
Spatial modelling of plant diversity from
high-throughput environmental dna sequence data

A. Studeny 1 & F. Forbes 1 & E. Coissac 2 & A. Viari 1 & C. Mercier 2 & L. Zinger 2 &
A. Bonin 2 & F. Boyer 2 & P. Taberlet 2
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Résumé. Cet article présente une approche statistique pour modéliser les corrélations
spatiales entre espèces dans un écosystème. L’originalité réside dans la particularité des
données, génerées par des séquençages à haut-débit de l’ADN environnemental d’échan-
tillons de sol. Les données utilisées dans cet étude étaient recueillis à la station biologique
CNRS des Nouragues, en Guyane Française. L’étude décrit les relations spatiales bivariées
de ces données par un modèle linéaire de co-régionalisation séparable où l’on estime un
paramètre de cross-corrélation. Sur la base de cette estimation, nous visualisons le modèle
de co-occurrences sous forme de graphes d’interactions. Les limites de cette approche sont
discutées ainsi que les alternatives possibles.

Mots-clés. Correlation spatiale, champs aléatoires Gaussiens, modèles linéaires de core-
gionalisation, ADN environnemental, données de haute dimension

Abstract. This paper considers a statistical modelling approach to investigate spatial
cross-correlations between species in an ecosystem. A special feature is the origin of
the data from high-troughput environmental DNA sequencing of soil samples. Here we
use data collected at the Nourague CNRS Field Station in French Guiana. We describe
bivariate spatial relationships in these data by a separable linear model of coregionalisation
and estimate a cross-correlation parameter. Based on this estimate, we visualise plant
taxa co-occurrence pattern in form of ‘interaction graphs’ which can be interpreted in
terms of ecological interactions. Limitations of this approach are discussed along with
possible alternatives.

Keywords. Spatial correlation, Gaussian random fields, linear coregionalization, envi-
ronmental DNA, high dimensional data

1 Motivation

Recent technological and computational advances have confronted applied statistics with
data sets of steadily growing size and complexity. In ecology, the introduction of molecular
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methods is currently revolutionizing traditional approaches of assessing species diversity,
the composition of ecological communities and the co-occurrence of species [15]. The idea
of creating species inventories based on genetic ‘barcodes’ [5, 12] has rapidly gained pop-
ularity and multi-taxonimic DNA ‘fingerprints’ are now starting to be used for assessing
diversity and composition of ecological communities.
Meta-barcoding consists in extracting and identifying DNA-fragments from environmental
samples with the help of taxon-specific genetic markers (see details below) [2]. In contrast
to other methods, metabarcoding data contains indirect information on the presence of
a target species and is thus able to trace multiple taxa simultaneously In analogy to
DNA-barcoding, the genetic ‘fingerprints’ deposited in an environmental sample, such as
in soil, are expressed and amplified applying PCR protocols (polymerase chain reaction)
and subsequently identified as MOTUs (molecular operational taxonomic units) up to the
lowest possible taxonomic resolution with the help of DNA-sequence reference data bases
[12], established on purpose or extracted from standard DNA libraries, such as GenBank
(www.ncbi.nlm.nih.gov/genbank). This provides a novel set of tools to revisit traditional
questions in community ecology about the coexistence of species.
Relatively low-cost and easily applied in the field, these new sampling techniques are likely
to be widely used in near future. In order to be effective for biodiversity assessment, these
tools have to be combined with statistical methodology and analysis tailored towards the
specifics of these data: On one hand, we are faced with a large quantity of data, where
the dimension is larger than the sample size, on the other their taxonomic classification
is often incomplete in the sense that species identification is not always possible. The
output sequences contain noise as well as systematic error caused by the PCR protocol.
Sequence abundance is highly variable between MOTUs, ranging between hundreds or
less per sample for rare sequences up to several thousands for the most abundant, and
can also vary considerably within the same MOTU across samples.
This paper presents a first attempt at spatial statistical modelling of metabarcoding data.
The aim of the modelling approach is to explicitly take into account information on the
spatial distribution and the identification of species co-occurrence pattern. After a short
overview of the data and the molecular methods used for their extraction, we develop
specific research questions, followed by an outline of the statistical analysis. We conclude
with a summary of the (preliminary) results and discuss possible generalisations of this
model as well as alternatives that we intend to study in the future.

2 Description of the data and aim of the study

The data come from soil samples taken on a regular grid of 19 × 19 points in a 100 ha
square area in tropical forest at the Nouragues CNRS Field Station in French Guiana.
These data have been collected for preliminary analysis to educate the planning of a
subsequent survey with larger spatial coverage in the same region. Soil samples are
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processed in the following way:
Extracellular DNA is isolated independently from each soil core. Then a genomic regions
(P6 loop of chloroplast trnL intron, [11]) is amplified by PCR from the metegenome. This
region was chosen because it is variable enough to allow plant species discrimination, but
conserved sufficiently at its extremeties to allow the constructions of DNA primers, neces-
sary to run the PCR. After deletion of obvious erroneous sequences from the PCR output,
the remaining sequences are distinguished as MOTUs (molecular operational taxonomic
units). In the so-processed plant data, a total of 601 MOTUs were retained. No covariate
data, such as soil pH for example, are available.
The aim is to develop methodology based and tested on this preliminary tropical plant
data set which can subsequently be applied as a standard tool kit for biodiversity anal-
ysis of high throughput environmental DNA data across diverse taxonomic groups and
climate zones. In particular, we aim at inferring spatial co-occurrence pattern between
taxonomic groups as well as between different units within the same taxonomic group and
at distinguishing such true signals from potential PCR errors.

3 Gaussian random fields for interspecies correlations

We assume for a fixed MOTU that the observed sequence count Y (x) at position x ∈
D ⊂ R2 (where D denotes the 100 m2 survey plot) follows a Poisson distribution, where
the value of the intensity parameter λ(x) is a realisation of a (latent) Gaussian random
field Λ(x) at site x. Spatial correlation in Λ is imposed by a structured additive regression
model [7]

log Λ(x) = µ(x) + U(x), (1)

where µ(x) is a local intercept term and U(x) a spatially structured effect, namely a
Gaussian random field with mean 0 and covariance function C(·).
(This model can be extended, including covariate information through a linear predictor
µ(z(x)) =

∑
βizi(x) depending on covariate values zi(x) at locations x, or even adding

more general functional dependencies on the covariate data in terms of smooth regression
splines [4]. Model (1) could also incorporate (unstructured) random effects [6], however
given that the data comprise only observed sequences counts at the sample sites we chose
not to include effects other than the spatial field to avoid overparametrisation).
For an ensemble of MOTUs Y = (Yi(x))1≤i≤N , the model is generalised to a multivariate
setting taking into account spatial cross-correlation by linking the latent spatial fields as
realisations of a multivariate Gaussian process (GP ) with cross-covariance matrix C [8]:
for i = 1, . . . , N

log Λi(x) = µi(x) + Ui(x), where U ∼ GP (0,C)

the entries of C(h) = (Cij(h))1≤i,j≤N with Cij(h) = E[Ui(x)Uj(x + h)] being the cross-
covariances for the spatial fields Ui and Uj, i 6= j.
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Valid model choices for C are limited by the condition that, for any finite sample of
locations x1, . . . , xs, the sample covariance matrix for realisations Ui(x1), . . . , Ui(xs) and
Uj(x1), . . . , Uj(xs) has to be semi-positive definite.
Linear models of coreginalization (LMC) [14, 3, 10] provide valid cross-correlation models.
Practical constraints regarding the implementation of these models, lead us to consider
only the bivariate case. Hence, the spatial fields are linked by a linear transformation

U(x) = [U1(x), U2(x)]t = Aw(s)

where A is a full-rank 2 × 2 matrix and w = (w1, w2) are two independent Gaussian
random fields with mean 0 and the same correlation function ρ0(h)1 This model (3) is
referred to as separable in the literature, as C(h) = ρ0(h)AAt, and hence the correlation
is determined entirely by the coefficients aij of the matrix A. In particular, we derive the
cross-correlation between U1 and U2 at distance 0 as

ρ =
a11a21√

a211(a
2
12 + a222)

.

We estimate ρij for every sequences pair (i, j) of the 601 plant MOTUs by implementing
and fitting this model in a hierarchical Bayesian framework using the R library R-INLA

[9]. This software package enables the user to fit latent Gaussian process models at a
computational cost that is lower than the standard MCMC procedure. This was appealing
given the many pair-wise models we had to calculate.

4 Results

For every sequence pair (i, j), the fitted model outputs the posterior mean ρ̂ij of the cross-
correlation along with its standard deviation and a 95%-credible intervals. Since our aim
was to identify pairs with potential spatial interaction, we decided to keep all pairs for
which the credible interval did not span 0. Depending on the sign of ρ̂ij we speak of a
positive or negative spatial cross-correlation.
Prior to further analysis, potential PCR errors are identified on the following thought:
errors occur during PCR amplification, when small changes in the original DNA sequence
are introduced. This leads to a similar sequence, but is likely identified as a different
MOTU exhibiting positive spatial correlation with the original one. Assuming that the
edit distance (total number of base differences) between the original and the erroneous
sequence is small and that such a ‘false’ pair is not expected to be negatively correlated,
we look at the paramter ρij against the edit distances. Comparing the upper and lower
half of Fig.1(a), corresponding to pairs with positive and negative spatial correlation,
respectively, we discard pairs with a distance of less than 10 as likely PCR errors.

1Note that in general, LMCs can include an arbitrary number of Gaussian fields wk with not necessarily
identical correlation functions ρk(h).

4



(a)

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●
●

●

●

●
● ●

●

●

●
●●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

● ●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

● ●

●

●

●●
● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●
●●

●

●

●●

●

●●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●●

● ●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

● ● ●

●
●

●
●

●

●

●● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●
●

●
●

●

●

●●

● ●

●●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
● ●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●●
●

●

●

● ●

●

●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

● ●● ●
●

●
● ●●

●

● ●

●

●

●●

● ●

●

●

● ●
●

●● ●
●

●

●
●

●

●
●●

●

●
●●●

●

●●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●● ● ●

●

●

●

●
●

●

●

●
● ●

●

● ●

●

●
●

●
●

●

●
●

●
●

● ●

●
●

●
●

●●
●●●
●

●●

●

●

●

●

●
●

●

●

● ●
●

●●
●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●●

●

●
●

●

●

●
● ●●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

● ●
● ●

●

●

●

● ●
● ● ●

●●

●

●
●
●●

●

●
●●

●●

●
●

● ●

●

●

●

●

●

●

●

●
●●●

●

●

●
●●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

● ●● ● ●●● ●

●

● ●

●

●
●

●

● ●

●

●

●

●●

●

●●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●
● ●

●

●

●

●●
●

●

●

●
●

●
●

●

● ●●● ●
●

●

● ●●
●

●

●

●

●

●
● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●
● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●●●

●
●

●

●

●
●

●● ●
●

●
●● ●

●●
● ●

●

●

●
●●

●

●●

●

●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

0 10 20 30 40

−
0.

5
0.

0
0.

5
1.

0

Distance between sequences

R
ho

(b)

●●

Ericales

Fabales

Gentianales

Magnoliales

Malpighiales

Poales

Rosales

Sapindales

Figure 1: (a) cross-correlation for each pair of 601 tropical plant MOTUs plotted against the edit
distances between the two sequences. (b) Subset of an interaction graph at the order level. The size of a
vertex corresponds to the number of sequences within the order, edges show positive (black) and negative
(red) spatial cross-correlation between pairs of MOTUs in the respective orders.

For the remaining pairs, a ‘spatial interaction graph’ is drawn, depending on a threshold
on ρ (Fig.1(b)). This graph visualises spatial correlation between taxonomic classes (here
at the order level), where edge width represents the strength of positive and negative
correlation between the remaining sequence pairs in the respective classes. Vertex size
corresponds to the size of the order as it is represented in the data set (total number of
sequences belonging to this order).

5 Discussion

We present results from a first statistical analysis of the spatial correlations in tropical
plants using data from environmental DNA sequencing. In a ‘brute force’ approach a
model based on cross-correlated Gaussian spatial fields was fitted to all MOTU pairs and
the estimated pairwise cross-correlation can be investigated. Even with a very simple
model (separable bivariate LMC without covariate data), this already allows us to visu-
alise and reveal some co-occurrence pattern demonstrating the interest to further analyse
the co-occurrence network exhibited by this approach. The interaction graph as it is
shown appears to be at a too coarse taxonomic level for a more detailed ecological inter-
pretation and requires additional tuning of the taxonomic resolution at this stage as well
as connection to relevant ecological pattern. However, given the large number of variables
(601 MOTUs), computational costs are still high, even when a computationally efficient
algorithm is applied. The computational effort that is necessary to fit even a very simple
spatial model, such as the bivariate, separable LMC, seems unreasonable and possible in-
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feasible once we pass onto the final, considerably larger data set. Hence, future work will
consider alternatives , such as dimensional reduction based on model-based subspace clus-
tering including sparsity constraints [1] and to extend those to take into account spatial
dependencies, along the lines of [13].
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