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ABSTRACT

We address the issue of jointly detect brain activity and estimate
brain hemodynamics from functional MRI data. To this end, we
adopt the so-called JDE framework introduced in [1] and augmented
in [2] with hidden Markov field models to account for spatial depen-
dencies between voxels. This latter spatial addition is essential but
also responsible for high computation costs. To face the intractabil-
ity induced by Markov models, inference in [2] is based on intensive
simulation methods (MCMC). In this work we propose an alterna-
tive to face this limitation by recasting the JDE framework into a
missing data framework and to derive an EM algorithm for infer-
ence. We address the intractability issue by considering variational
approximations. We show that the derived Variational EM algorithm
outperforms the MCMC procedure on realistic artificial fMRIdata.

Index Terms— Variational EM, MRF, Biomedical signal detec-
tion, Magnetic resonance imaging.

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a powerfultool
to non-invasively study the relation between cognitive task and cere-
bral activity through the analysis of the hemodynamic BOLD sig-
nal [3]. Within-subject analysis in event-related fMRI first relies
on (i) a detection step to localize which parts of the brain are acti-
vated by a given stimulus type, and second on (ii) an estimation step
to recover the temporal dynamics of the brain response. Mostap-
proaches to detect neural activity rely on a singlea priori model for
the temporal dynamics of activated voxels also known as the hemo-
dynamic response function (HRF) [4]. A canonical HRF is usu-
ally assumed for the whole brain although there has been evidence
that this response can vary with space or region, across subjects and
groups [5]. In addition, a robust and accurate estimation ofthe HRF
is possible only in regions that elicit an evoked response toan exper-
imental stimulus [6]. Both issues of properly detecting evoked ac-
tivity and estimating the HRF then play a central role in fMRIdata
analysis. They are usually dealt with independently with nopos-
sible feedback although both issues are strongly connectedone to
another. To introduce more flexibility regarding the assumptions on
the HRF model, a novel approach referred to as the Joint Detection
Estimation(JDE) framework has been introduced in [1] and extended
in [2] to account for spatial correlation between neighboring voxels
in the brain volume (regular lattice in 3D). In this latter approach,
the HRF can be estimated while simultaneously detecting activity,
in a region-based analysis, that is on a set of pre-specified regions of
interest (ROI), also namedparcels. This approach is mainly based
on: (i) the non-parametric modelling of the HRF at a regionalspatial
scale (parcel-level) that provides a fair compromise between homo-
geneity of the BOLD signal and reproducibility of the HRF estimate;
(ii) prior information about the temporal smoothness of theHRF to

be estimated; and (iii) the modelling of spatial correlation between
neighboring voxels within each parcel using condition-specific hid-
den Markov fields. In [1, 2], posterior inference is carried out in a
Bayesian setting using Monte Carlo Markov Chain (MCMC) meth-
ods, which requires in the spatial case, Swendsen-Wang or partial
decoupling algorithms to guarantee rapid convergence given the spa-
tial dependencies.

In this paper, we reformulate the approach derived in [2] into
a missing data framework and propose a simplification of the infer-
ence framework. As a more computationally efficient alternative to
MCMC, we resort to variational approximation techniques using a
Variational Expectation Maximization algorithm (VEM) in order to
derive estimates of the HRF, the Neural Response Levels (NRLs)
and the corresponding labels (activating/non-activatingvoxels). Pre-
liminary experiments on realistic artificial data sets are reported to
demonstrate the good performance of our approach both in terms of
computation time and estimation quality. The results compare fa-
vorably: for a given fixed amount of computational resources, the
variational approach outperforms the MCMC one. This potentially
increases considerably the impact of the JDE framework making its
application possible in larger range brain MRI studies.

2. A JOINT DETECTION-ESTIMATION MODEL

Capital letters indicate random variables, and lower case their real-
izations. Matrices are denoted with bold upper case letters(egP ).
A vector is by convention a column vector. The transpose is denoted
by t. Unless stated otherwise, subscriptsi, m, k andn are respec-
tively indexes over voxels, stimulus types, mixture components and
time point. The Gaussian distribution with meanµ and varianceΣ
is denoted usingN (µ,Σ).

2.1. Missing and observed variables

We first recast the parcel-based model of the BOLD signal described
in [2] in a missing data framework. For a given parcelV , the ob-
served data is denoted byY = {Yi, i ∈ V } whereYi is a N -
dimensional vector representing the fMRI time course measured in
voxel i ∈ V at times(tn)n=1:N , wheretn = nTR, N being the
number of scans andTR, the time of repetition. Additional non
observed variables are introduced: 1) The neural response levels
A = {Am,m = 1 : M} with Am = {Ami, i ∈ V } whereM is the
number of experimental conditions (or stimulus types). We will also
use the notationAi = {Ami,m = 1 : M}; 2) The HRF function
denoted byH = [H0,H∆t, , . . . , HD∆t]

t is a(D+ 1)-real valued
vector; 3) The activation class assignmentsZ = {Zm,m = 1 : M}
with Zm = {Zmi, i ∈ V } represent theactivation classesfor each
voxel, in each of theM experimental conditions.Zmi = k means
that voxeli lies in activation classk for themth experimental con-
dition. Typically the number of classes isK = 2 for activating
and non activating voxels. The observed and missing variables are



then linked through the following relationship implying additional
parameters to be estimated or fixed as specified bellow. EachYi

reads

∀i ∈ V, Yi =

M∑

m=1

AmiXmH + P ℓi + εi, (1)

whereXm = (xm
tn−d∆t)n=1:N,d=0:D denotes theN × (D + 1)

binary matrix that codes the arrival times of themth stimulus which
are approximated to fit a∆t-sampled grid, where∆t is the sampling
period of the HRF (∆t < TR); εi’s stand for the noise and are in-
dependent and normally distributed,εi ∼ N (0,Γ−1

i ), andP is the
low frequency orthogonalN × L matrix which accounts for physi-
ological artifacts. It consists of an orthonormal basis ofL functions
[P1 | · · · |PL]. We denote byℓ = {ℓi, i ∈ V } the set of low fre-
quency drifts . Eachℓi is aL-dimensional vector of regressors to be
estimated. We denote byΓ = {Γi, i ∈ V } the set of all precision
matrices.

2.2. Hierarchical model of the complete data distribution
With standard additional assumptions, not detailed here, and omit-
ting the dependence on the parameters to be specified later, the dis-
tribution of both the observed and missing variables can be decom-
posed as follows:

p(y, a, h, z) = p(y | a, h) p(a | z) p(h) p(z).

To fully define the model, we now specify each term in turn.
The p(y | a, h) term. From (1), it comes that:

p(y | a, h) =
∏

i∈V

p(yi | ai, h)

with Yi |Ai = ai,H = h ∼N

(
M∑

m=1

amiXmh+ P ℓi,Γ
−1
i

)
.

The p(a | z) term. Regarding NRLs, it is standard to assume that
different types of stimuli induce statistically independent NRLs. The
allocation variablesZmi are then introduced to segregate activating
voxels from non-activating ones. Among voxels, the NRLs areas-
sumed to be independent conditionally onZm so that putting to-
gether all experimental conditions we get:

p(a | z) =
M∏

m=1

∏

i∈V

p(ami | zmi), (2)

where we further assume that the right hand side is defined by
Ami |Zmi = k ∼ N (µmk, σ

2
mk). The Gaussian parameters are

unknown and denoted byµ andσ with µ = {µm,m = 1 : M}
andµm = [µm1 . . . µmK ]t andσ = {σm,m = 1 : M} with
σm = [σm1 . . . σmK ]t.
The p(h) term. Akin to [7,8], we introduce constraints in the prior
that favor smooth variations inh:

H ∼ N (0, σ2
hR) with R = (∆t)4 (Dt

2D2)
−1

whereD2 is the second-order finite difference matrix andσ2
h is a pa-

rameter to be estimated or fixed. Moreover, the extreme time points
of the HRF are constrained to zero [8].
The p(z) term. As in [2], we assume prior independence between
experimental conditions regarding the activation class assignments.
It follows that

p(z) =
M∏

m=1

p(zm;βm)

where we assumed in addition thatp(zm;βm) is a K-class Potts
model with interaction parameterβm,

p(zm;βm) = W (βm)−1 exp(βm

∑

i∈V

∑

j∈N (i)

δ(zmi, zmj)),

whereδ(zmi, zmj) is 1 whenzmi = zmj and 0 otherwise,W (βm)
is the normalizing constant andN (i) denotes the voxels that are
neighbors to voxeli on the 3D brain volume. The unknown param-
eters are thenβ = {βm,m = 1 : M}.

For the complete model, it follows that the whole set of param-
eters denoted byθ ∈ Θ is θ = {Γ, ℓ,µ,σ, σh,β}. Note thatH
could also be considered as a parameter but it distinguishesfrom θ
as priors are not necessarily available for the parameters in θ. If they
were, they could be incorporated easily.

3. ESTIMATION BY VARIATIONAL EM

We propose to use an Expectation-Maximization (EM) frame-
work [9] to deal with the missing data namely,A ∈ A, H ∈
H, Z ∈ Z. Let D be the set of all probability distributions
on A × H × Z. EM can be viewed [10] as an alternating
maximization procedure of a functionF such that for anyq ∈
D, F (q, θ) = Eq

[
log p(y,A,H,Z ; θ)

]
+ I [q] where I [q] =

−Eq

[
log q(A,H,Z)

]
is the entropy ofq, andEq

[
.
]

denotes the
expectation with respect toq. Denoting current parameter values by
θ(r), the alternating procedure proceeds as follows:

E-step: q(r) = argmax
q∈D

F (q, θ(r)) (3)

M-step: θ(r+1) = argmax
θ∈Θ

F (q(r), θ) (4)

However, the optimization step in Eq. (3) leads toq(r)(a, h, z) =

p(a, h, z | y; θ(r)), which is intractable for non trivial models.
Hence, we propose to use an EM variant in which the E-step is
instead solved over a restricted class of probability distributions,
D̃, chosen as the set of distributions that factorize asq(a, h, z) =
qA(a) qH(h) qZ(z) whereqA ∈ DA, qH ∈ DH andqZ ∈ DZ , the
sets of probability distributions onA,H,Z respectively.

The fact that the HRFH can be equivalently considered as miss-
ing variables or random parameters induces some similaritybetween
our Variational EM variant and the Variational Bayesian EM algo-
rithm presented in [11]. Our framework varies slightly fromthe
case of conjugate exponential models described in [11] and more
importantly, our presentation offers the possibility to deal with ex-
tra parameters (θ) for which no prior information is available. As a
consequence, the variational Bayesian M-step of [11] is transferred
into our E-step while our M-step has no equivalent in the formula-
tion of [11]. It follows then that the E-step becomes an approximate
E-step that can be further decomposed into three stages in which
the goal is to updateqH , qA andqZ in turn using three equivalent
expressions ofF whenq factorizes inD̃. At iteration(r), with cur-
rent estimates denoted byq(r−1)

A , q
(r−1)
Z andθ(r), the updating rules

become (using the Kullback-Leibler divergence properties):

E-H: q
(r)
H (h) ∝ exp

(
E

q
(r−1)
A

q
(r−1)
Z

[
log p(h | y,A,Z; θ(r)

])

E-A: q
(r)
A (a) ∝ exp

(
E

q
(r)
H

q
(r−1)
Z

[
log p(a | y,H,Z; θ(r))

])

E-Z: q
(r)
Z (z) ∝ exp

(
E

q
(r)
A

q
(r)
H

[
log p(z | y,A,H ; θ(r))

])
.

The correspondingM-step is (sinceθ andI [q] are independent):

M: θ(r+1) = argmax
θ∈Θ

E
q
(r)
A

q
(r)
H

q
(r)
Z

[
log p(y,A,H,Z ; θ)

]
.



For theE-H andE-A steps it follows from standard algebra thatq
(r)
H

and q
(r)
A are both Gaussian distributions:q(r)H ∼ N (m

(r)
H ,Σ

(r)
H )

andq(r)A =
∏
i∈V

q
(r)
Ai

with q
(r)
Ai

∼ N (m
(r)
Ai

,Σ
(r)
Ai

). More specifically,

assuming current values for them(r−1)
Ai

, Σ(r−1)
Ai

andq(r−1)
Zmi

(k), the

rth iteration starts with:
• E-H step: computeΣ(r)

H = Q̄(r)−1 andm(r)
H = Σ

(r)
H ȳ(r), with

ȳ(r) =
∑

i∈V

( M∑

m=1

m
(r−1)
Ai

(m)Xm

)t
Γ

(r)
i (yi − P ℓ

(r)
i )

Q̄
(r) = R

−1/σ2
h +

∑

i∈V

(∑

m,m′

Σ
(r−1)
Ai

(m,m′)Xt
mΓ

(r)
i Xm′

+ (
M∑

m=1

m
(r−1)
Ai

(m)Xm)tΓ
(r)
i (

M∑

m=1

m
(r−1)
Ai

(m)Xm)
)
.

The notationm(r−1)
Ai

(m) andΣ(r−1)
Ai

(m,m′) above indicates the
m, resp. (m,m′), component of the corresponding vector, resp.
matrix.
• E-A step:

Σ
(r)
Ai

= (
K∑

k=1

∆
(r)
ki + H̃

(r)
i )−1

and m
(r)
Ai

= Σ
(r)
Ai

(
K∑

k=1

∆
(r)
ki µ

(r)
k + X̃

(r)t

i m
(r)
H )

with µ
(r)
k = [µ1k . . . µMk]

t and for everyi ∈ V ,

∆
(r)
ki = diagM

[
q
(r−1)
Z1i

(k)/σ
2(r)
1k , . . . , q

(r−1)
ZMi

(k)/σ
2(r)
Mk

]
, H̃(r)

i is

defined via its(m,m′) components given by

H̃
(r)

i(m,m′) = tr (Σ
(r)
H Xm

t
Γ

(r)
i Xm′) +m

(r)t

H X
t
mΓ

(r)
i Xm′m

(r)
H

andX̃(r)
i =

[
gt1 | · · · | g

t
M

]t
with gm = Γ

(r)
i (yi −P ℓ

(r)
i )tXm.

For theE-Z step, it comes

q
(r)
Z (z) =

M∏

m=1

q
(r)
Zm

(zm) (5)

with q
(r)
Zm

(zm) = pm(zm |Am = m
(r)
A (m);σ(r)

m , β(r)
m )

wherepm is a Potts model with interaction parameterβ
(r)
m and ex-

ternal fieldα(r)
m = {α(r)

mi, i ∈ V }

with α
(r)
mi = Σ

(r)
Ai

(m,m)
[
1/σ

2(r)
m1 . . . 1/σ

2(r)
mK

]t
i.e.

pm(zm;σ(r)
m , β(r)

m ) ∝ exp{
∑

i∈V

(
α

(r)
mi(zmi)+

β(r)
m

∑

j∈N (i)

δ(zmi, zmj)
)
} .

The expression in (5) is intractable but a number of approxima-
tion techniques are available. In particular, we can use a mean-
field like algorithm (fixing the neighbours to their mean value)
as described in [12] in whichqZm

(zm) can be approximated
by q̃Zm

(zm) =
∏
i∈V

q̃Zmi
(zmi) with, if zmi = k, q̃Zmi

(k) ∝

N (mAi
(m);µmk, σ

2
mk)pm(Zmi = k | z̃mN (i); βm,σm), where

z̃m is a particular configuration ofZm updated at each iteration
according to a specific scheme andpm(zmi | z̃mN (i);βm,σm) ∝
exp{αmi(zmi)+βm

∑
j∈N (i)

δ(z̃jm, zmi)} andz̃mN (i) = {z̃mj , j ∈

N (i)}. See [12] for details. TheM-step can also be divided into
four sub-steps involving separately(µ,σ), σh, β and(ℓ,Γ):
• M-(µ,σ) step. Updating parametersµ andσ is straightforward

as closed-form expressions are available:

µ
(r+1)
mk =

∑
i∈V

q
(r)
Zmi

(k) m
(r)
Ai

(m)

∑
i∈V

q
(r)
Zmi

(k)
and

σ
2(r+1)
mk =

∑
i∈V

q
(r)
Zmi

(k)
(
(m

(r)
Ai

(m)− µ
(r+1)
mk )2 +Σ

(r)
Ai

(m,m)
)

∑
i∈V

q
(r)
Zmi

(k)

• M-σ2
h step.This step is also closed-form:

σ
2(r+1)
h =

trace
(
(ΣH +mHmt

H)R−1
)

D − 1
.

The other two M-steps are not closed-form and involved some nu-
merical procedures. Forβ, the update can be solved using a mean
field like approximation as done in [12]. For(ℓ,Γ) it is easy to show
that they satisfy some fixed point equation not detailed hereand to
be solved numerically.

4. ILLUSTRATIONS

4.1. Simulated fMRI data
We simulated a random mixed sequence of indexes coding for
M = 2 different stimuli. These two sets of trials (30 trials per
stimulus) were then multiplied by stimulus-dependent and space-
varying NRLs, which were generated according to the distribution
in Eq. (2) (cf Fig. 1 left column). To this end, we generated 2D
slices (cf Fig. 2 left column) composed of 20 x 20 binary labels
Zm (activating and non-activating voxels) for each stimulus typem.
Then, we simulated normally-distributed NRLs:

A1i |Z1i = 0 ∼ N (0, 0.3), A1i |Z1i = 1 ∼ N (2, 0.3),

A2i |Z2i = 0 ∼ N (0, 0.5), A2i |Z2i = 1 ∼ N (2.8, 0.5).

Fig. 1 illustrates the impact of the spatial correlation on the NRL
maps. As illustrated in Fig. 3, the simulated fMRI data at each
voxel i is obtained by adding a white Gaussian noiseεi and low-
frequency driftP ℓi

1 to the convolution of the NRL-modulated stim-
uli sequence (

∑
m AmiXm) with the HRF.

Note that the parametersβ1 andβ2 have been set to fixed values
(β1 = β2 = 0.8 for the two approaches) and will not be estimated,
as well asΓ andℓ set as in [1].
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Fig. 1. Reference (left) and estimated NRLs amplitude using MCMC
simulations (middle) and the proposed approach (right).

1
P was defined from a cosine transform basis and parametersℓj were

drawn from a normal distribution.
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Fig. 2. Reference (left) and estimated labels (PPM) using MCMC
simulations (middle) and the proposed approach (right).
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Fig. 3. Simulation of artificial fMRI datasets.

4.2. Performance comparison

We compare here our method based on VEM to the one in previ-
ous work [2] using intensive MCMC simulations. It can be observed
from Fig. 2 that the two methods provide very close results interms
of estimated posterior activation probability maps (PPM),except for
the first experimental conditionm = 1. Estimated NRLs are also
very similar both form = 1 andm = 2 from a qualitative viewpoint
(see Fig. 1). In order to compare the two approaches from a quan-
titative viewpoint, three different experiments have beenconducted
by varying the input Signal-to-Noise Ratio (SNR) of the simulated
fMRI data. Table 1 shows SNR values of the simulated fMRI signal
and the estimated NRLs w.r.t. the reference ones for the two con-
sidered conditions. It can be first noticed that sinceµ2,2 > µ1,2,
a higher SNR is always obtained for the NRLs corresponding tothe
second experimental condition (m = 2). As expected, reported SNR
values indicate that the estimation precision increases with the input
SNR. When comparing the two approaches, it seems that the pro-
posed one is more robust to the noise in fMRI data. Note that dis-
played results in Figs. 1,2 and 4 correspond to Experiment 1.

Table 1. SNR (dB) values for the simulated fMRI signalY and
estimated NRLs.

Y MCMC VEM
m = 1 m = 2 m = 1 m = 2

Exp. 1 11.86 44.81 45.27 50.96 55.13
Exp. 2 12.56 44.66 53.14 50.42 56.93
Exp. 3 15.91 47.97 53.82 52.59 58.41

As regards estimated HRFs, Fig. 4 shows that two approaches
perform similarly in terms of estimation precision, mainlythe time
and amplitude of the peak. In terms of computational time, the re-
sults hereabove have been reached after 1 min on an Intel Core2 -
2.26 GHz, while the MCMC-based approach took 4 min on the same
architecture and programming language (Python).

5. CONCLUSION
We proposed an alternative to intensive MCMC sampling in the
joint detection-estimation framework. Our contribution relies on a
variational EM algorithm. Illustrations showed that this approach
achieved similar and even better results than the MCMC-based ap-
proach. Results shown here were at the region level, on artificial
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Fig. 4. Reference and estimated HRFs using the VEM and MCMC-
based algorithms.

2D datasets of moderate size (20 × 20). Future work includes
the application of our method to real 3D datasets on the wholebrain
(typically of size96×96×40). The differences between our method
and the MCMC approach should then be even more significant both
in terms of computational cost and results quality.
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