.3: Updating constrained α and γ.

The updating equations can be easily derived when some on the parameters are assumed
to be equal for several dimensions. For instance, if we assume that for all m, αm = α and
γm = γ, α(r+1) and γ(r+1) are solutions of :

log











NMα

M
∑

m=1

N
∑

i=1
w̄

(r)
im











−Υ(α) + Υ(α(r) +
1

2
)− 1

NM

M
∑

m=1

N
∑

i=1

log

(

γ(r) +
1

2

[D(r) T (yi − µ(r))]2m

A
(r)
m

)

= 0

and γ =
NMα

M
∑

m=1

N
∑

i=1
w̄

(r)
im

.
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Similarly, in the t-distribution case, with νm = ν for all m, ν can be updated as the solution
of the equation:

−Υ(
1

2
ν) + log(

1

2
ν) + 1 +

1

NM

M
∑

m=1

N
∑

i=1

(log(w̄
(r)
im)− w̄

(r)
im) + Υ(

ν(r) + 1

2
)− log(

ν(r) + 1

2
) = 0.

Note that the latter equation is very close to the update equation for a standard t-distribution.
The only difference resides in the term 1

M

∑M
m=1(log(w̄

(r)
im)− w̄

(r)
im) which in the t-distribution

case appears as an average of the weights across the dimensions. Recall however that the
standard t-distribution is not included in the multiple scaled family. It is then easy to extend
these equations to the case when only some of the dof’s are assumed to be equal.

Appendix G: Algorithm for computing D(r+1)

The goal is to minimize with respect to D the following quantity, where A and µ have been
fixed to current estimations namely A(r) and µ(r+1),

f(D) = argmin
D

N
∑

i=1

trace(D(∆̄
(r)
i A

(r))−1DTV
(r)
i ,

with V
(r)
i = (yi−µ(r+1))(yi−µ(r+1))T . Similarly to Celeux and Govaert [1995, see Appendix

2], we can derive from Flury and Gautschi [1986] the algorithm below.

Step 1. We start from an initial solution D0 = [d0
1, . . . ,d

0
M ] where the d0

m’s are M-
dimensional orthonormal vectors.
Step 2. For any couple (l, m) ∈ {1, . . . ,M}2 with l 6= m, the couple of vectors (dl,dm)
is replaced with (δl, δm) where δl = [dl,dm]v1 and δm = [dl,dm]v2 with v1 and v2 two or-
thonormal vectors of R2 such that v1 is the eigenvector associated to the smallest eigenvalue
of the matrix

N
∑

i=1

(
ω̄
(r)
il

A
(r)
l

− ω̄
(r)
im

A
(r)
m

)[dl, dm]
TV

(r)
i [dl, dm] .

Step 2 is repeated until it produces no decrease of the criterion f(D).

Appendix H: Mixtures of multiple scaled distributions

For mixtures, the EM algorithm iterates over the following two steps.
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E step

We denote by τ
(r)
ik the posterior probability that yi belongs to the kth component of the

mixture given the current estimates of the mixture parameters φ(r),

τ
(r)
ik =

π
(r)
k MP(yi;µ

(r)
k ,D

(r)
k ,A

(r)
k ,α

(r)
k ,γ

(r)
k )

p(y;φ(r))
.

The conditional expectation of the complete data log likelihood Q(φ;φ(r)) decomposes into
three parts

Q(φ;φ(r)) = Q1(π;φ
(r)) +Q2(α,γ;φ

(r)) +Q3(µ,D,A;φ(r)),

with

Q1(π;φ
(r)) =

N
∑

i=1

K
∑

k=1

τ
(r)
ik log πk

and regrouping under C (resp. C ′) the terms not involving α,γ (resp. µ,D,A),

Q2(α,γ;φ
(r)) = C +

N
∑

i=1

K
∑

k=1

τ
(r)
ik

M
∑

m=1

(

αkm log γkm − log Γ(αkm) + (αkm − 1)Υ(α
(r)
km +

1

2
)

−(αkm − 1) log

(

γ
(r)
km +

1

2

[D
(r) T
k (yi − µ(r)

k )]2m

A
(r)
km

)

− γkmw̄
(r)
kim

)

Q3(µ,D,A;φ(r)) = C ′ − 1

2

N
∑

i=1

K
∑

k=1

τ
(r)
ik

(

(yi − µk)
TDk∆̄

(r) −1
ki A−1

k DT
k (yi − µk) + log |Ak|

)

.

In the above, ∆̄
(r)
ki = diag(1/ω̄

(r)
ki1 . . . 1/ω̄

(r)
kiM), where ω̄

(r)
kim is the expectation E[Wim|Zi =

k,yi,φ
(r)] given by

ω̄
(r)
kim =

α
(r)
km + 1

2

γ
(r)
km + 1

2

[D
(r) T
k (yi − µ

(r)
k )]2m

A
(r)
km

.

M step

The sum
N
∑

i=1

τ
(r)
ik is denoted by n

(r)
k .

Updating the πk’s. The update of π is standard: for k ∈ {1 . . .K}, π(r+1)
k = n

(r)
k /N .

Updating the µk’s. It follows from expression Q3 that, for k ∈ {1 . . .K} fixing Dk to the

current estimation D
(r)
k , leads for all m = 1 . . .M to

µ
(r+1)
km =

N
∑

i=1

τ
(r)
ik [D

(r)
k ∆̄

(r) −1
ki D

(r) T
k yi]m

N
∑

i=1

τ
(r)
ik ω̄

(r)
kim

.
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Updating the Dk’s. Setting V
(r)
ik = τ

(r)
ik (yi − µ(r+1)

k )(yi − µ(r+1)
k )T , it follows

D
(r+1)
k = argmin

Dk

N
∑

i=1

trace(Dk(∆̄
(r)
ki A

(r)
k )−1DT

k V
(r)
ik ) .

The parameterDk can then be updated using the algorithm derived from Flury and Gautschi
(see Appendix G).

Updating the Ak’s. We have to minimize the following quantity :

A
(r+1)
k = argmin

Ak

N
∑

i=1

trace(D
(r+1)
k (∆̄

(r)
i Ak)

−1D
(r+1) T
k V

(r)
ik ) + τ

(r)
ik log |Ak|

which leads to

A
(r+1)
km =

N
∑

i=1

τ
(r)
ik ω̄

(r)
kim [D

T (r+1)
k (yi − µ(r+1)

k )]2m

n
(r)
k

.

Updating the αk’s and γk’s. As in the individual ML estimation, the estimates do not
exist in closed form, but are given as a solution of the equations below:

log









n
(r)
k αkm

N
∑

i=1

τ
(r)
ik w̄

(r)
kim









−Υ(αkm) + Υ(α
(r)
km +

1

2
)− 1

n
(r)
k

N
∑

i=1

τ
(r)
ik log

(

γ
(r)
km +

1

2

[D
(r) T
k (yi − µ(r)

k )]2m

A
(r)
km

)

= 0

and γkm =
n
(r)
k αkm

N
∑

i=1

τ
(r)
ik w̄

(r)
kim

.

In the t-distribution case, the νkm’s can be updated as the solution of the following equation
instead:

−Υ(
1

2
νkm) + log(

1

2
νkm) + 1 +

1

n
(r)
k

N
∑

i=1

τ
(r)
ik (log(w̄

(r)
kim)− w̄

(r)
kim) + Υ(

ν
(r)
km + 1

2
)− log(

ν
(r)
km + 1

2
) = 0 .

Appendix I: Application to clustering

An important application of mixtures of heavy tailed distributions (and in particular t-
distributions) is robust clustering. In this section, we illustrate the increased flexibility and
modelling capabilities provided by our multiple scaled t-distribution model when applied to
clustering.
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I.1: Simulated data, Elongated clusters

In a first simulated example, we illustrate the ability of our model to deal with various
cluster shapes. In particular, the mixture of multiple scaled t-distributions model, referred
to as MMST, is able to recover correctly elongated clusters with a significant amount of
data points in one of the clusters’ tails (Figure 4 (d)). We consider the case of three clusters
slightly separated from one another which are generated from the product of two univariate
t-distributions with different degrees of freedom (see Figure 4 (a)). For k = 1, . . . , 3, in the
first dimension νk1 = 1 and in the second νk2 = 30 (closer to Gaussian). The means for the
three clusters are respectively [−4, 0]T (blue), [0, 0]T (green) and [0,−4]T (red), with the same
scale matrix equal to the identity matrix. The sample size is 4500 with 1500 observations
in each cluster. The data is rotated by 45 degrees to provide a test in terms of finding the
correct orientation.

Table 1 provides the classification results for the different models, MMST, mixtures of
t-distributions and Gaussian distributions. To ensure that the global maximum was found,
several different initial parameter values were used (except for the dof ’s that were always
all initialized to 20) using k-means and various thresholds with trimmed k-means [Cuesta-
Albertos et al., 1997]. Convergence of the EM algorithm was monitored using Aitken’s
acceleration [McLachlan and Krishnan, 2008, Chap. 4.9]. For all approaches considered
we report the Brier score [Brier, 1950] and Dice score [Dice, 1945], the former providing a
measure which incorporates the uncertainty of the classification while the latter is a more
standard measure. The Dice score measures the overlap between a classification result and
the ground truth. Denoting by TP the number of true positives, FP the number of false
positives and FN the number of false negatives, the Dice score is given by 2TP

2TP+FN+FP
. The

range for the Brier score is between 0 (perfect classification) and 1, with a lower value
indicating a better classification. The Dice score also ranges between 0 and 1 but here 1
represents the best classification and a lower value a worse classification.

A graphical display of the classifications for the mixture of t-distributions and for the
MMST is provided in Figure 4. For the t-distribution mixture, only the classifications in
the fixed dof ’s cases are shown. The classification obtained for estimated dof ’s is similar to
when the dof ’s are fixed to 1.

As we can see from Table 1 and Figure 4 the results for the standard t-distribution
(overall Brier score 0.127) reflect the difficulty the t-distribution faces in balancing the two
very different tail behaviors. The estimated dof’s for the t-distributions are respectively 1,
3.79 and 3.00 expressing a preference for a heavy tailed solution. The classification results
for the MMST are significantly better and indicate a close agreement with the data (overall
Brier score 0.019). The estimated dof’s are {1.02, 299} for component 1 (blue), {1.26, 299}
for component 2 (green) and {1.16, 299} for component 3 (red) with the disparity between
the two dimensions appearing to be well estimated from the data.

Regarding the estimation of the dof ’s, we show for illustration in Figure 5, the profile
log-likelihoods in terms of the dof parameter for the upper most (blue) component in our
2-dimensional example. The profile log-likelihood is the log-likelihood seen as a function
of one of the parameters (here the dof), the others being fixed to their optimal values. In
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Table 1: Classification results for the 2D elongated clusters (Figure 4). L denotes the log-likelihood and
classL the classification log-likelihood (see e.g. Celeux and Soromenho [1996]).

Mixture Model Brier Score Dice Score L classL
Comp 1 Comp 2 Comp 3 Overall Overall

Gaussian mixture 0.036 0.345 0.334 0.715 0.512 -31023 -32466
t-mixt. estimated dof 0.063 0.031 0.033 0.127 0.743 -23454 -23745
t-mixt. ν1 = ν2 = ν3 = 1 0.020 0.033 0.021 0.074 0.805 -23605 -24165
t-mixt. ν1 = ν2 = ν3 = 30 0.118 0.063 0.055 0.237 0.609 -26064 -26312
MMST, estimated dof 0.004 0.009 0.006 0.019 0.950 -22948 -23015

practice, the parameter values for the MMST are based on the estimated values. For the
standard t-mixture, the same parameter values are taken so that the profile log-likelihoods
can be compared. The solution of the standard t-mixture is to take a low dof and this is
one of the solutions that is possible (and close to the estimated solution). The maximum
for one of the dimensions of the MMST corresponds to a dof greater than 30 (the plot was
truncated at this value for visualisation purposes so that we can see the lower dof ’s more
easily as in practice the estimated dof was around 200). Interestingly the likelihood looks
quite flat after about a dof of 9. The log-likelihood has been standardised to make it easier
to compare (i.e |log-likelihood|/max(log-likelihood)).

We note that it is possible to find a solution for the Gaussian case (and similarly for the
t-mixture with high dof ’s fixed to 300) which provides a good classification of the data with
a Dice score of 0.91. However this solution is suboptimal with a much lower log-likelihood
(and classification log-likelihood) than the results reported in Table 1.

The above results suggest therefore quite a large difference in the obtained classifica-
tions for data displaying very different tail behaviors between dimensions. For illustration
purposes, the simulated data in this section shows quite a large difference between the two
tails. If we simulate other data sets by varying the degrees of freedom parameter in the first
dimension, and keep the degrees of freedom for the second dimension the same (30), we find
that for a degrees of freedom parameter equal to 4 (in the first dimension) the clustering
results between the t-mixture and the MMST start to become similar. This result is due
more to the components being rather well separated so that for even such small changes in
degrees of freedom, we cannot see a clear difference in terms of classification. This highlights
the fact that the quality of the classification alone is not a fully informative criterion to
assess the performance of our model. For this reason, in the next section, we focus also on
parameter estimation to illustrate the gain of MMST in terms of goodness-of-fit.

I.2: Simulated data, 10-dimensional Gaussian clusters with concen-

trated outliers

For our second simulated example, we consider a 10-dimensional problem previously analyzed
by Cuesta-Albertos et al. [2008, Example 2] in the context of robust clustering. The mixture
consists of the product measure of a standard 8-dimensional Gaussian distribution with zero
mean and covariance matrix equal to eight times the identity matrix with a mixture of three
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bivariate Gaussian distributions with parameters πk = 1
3
, k = 1, . . . , 3,µ1 = [−9, 0]T ,µ2 =

[1, 5]T ,µ3 = [3.5,−3.5]T and Σ1 =

[

16 0
0 16

]

, Σ2 =

[

8.5 −7.5
−7.5 8.5

]

, Σ3 =

[

1 0
0 1

]

. The sample

size is 600 and is slightly contaminated by 10 additional data sampled from a uniform
distribution on some parallelepiped. We consider two cases corresponding to two different
contaminations. The first case is the example of Cuesta-Albertos et al. [2008] where the
parallelepiped is [−4, 4]8 × [6, 10] × [11, 19] (see Figure 6 (a)). In the second case, the
parallelepiped is [−4, 4]8 × [−15,−10]× [20, 25] (see Figure 6 (b)). The last two dimensions
of the simulated data sets are shown in Figure 6 with the colors blue, green and yellow
indicating the three main components and the outliers shown in black in the upper right and
left hand corners of the corresponding plot.

The outlying data provides a good example to compare the robustness of the parameter
estimates (of the 3 main component distributions) between the multiple scaled t-distribution
and standard t-distribution. As the 10 additional data are outliers in only two of the 10
dimensions, we expect the multiple scaled t-distributions to downweight these sample points
more via a lower estimated degrees of freedom parameter in either or both of these dimensions
(νk9 and νk10). In contrast, the single estimated degrees of freedom parameter (ν) for the t-
distribution is forced to provide an average (in some sense) across all dimensions. In the first
case (case a), we observe a slight difference in the classifications obtained with the t-mixture
and MMST. The results for both models are quite good and close to the true classification but
the MMST shows consistently better Dice and Brier scores (see Table 2). As seen in Figure
7, the t-mixture tends to overestimate the first component (centered at µ1 = [−9, 0]T in blue)
and not to capture correctly the border with the second component (centered at µ2 = [1, 5]T

in green). In the second case (case b), the classification results for the t-mixture and the
MMST are the same and correspond to a classification very close to the true classification
(see the Dice and Brier score in Table 2). At issue, though, in both these cases is the degree
to which the parameter estimates of at least one of the components is influenced by the
outlying observations. For instance, in case b, depending on the initial values given (trimmed
k-means with 10% of the points excluded or k-means) the outlying observations are either
allocated to component 1 (µ1 = [−9, 0]T (blue)) or component 2 (µ2 = [1, 5]T (green)) and
the parameter estimates of these components (notably µk) can be affected by the outlying
observations. To see the influence of the outlying observations we calculated the absolute
and mean squared errors of the true mean parameter values to the parameter estimates in
the t-mixture and MMST cases over 30 repeated simulations of the data set. Because the
outliers are in dimensions 8 and 9, we compute the absolute and mean square errors both
in these two dimensions and in the 8 first ones separately. To allow for sampling variability,
the true parameter values are replaced by the parameter estimates obtained by fitting a
Gaussian mixture to the same data set without the outlying observations. The results using
trimmed k-means to get initial values are reported in Table 2 and the corresponding boxplots
are shown in Figure 8. The parameter estimates for the MMST compared to the t-mixture
are considerably less distorted by the outlying observations in dimensions 9 and 10. This
is consistent with the fact that in case a (resp. case b) the MMST estimated degrees of
freedom parameters in the 9th and 10th dimensions for component 1 are approximately 5
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Table 2: Dice and Brier scores and estimation errors for the mean parameters (all three components

together) over 30 simulations of the data. For both the t-mixture and MMST, median values of the errors

are shown with the range in brackets. Case a: outliers in far right corner. Case b: outliers in far left corner.
Absolute Error Squared Error Classification

Dim 1 to 8 Dim 9 & 10 Dim 1 to 8 Dim 9 & 10 Dice Score Brier Score
t-mixt. 1.12 3.84 0.11 5.21 0.89 0.05
Case a (0.72,1.90) (2.94,4.35) (0.04,0.30) (3.94,7.00) (0.80,0.94) (0.03,0.11)
MMST 0.77 0.97 0.04 0.33 0.97 0.02

Case a (0.47,1.20) (0.62,1.54) (0.01,0.09) (0.14,0.78) (0.92,1.00) (0.01,0.03)
t-mixt. 0.44 1.44 0.02 1.29 0.98 0.01

Case b (0.22,0.92) (0.97,1.70) (0.00,0.07) (0.34,1.73) (0.94,0.99) (0.01,0.02)
MMST 0.65 0.40 0.03 0.06 0.98 0.01

Case b (0.44,0.98) (0.12,0.77) (0.01,0.08) (0.00,0.29) (0.95,1.00) (0.00,0.02)

and over 60 (resp. 9 and over 60), compared to an overall degrees of freedom parameter over
60 (resp. over 300) for the t-mixture. Thus, in both cases, only the MMST is able to deal
with a heavy tail in one of the directions or dimensions while the t-distribution is forced to,
in some sense, provide an average across all dimensions.

I.3: Object detection using a stereoscopic camera pair

We then tested our model on a data set derived from the CAVA database http://perception.
inrialpes.fr/CAVA_Dataset/Site/. The CAVA database is a set of audiovisual recordings
using binocular and binaural camera/microphone pairs gathered in order to test computa-
tional methods for audiovisual scene analysis (Figure 9). In this work, we are only interested
in the visual part of the data set for it provides 3D data that show some interesting clus-
tering characteristics to illustrate our approach. The 3D observations are shown in Figure
10. They represent locations in space that have been reconstructed from a stereo camera
pair using some stereo-motion reconstruction method (see Arnaud et al. [2008], Khalidov
[2010], Khalidov et al. [2011] for more details) based on so called interest points detected in
the right and left images. We used for this data set different mixtures: Gaussian, standard
t-distribution, and multiple scaled t-distribution mixtures. Although we know three people
are actually present in the scene, we chose first to fit 4 clusters, the extra one being for the
camera pair artifacts. The results are shown in Figure 4 in the main paper.

We can see part of the difficulty with this problem and some reason for the differences
by examining the estimated degrees of freedom for the MMST. For the components to the
left and right, the estimated degrees of freedom are low for the second and third dimensions
(approx. 2 and 5 respectively for both components), and high for the first dimension (approx.
200). For the middle component, the estimated degrees of freedom parameter for the second
dimension is low (approx. 5), and high for the first and third dimension. The estimated
degrees of freedom for the component representing the visual source are all high (approx.
100). Thus, for the MMST representation there is a considerable amount of difference in
the estimated degrees of freedom across dimensions for most of the components (3 out of
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4). For the t-mixture, the estimated degrees of freedom parameter is low (approx. 1) for
the component representing the visual source and background. The estimated degrees of
freedom for the middle and right components are high (approx. 100), and low for the left
(approx. 6). When the degrees of freedom are fixed to a low value (2) we also see a similar
result (Figure 4 (c) in the paper).

In a second stage, we removed the artifacts near the camera pair by considering only the
points such that Y3 > 1000 (Figure 11) and re-ran the clustering algorithms with K = 3.
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Figure 1: Perspective plots of Bivariate t-distributions with µ = [1, 2]T , A = diag(4, 4).
First column: Standard Bivariate t-distributions with (top) ν = 0.1, (bottom) ν = 5. Second
column: Multiple dof t-distributions with (top) ν = {0.1, 0.1}, ξ = π
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Figure 2: First row, contour plots of multiple scaled multivariate NIG distributions with µ = [0, 0]T ,
Σ = diag(1, 1) and (a) γ = {1, 20}, δ = {1, 20}, β = [3, 3]T while in (b) γ = {1, 1}, δ = {1, 100},
β = [0.01, 3]T . Second row, contour plots of multiple scaled multivariate NIG distributions (solid blue lines)
with µ = [0, 0]T . The difference with the standard multivariate NIG for γ = 1 and δ = 1 (red dotted lines)
is illustrated: γ = {1, 1}, δ = {1, 1} with (c) A = diag(1.5, 0.5), ξ = π

4 (equivalently Σ has 1 on its diagonal
entries and other entries are set to 0.5), β = [2, 2]T while in (d) Σ = diag(1, 1) and β = [−2, 2]T .
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Figure 3: Perspective (top) and contour (bottom) plots of the local dependence function
for examples of MS distributions with parameters: (a) ξ = π/3, A1 = 1.5, A2 = 1.2, ν1 =
1, ν2 = 3; (b) ξ = π/3, A1 = 1.5, A2 = 1.2, ν1 = 1, ν2 = 100.

(a) True classification (b) t-mixture νk=1 (c) t-mixture νk=30 (d) MMST

Figure 4: Classification results for a 2-dimensional simulated example of three elongated clusters. (a) True
classification; (b) (resp. (c)) Classification for the t-distribution mixture with all dof ’s fixed to 1 (resp.
to 30); (d) Classification for the mixture of multiple scaled t-distributions (MMST) with estimated dof’s.
The classification for the t-mixture with estimated dof’s is closed to (b). The different colours indicate the
different components to which observations are assigned to.
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Figure 5: Profile likelihoods in terms of the dof parameter for the upper most (blue) com-
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|log-likelihood|/max(log-likelihood)). The two blue lines correspond to the two dimensions
in the MMST case and the black line to the standard t-mixture. The dashed lines indicate
the maximum.
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Figure 7: Case a: Classification result with the standard t-mixture (b) and the MMST (c). The main
difference with the true classification (a) can be seen at the border of components 1 (blue) and 2 (green).
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Figure 8: Boxplots of the mean squared errors for the mean parameters. The median and
variability of the mean squared error in case a and b over 30 simulated datasets for dimensions
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each plots.

Figure 9: Left and right images corresponding to a frame in a stereo recording with two
cameras with the detected interest points in each image. These interest points are then to
be matched to produce the 3D data set under consideration.
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3D audiovisual recording data
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Figure 10: Pairwise scatterplots of the 3D audiovisual recording data with numerous camera
artefacts.

3D audiovisual recording data after cutoff
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Figure 11: Pairwise scatterplots of the 3D audiovisual recording data. Data after manually
removing the artefact points with a cutoff keeping only points such that Y3 > 1000
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Objects location estimations

Regarding the objects location, a simple estimator is the mean of the corresponding
component. To assess the quality of this estimation, a ground truth is available from manual
determination by an experimenter. However, only two coordinates (Y1 and Y3) over three
are available. The missing coordinate (Y2) corresponds to the height and cannot be reliably
measured. The reason is that the data is provided by a setting that is efficient at detecting
moving textures. In our example, the detected points may then depend on what people wear
(i.e. clothes with more or less texture), which may significantly impact the determination
of the objects location in the vertical dimension. For instance, a person with textured
trousers is likely to be located at a lower height than one with uniform ones. In contrast,
the projections of the detected points on the ground are much less impacted. The reference
coordinates (ground truth) given in Table 3 correspond then to 2D centres of gravity manually
determined by an expert from the points assigned to each person and projected on the ground.
Table 3 shows the location estimation (in cm) for each detected cluster using the MMST
and t-mixture.

Table 3: Estimated person positions on the ground (Y1 and Y3 in cm) using the MMST and
standard t-mixture with K = 3. Locations are estimated as the means of the clusters. The
closest to the ground truth estimations are indicated with bold characters.

Left cluster (green) Middle cluster (yellow) Right cluster (blue)
Estimated model (K = 3) Y1 Y3 Y1 Y3 Y1 Y3

Ground truth -383.4 2483.4 317.4 2725.0 867.8 2302.3
MMST -357.4 2503.3 342.6 2699.2 894.1 2280.2

t-mixture -354.8 2476.0 334.9 2699.1 770.0 2264.8
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