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Abstract

Nous abordons dans cet article le problème de la détection-estimation jointe de l’activité cérébrale en
IRM fonctionnelle. Pour ce faire, nous adoptons le cadre JDE développé dans [1] et étendu dans [2] avec
un modèle de champ de Markov caché afin de considérer les dépendances spatiales entre les voxels. Cette
extension est essentielle mais induit une grande complexité opératoire qui a été contournée dans [2]
en utilisant des méthodes de simulation stochastique (MCMC) qui sont très coûteuses en temps de
calcul. Nous proposons ici une alternative pour lever cette limitation en reformulant le cadre JDE en
un problème à données manquantes en utilisant pour l’inférence un algorithme EM dans lequel nous
mettons en œuvre des techniques d’approximation variationnelle. Des illustrations sur des données
artificielles réalistes montrent que l’algorithme EM variationnel permet de dépasser les performances
de l’approche MCMC.

1 Introduction
Functional Magnetic Resonance Imaging (fMRI) is a powerful tool to non-invasively study the relation
between cognitive task and cerebral activity through the analysis of the hemodynamic BOLD signal [3].
Within-subject analysis in event-related fMRI first relies on (i) a detection step to localize which parts of the
brain are activated by a given stimulus type, and second on (ii) an estimation step to recover the temporal
dynamics of the brain response. Most approaches to detect neural activity rely on a single a priori model for
the temporal dynamics of activated voxels also known as the hemodynamic response function (HRF) [4]. A
canonical HRF is usually assumed for the whole brain although there has been evidence that this response
can vary with space or region, across subjects and groups [5]. In addition, a robust and accurate estimation
of the HRF is possible only in regions that elicit an evoked response to an experimental stimulus [6]. Both
issues of properly detecting evoked activity and estimating the HRF then play a central role in fMRI data
analysis. They are usually dealt with independently with no possible feedback although both issues are
strongly connected one to another. To introduce more flexibility regarding the assumptions on the HRF
model, a novel approach referred to as the Joint Detection Estimation(JDE) framework has been introduced
in [1] and extended in [2] to account for spatial correlation between neighboring voxels in the brain volume
(regular lattice in 3D). In this latter approach, the HRF can be estimated while simultaneously detecting
activity, in a region-based analysis, that is on a set of pre-specified regions of interest (ROI), also named
parcels. This approach is mainly based on: (i) the non-parametric modelling of the HRF at a regional
spatial scale (parcel-level) that provides a fair compromise between homogeneity of the BOLD signal
and reproducibility of the HRF estimate; (ii) prior information about the temporal smoothness of the
HRF to be estimated; and (iii) the modelling of spatial correlation between neighboring voxels within
each parcel using condition-specific hidden Markov fields. In [1, 2], posterior inference is carried out in
a Bayesian setting using Monte Carlo Markov Chain (MCMC) methods, which requires in the spatial
case, Swendsen-Wang or partial decoupling algorithms to guarantee rapid convergence given the spatial
dependencies. In this paper, we reformulate the approach derived in [2] into a missing data framework and
propose a simplification of the inference framework. As a more computationally efficient alternative to
MCMC, we resort to variational approximation techniques using a Variational Expectation Maximization
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algorithm (VEM) in order to derive estimates of the HRF, the Neural Response Levels (NRLs) and the
corresponding labels (activating/non-activating voxels). Preliminary experiments on realistic artificial
data sets are reported to demonstrate the good performance of our approach both in terms of computation
time and estimation quality. The results compare favorably: for a given fixed amount of computational
resources, the variational approach outperforms the MCMC one. This potentially increases considerably
the impact of the JDE framework making its application possible in larger range brain MRI studies.

2 A joint detection-estimation model
Capital letters indicate random variables, and lower case their realizations. Matrices are denoted with
bold upper case letters (eg P ). A vector is by convention a column vector. The transpose is denoted
by t. Unless stated otherwise, subscripts i, m, k and n are respectively indexes over voxels, stimulus types,
mixture components and time point.

2.1 Missing and observed variables
We first recast the parcel-based model of the BOLD signal described in [2] in a missing data framework.
For a given parcel V , the observed data is denoted by Y = {Yi, i ∈ V } where Yi is a N -dimensional vector
representing the fMRI time course measured in voxel i ∈ V at times (tn)n=1:N , where tn = nTR, N being
the number of scans and TR, the time of repetition. Additional non observed variables are introduced:
1) The neural response levels A = {Am,m = 1 : M} with Am = {Ami, i ∈ V } where M is the number of
experimental conditions (or stimulus types). We will also use the notation Ai = {Ami,m = 1 : M}; 2)
The HRF denoted by H = [H0, H∆t, , . . . , HD∆t]

t
is a (D + 1)-real valued vector; 3) The activation class

assignments Z = {Zm,m = 1 : M} with Zm = {Zmi, i ∈ V } represent the activation classes for each voxel,
in each of the M experimental conditions. Zmi = k means that voxel i lies in activation class k for the
mth experimental condition. Typically the number of classes is K = 2 for activating and non activating
voxels. The observed and missing variables are then linked through the following relationship implying
additional parameters to be estimated or fixed as specified bellow. Each Yi reads

∀i ∈ V, Yi =
M∑

m=1

AmiXmH + P ℓi + εi, (1)

where Xm = (xm
tn−d∆t)n=1:N,d=0:D denotes the N × (D+ 1) binary matrix that codes the arrival times of

the mth stimulus which are approximated to fit a ∆t-sampled grid, where ∆t is the sampling period of the
HRF (∆t < TR); εi’s stand for the noise and are independent and normally distributed, εi ∼ N (0,Γ−1

i ),
and P is the low frequency orthogonal N ×L matrix which accounts for physiological artifacts. It consists
of an orthonormal basis of L functions [P1 | · · · |PL]. We denote by ℓ = {ℓi, i ∈ V } the set of low frequency
drifts . Each ℓi is a L-dimensional vector of regressors to be estimated. We denote by Γ = {Γi, i ∈ V } the
set of all precision matrices.

2.2 Hierarchical model of the complete data distribution
With standard additional assumptions, and omitting the dependence on the parameters to be specified
later, the distribution of both the observed and missing variables can be decomposed as follows:

p(y, a, h, z) = p(y | a, h) p(a | z) p(h) p(z).

To fully define the model, we now specify each term in turn.
The p(y | a, h) term. From (1), it comes that:

p(y | a, h) =
∏

i∈V

p(yi | ai, h) with Yi |Ai = ai, H = h ∼ N

(

M
∑

m=1

amiXmh+ P ℓi,Γ
−1
i

)

.

The p(a | z) term. Regarding NRLs, it is standard to assume that different types of stimuli induce
statistically independent NRLs. The allocation variables Zmi are then introduced to segregate activating
voxels from non-activating ones. Among voxels, the NRLs are assumed to be independent conditionally
on Zm so that putting together all experimental conditions we get:
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p(a | z) =
M∏

m=1

∏

i∈V

p(ami | zmi), (2)

where we further assume that the right hand side is defined by Ami |Zmi = k ∼ N (µmk, σ
2
mk). The

Gaussian parameters are unknown and denoted by µ and σ with µ = {µm,m = 1 : M} and µm =
[µm1 . . . µmK ]

t
and σ = {σm,m = 1 : M} with σm = [σm1 . . . σmK ]

t
.

The p(h) term. Akin to [7], we introduce constraints in the prior that favor smooth variations in h:
H ∼ N (0, σ2

hR) with R = (∆t)4 (Dt
2D2)

−1 where where D2 is the second-order finite difference matrix
and σ2

h is a parameter to be estimated or fixed. Moreover, the extreme time points of the HRF are
constrained to zero [7].
The p(z) term. As in [2], we assume prior independence between experimental conditions regarding the

activation class assignments. It follows that p(z) =
M∏

m=1
p(zm;βm) where we assumed in addition that

p(zm;βm) is a K-class Potts model with interaction parameter βm,

p(zm;βm) = W (βm)−1 exp(βm

∑

i∈V

∑

j∈N (i)

δ(zmi, zmj)),

where δ(zmi, zmj) is 1 when zmi = zmj and 0 otherwise, W (βm) is the normalizing constant and N (i)
denotes the voxels that are neighbors to voxel i on the 3D brain volume. The unknown parameters
are then β = {βm,m = 1 : M}. For the complete model, it follows that the whole set of parameters
denoted by θ ∈ Θ is θ = {Γ, ℓ,µ,σ, σh,β}. Note that H could also be considered as a parameter but it
distinguishes from θ as priors are not necessarily available for the parameters in θ. If they were, they could
be incorporated easily.

3 Estimation by variational EM
We propose to use an Expectation-Maximization (EM) framework [8] to deal with the missing data namely,
A ∈ A, H ∈ H, Z ∈ Z. Let D be the set of all probability distributions on A × H × Z. EM can be
viewed as an alternating maximization procedure of a function F such that for any q ∈ D, F (q, θ) =
Eq

[
log p(y,A,H,Z ; θ)

]
+ I[q] where I[q] = −Eq

[
log q(A,H,Z)

]
is the entropy of q, and Eq

[
.
]
denotes

the expectation with respect to q. Denoting current parameter values by θ(r), the alternating procedure
proceeds as follows: E-step: q(r) = argmax

q∈D

F (q, θ(r)) (3)

M-step: θ(r+1) = argmax
θ∈Θ

F (q(r), θ) (4)

However, the optimization step in Eq. (3) leads to q(r)(a, h, z) = p(a, h, z | y; θ(r)), which is intractable
for non trivial models. Hence, we propose to use an EM variant in which the E-step is instead solved
over a restricted class of probability distributions, D̃, chosen as the set of distributions that factorize
as q(a, h, z) = qA(a) qH(h) qZ(z) where qA ∈ DA, qH ∈ DH and qZ ∈ DZ , the sets of probability
distributions on A,H,Z respectively. The fact that the HRF H can be equivalently considered as missing
variables or random parameters induces some similarity between our Variational EM variant and the
Variational Bayesian EM algorithm presented in [9]. Our framework varies slightly from the case of
conjugate exponential models described in [9] and more importantly, our presentation offers the possibility
to deal with extra parameters (θ) for which no prior information is available. As a consequence, the
variational Bayesian M-step of [9] is transferred into our E-step while our M-step has no equivalent in the
formulation of [9]. It follows then that the E-step becomes an approximate E-step that can be further
decomposed into three stages in which the goal is to update qH , qA and qZ in turn using three equivalent
expressions of F when q factorizes in D̃. At iteration (r), with current estimates denoted by q

(r−1)
A , q

(r−1)
Z

and θ(r), the updating rules become (using the Kullback-Leibler divergence properties):
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E-H: q
(r)
H (h) ∝ exp

(

E
q
(r−1)
A

q
(r−1)
Z

[

log p(h | y,A, Z; θ(r)
]

)

E-A: q
(r)
A (a) ∝ exp

(

E
q
(r)
H

q
(r−1)
Z

[

log p(a | y,H,Z; θ(r))
]

)

E-Z: q
(r)
Z (z) ∝ exp

(

E
q
(r)
A

q
(r)
H

[

log p(z | y,A,H ; θ(r))
]

)

.

The corresponding M-step is (since θ and I[q] are independent):
M: θ(r+1) = argmax

θ∈Θ
E
q
(r)
A

q
(r)
H

q
(r)
Z

[
log p(y,A,H,Z ; θ)

]
.

For the E-H and E-A steps it follows from standard algebra that q
(r)
H and q

(r)
A are both Gaussian distribu-

tions: q
(r)
H ∼ N (m

(r)
H ,Σ

(r)
H ) and q

(r)
A =

∏

i∈V

q
(r)
Ai

with q
(r)
Ai

∼ N (m
(r)
Ai

,Σ
(r)
Ai

). More specifically, assuming current

values for the m
(r−1)
Ai

, Σ
(r−1)
Ai

and q
(r−1)
Zmi

(k), the rth iteration starts with:

• E-H step: compute Σ
(r)
H = Q̄(r)−1 and m

(r)
H = Σ

(r)
H ȳ(r), with

ȳ(r) =
∑

i∈V

( M∑

m=1

m
(r−1)
Ai

(m)Xm

)t
Γ
(r)
i (yi − P ℓ

(r)
i )

Q̄(r) = R−1/σ2
h +

∑

i∈V

(∑

m,m′

Σ
(r−1)
Ai

(m,m′)Xt
mΓ

(r)
i Xm′ +(

M∑

m=1

m
(r−1)
Ai

(m)Xm)tΓ
(r)
i (

M∑

m=1

m
(r−1)
Ai

(m)Xm)
)
.

• E-A step: Σ
(r)
Ai

= (

K∑

k=1

∆
(r)
ki + H̃

(r)
i )−1and m

(r)
Ai

= Σ
(r)
Ai

(

K∑

k=1

∆
(r)
ki µ

(r)
k + X̃

(r)t

i m
(r)
H )

with µ
(r)
k = [µ1k . . . µMk]

t
and for every i ∈ V , ∆

(r)
ki = diagM

[
q
(r−1)
Z1i

(k)/σ
2(r)
1k , . . . , q

(r−1)
ZMi

(k)/σ
2(r)
Mk

]
, H̃

(r)
i

is defined via its (m,m′) components given by H̃
(r)
i(m,m′) = tr (Σ

(r)
H Xm

tΓ
(r)
i Xm′)+m

(r)t

H Xt
mΓ

(r)
i Xm′m

(r)
H

and X̃
(r)
i = [gt1 | · · · | g

t
M ]

t
with gm = Γ

(r)
i (yi − P ℓ

(r)
i )tXm.

For the E-Z step, it comes

q
(r)
Z (z) =

M
∏

m=1

q
(r)
Zm

(zm) with q
(r)
Zm

(zm) = pm(zm |Am = m
(r)
A (m);σ(r)

m , β(r)
m ) (5)

where pm is a Potts model with interaction parameter β
(r)
m and external field α

(r)
m = {α(r)

mi , i ∈ V } with α
(r)
mi =

Σ
(r)
Ai

(m,m)
[

1/σ
2(r)
m1 . . . 1/σ

2(r)
mK

]t

i.e. pm(zm;σ
(r)
m , β

(r)
m ) ∝ exp{

∑

i∈V

(

α
(r)
mi(zmi) + β

(r)
m

∑

j∈N (i) δ(zmi, zmj)
)

}.

The expression in (5) is intractable but a number of approximation techniques are available. In par-
ticular, we can use a mean-field like algorithm (fixing the neighbours to their mean value) as described
in [10] in which qZm

(zm) can be approximated by q̃Zm
(zm) =

∏
i∈V

q̃Zmi
(zmi) with, if zmi = k, q̃Zmi

(k) ∝

N (mAi
(m);µmk, σ

2
mk)pm(Zmi = k | z̃mN (i);βm,σm), where z̃m is a particular configuration of Zm up-

dated at each iteration according to a specific scheme and pm(zmi | z̃mN (i);βm,σm) ∝ exp{αmi(zmi) +

βm

∑

j∈N (i)

δ(z̃jm, zmi)} and z̃mN (i) = {z̃mj , j ∈ N (i)}. See [10] for details. The M-step can also be di-

vided into four sub-steps involving separately (µ,σ), σh, β and (ℓ,Γ):
• M-(µ,σ) step. Updating parameters µ and σ is straightforward as closed-form expressions are

available:

µ
(r+1)
mk =

∑

i∈V

q
(r)
Zmi

(k) m
(r)
Ai

(m)

∑

i∈V

q
(r)
Zmi

(k)
and σ

2(r+1)
mk =

∑

i∈V

q
(r)
Zmi

(k)
(
(m

(r)
Ai

(m)− µ
(r+1)
mk )2 +Σ

(r)
Ai

(m,m)
)

∑

i∈V

q
(r)
Zmi

(k)
.

• M-σ2
h step. This step is also closed-form: σ

2(r+1)
h = (D− 1)−1tr

(
(Σ

(r)
H +m

(r)
H m

(r)
H

t
)R−1

)
. The other

two M-steps are not closed-form and involved some numerical procedures. For β, the update can be solved
using a mean field like approximation as done in [10]. For (ℓ,Γ) it is easy to show that they satisfy some
fixed point equation not detailed here and to be solved numerically.
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4 Illustrations

4.1 Simulated fMRI data
We simulated a random mixed sequence of indexes coding for M = 2 different stimuli. These two sets of
trials (30 trials per stimulus) were then multiplied by stimulus-dependent and space-varying NRLs, which
were generated according to the distribution in Eq. (2) (cf Fig. 1 left column). To this end, we generated
2D slices (cf Fig. 1) composed of 20 x 20 binary labels Zm (activating and non-activating voxels) for each
stimulus type m. Then, we simulated normally-distributed NRLs:

A1i |Z1i = 0 ∼ N (0, 0.3), A1i |Z1i = 1 ∼ N (2, 0.3), A2i |Z2i = 0 ∼ N (0, 0.5), A2i |Z2i = 1 ∼ N (2.8, 0.5).

Fig. 1 illustrates the impact of the spatial correlation on the NRL maps. As illustrated in Fig. 2, the
simulated fMRI data at each voxel i is obtained by adding a white Gaussian noise εi and low-frequency
drift P ℓi

1 to the convolution of the NRL-modulated stimuli sequence (
∑

m AmiXm) with the HRF.
Note that the parameters β1 and β2 have been set to fixed values (β1 = β2 = 0.8 for the two approaches)
and will not be estimated, as well as Γ and ℓ set as in [1].
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Figure 1: Reference (left) and estimated NRLs amplitude using MCMC simulations (middle) and the proposed
approach (right).
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Figure 2: (a) : Simulation of artificial fMRI datasets; (b) : Reference and estimated HRFs using the VEM and
MCMC-based algorithms.

4.2 Performance comparison
We compare here our method based on VEM to the one in previous work [2] using intensive MCMC
simulations. It can be observed from Fig. 1 that the two methods provide very close results in terms of
estimated posterior activation probability maps (PPM), except for the first experimental condition m = 1.
Estimated NRLs are also very similar both for m = 1 and m = 2 from a qualitative viewpoint (see Fig. 1).
In order to compare the two approaches from a quantitative viewpoint, three different experiments have
been conducted by varying the input Signal-to-Noise Ratio (SNR) of the simulated fMRI data. Table 1
shows SNR values of the simulated fMRI signal and the estimated NRLs w.r.t. the reference ones for the

1
P was defined from a cosine transform basis and parameters ℓj were drawn from a normal distribution.
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two considered conditions. It can be first noticed that since µ2,2 > µ1,2, a higher SNR is always obtained
for the NRLs corresponding to the second experimental condition (m = 2). As expected, reported SNR
values indicate that the estimation precision increases with the input SNR. When comparing the two
approaches, it seems that the proposed one is more robust to the noise in fMRI data. Note that displayed
results in Figs. 1,1 and 2-(b) correspond to Experiment 1. As regards estimated HRFs, Fig. 2-(b) shows

Table 1: SNR (dB) values for the simulated fMRI signal Y and estimated NRLs.

Y MCMC VEM

m = 1 m = 2 m = 1 m = 2

Exp. 1 11.86 44.81 45.27 50.96 55.13

Exp. 2 12.56 44.66 53.14 50.42 56.93

Exp. 3 15.91 47.97 53.82 52.59 58.41

that two approaches perform similarly in terms of estimation precision, mainly the time and amplitude
of the peak. In terms of computational time, the results hereabove have been reached after 1 min on
an Intel Core 2 - 2.26 GHz, while the MCMC-based approach took 4 min on the same architecture and
programming language (Python).

5 Conclusion
We proposed an alternative to intensive MCMC sampling in the joint detection-estimation framework.
Our contribution relies on a variational EM algorithm. Illustrations showed that this approach achieved
similar and even better results than the MCMC-based approach. Results shown here were at the region
level, on artificial 2D datasets of moderate size (20 × 20). Future work includes the application of our
method to real 3D datasets on the whole brain (typically of size 96×96×40). The differences between our
method and the MCMC approach should then be even more significant both in terms of computational
cost and results quality.
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