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Abstract

The family of location and scale mixtures of Gaussians has the ability to gen-

erate a number of flexible distributional forms. The family nests as particular

cases several important asymmetric distributions like the Generalised Hyper-

bolic distribution. The Generalised Hyperbolic distribution in turn nests many

other well known distributions such as the Normal Inverse Gaussian. In a multi-

variate setting, an extension of the standard location and scale mixture concept

is proposed into a so called multiple scaled framework which has the advantage

of allowing different tail and skewness behaviours in each dimension with arbi-

trary correlation between dimensions. Estimation of the parameters is provided

via an EM algorithm and extended to cover the case of mixtures of such multi-

ple scaled distributions for application to clustering. Assessments on simulated

and real data confirm the gain in degrees of freedom and flexibility in modelling

data of varying tail behaviour and directional shape.

Keywords: Covariance matrix decomposition, EM algorithm, Gaussian

location and scale mixture, Multivariate Generalised Hyperbolic distribution,

Robust clustering

1. Introduction

A popular approach to identify groups or clusters within data is via a para-

metric finite mixture model (Fruwirth-Schnatter, 2006). While the vast majority
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of work on such mixtures has been based on Gaussian mixture models (see e.g.

Fraley and Raftery, 2002). In many applications the tails of Gaussian distribu-

tions are shorter than appropriate and the Gaussian shape is not suitable for

highly asymmetric data. A natural extension to the Gaussian case is to con-

sider families of distributions which can be represented as location and scale

Gaussian mixtures of the form,

p(y;µ,Σ,β, θ) =

∫

∞

0

NM (y;µ+ wβΣ, wΣ) fW (w; θ) dw, (1)

where NM ( . ;µ+wβΣ, wΣ) denotes the M -dimensional Gaussian distribution

with mean µ+wβΣ and covariance wΣ and fW is the probability distribution

of a univariate positive variable W referred to hereafter as the weight variable.

The parameter β is an additional M -dimensional vector parameter for skewness.

When β = 0 and W−1 follows a Gamma distribution G(ν/2, ν/2) i.e. fW

is an Inverse Gamma distribution invG(ν/2, ν/2) where ν denotes the degrees

of freedom, we recover the well known multivariate t-distribution (Kotz and

Nadarajah, 2004). The weight variable W in this case effectively acts to govern

the tail behaviour of the distributional form from light tails (ν → ∞) to heavy

tails (ν → 0) depending on the value of ν.

In the more general case of, for example, allowing β 6= 0 and fW being

a Generalised Inverse Gaussian (GIG) distribution, we recover the family of

Generalised Hyperbolic (GH) distributions (Barndorff-Nielsen, 1997) which is

able to represent a particularly large number of distributional forms.

Due to the flexibility of the GH family, recent interest has focussed on appli-

cations for mixture models and factor analysis (Browne and McNicholas, 2013;

Tortora et al., 2013). For mixture model applications, semi-parametric or non-

parametric approaches can also be used. However, to maintain tractability or

identifiability in a multivariate setting, most approaches appear to restrict the

type of dependence structures between the coordinates of the multidimensional

variable. Typically, conditional independence (on the mixture components) is

assumed in (Benaglia et al., 2009a,b) while a Gaussian copula is used in (Chang

and Walther, 2007).
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For applied problems, the most popular form of the GH family appears to

be the Normal Inverse Gaussian (NIG) distribution (Barndorff-Nielsen et al.,

1982; Protassov, 2004; Karlis and Santourian, 2009). The NIG distribution has

been used extensively in financial applications, see Protassov (2004); Barndorff-

Nielsen (1997) or Aas et al. (2005); Aas and Hobaek Haff (2006) and refer-

ences therein, but also in geoscience and signal processing (Gjerde et al., 2011;

Oigard et al., 2004). Another popular distributional form allowing for skew-

ness and heavy or light tails includes different forms of the multivariate skew-t.

As presented by Lee and McLachlan (2013c), most formulations adopt either a

restricted or unrestricted characterization. Unrestricted forms include the pro-

posals and implementations of Sahu et al. (2003); Lee and McLachlan (2014b);

Lin (2010) while restricted forms include that of Azzalini and Capitanio (2003);

Basso et al. (2010); Branco and Dey (2001); Cabral et al. (2012); Pyne et al.

(2009). In more recent work, Lee and McLachlan (2014a) pointed out that

both restricted an unrestricted characterizations could be unified under a more

general formulation referred to as Canonical fundamental skew-t distribution.

Alternative distributional forms include those based on scale mixtures of skew-

normal distributions such as in Vilca et al. (2014a) and Lin et al. (2014). In the

bivariate case, this includes extensions to the Birnbaum-Saunders distribution

(Vilca et al., 2014b).

Although the above approaches provide for great flexibility in modelling data

of highly asymmetric and heavy tailed form, they assume fW to be a univariate

distribution and hence each dimension is governed by the same amount of tail-

weight. There have been various approaches to address this issue in the statistics

literature for both symmetric and asymmetric distributional forms but most of

them suffer either from the non-existence of a closed-form pdf or from a difficult

generalization to more than two dimensions (see Forbes and Wraith (2014) for

more detailed references).

An alternative approach (Schmidt et al., 2006), which takes advantage of

the property that Generalised Hyperbolic distributions are closed under affine-

linear transformations, derives independent GH marginals but estimation of
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parameters appears to be restricted to density estimation, and not formally

generalisable to estimation settings for a broad range of applications (e.g. clus-

tering, regression, etc.). A more general approach outside of the GH distribution

setting is outlined in (Ferreira and Steel, 2007b,a) with a particular focus on

regression models using a Bayesian framework.

In this paper, we build upon the multiple scaled framework of Forbes and

Wraith (2014) to provide a much wider variety of distributional forms, allowing

different tail and skewness behavior in each dimension of the variable space

with arbitrary correlation between dimensions. A similar approach to ours has

been undertaken in (as yet) unpublished work (Tortora et al., 2014b; Franczak

et al., 2014). The latter work focusses on Laplace distributions while the former

introduces the Coalesced GH distribution as a mixture of a standard GH and

a multiple scaled GH distribution. This multiple scaled distribution is derived

using a different parameterization and with constraints on the parameters. Both

measures are undertaken to ensure identifiability but has the disadvantage of

limiting the type of tail behaviors able to be modelled and results in a very

different performance in terms of clustering as illustrated in Section 4.

The paper is outlined as follows. Section 2 presents the proposed new family

of multiple scaled GH (and NIG) distributions. In Section 3, details are outlined

for maximum likelihood estimation of the parameters for the multiple scaled NIG

distribution via the EM algorithm. In Section 4 we explore the performance

of the approach on simulated and real data sets in the context of clustering.

Section 5 concludes with a discussion and areas for further research.

2. Multiple scaled Generalised Hyperbolic distributions

In this section we outline further details of the standard (single weight)

multivariate GH distribution and then the proposed multiple scaled GH distri-

bution.

2.1. Multivariate Generalised Hyperbolic distribution

As mentioned previously the Generalised Hyperbolic distribution can be rep-

resented in terms of a location and scale Gaussian mixture (1). Using notation
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equivalent to that of Barndorff-Nielsen (1997) Section 7 and Protassov (2004),

the multivariate GH density takes the following form

GH(y;µ,Σ,β, λ, γ, δ) =

∫

∞

0

NM (y;µ+ wΣβ, wΣ) GIG(w;λ, γ, δ)dw

= (2π)−M/2|Σ|−1/2
(γ

δ

)λ
(

q(y)

α

)λ−M

2

Kλ−M

2

(q(y)α)

× (Kλ(δγ))
−1exp(βT (y − µ)) , (2)

where |Σ| denotes the determinant of Σ, δ > 0, and q(y) and α are positive and

given by

q(y)2 = δ2 + (y − µ)TΣ−1(y − µ) , (3)

γ2 = α2 − βTΣβ ≧ 0 . (4)

The parameters β and µ are column vectors of length M (M × 1 vector),

Kr(x) is the modified Bessel function of the third kind of order r evaluated at x

(see Appendix in Jorgensen (1982)), and GIG(w;λ, γ, δ) is the density function

of the GIG distribution which depends on three parameters,

GIG(w;λ, γ, δ) =
(γ

δ

)λ wλ−1

2Kλ(δγ)
exp(−

1

2
(δ2/w + γ2w)) . (5)

An alternative (hierarchical) representation of the multivariate GH distribu-

tion (which is useful for simulation) is

Y |W = w ∼ NM (µ+ wΣβ, wΣ) ,

W ∼ GIG(λ, γ, δ) . (6)

By setting λ = −1/2 in the GIG distribution we recover the Inverse Gaussian

(IG) distribution IG(w; γ, δ), which (when used as the mixing distribution)

leads to the NIG distribution (see section B of the Supplementary Materials for

details).

Using the parameterisation of Barndorff-Nielsen (1997), an identifiability

issue arises as the densities GH(µ,Σ,β, λ, γ, δ) and GH(µ, k2Σ,β, λ, kγ, δ/k)

are identical for any k > 0. For the estimation of parameters, this problem can

be solved by constraining the determinant of Σ to be 1.
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2.2. Multiple Scaled Generalised Hyperbolic distribution (MSGH)

Following the same approach as in Forbes and Wraith (2014), the standard

location and scale representation (1) is generalised into a multiple scale version

p(y;µ,D,A,β, θ) =

∫

∞

0

. . .

∫

∞

0

NM (y;µ+D∆wAD
Tβ,D∆wAD

T )

× fw(w1 . . . wM ; θ) dw1 . . . dwM , (7)

whereΣ = DADT withD the matrix of eigenvectors ofΣ, A a diagonal matrix

with the corresponding eigenvalues and ∆w = diag(w1, . . . wM ). The weights

are assumed independent: fw(w1 . . . , wM ; θ) = fW1
(w1; θ1) . . . fWM

(wM ; θM ).

If we set fWm
(wm) to a GIG distribution GIG(wm;λm, γm, δm), it follows

that our generalization (MSGH) of the multivariate GH distribution with λ =

[λ1, . . . , λM ]T ,γ = [γ1, . . . , γM ]T and δ = [δ1, . . . , δM ]T as M -dimensional vec-

tors is:

MSGH(y;µ,D,A,β,λ,γ, δ)

= (2π)−M/2
M
∏

m=1

|Am|−1/2

(

γm
δm

)λm
(

qm(y)

αm

)λm−1/2

Kλm−1/2(qm(y)αm)×

(Kλm
(δmγm))−1 exp([DT (y − µ)]m [DTβ]m) , (8)

with α2
m = γ2

m +Am[DTβ]2m and qm(y)2 = δ2m +A−1
m [DT (y − µ)]2m .

Alternatively, with w = [w1, . . . , wM ]T we can define it as

Y |W = w ∼ NM (µ+D∆wAD
Tβ,D∆wAD

T ) ,

W ∼ GIG(λ1, γ1, δ1)⊗ · · · ⊗ GIG(λM , γM , δM ), (9)

where notation ⊗ means that the W components are independent. If we set

fWm
(wm) to an Inverse Gaussian distribution IG(wm; γm, δm), it follows that

our generalization (MSNIG) of the multivariate NIG distribution is:

MSNIG(y;µ,D,A,β,γ, δ) =
M
∏

m=1

δm exp(δmγm + [DT (y − µ)]m [DTβ]m)

×
αm

πqm
K1(αmqm(y)) , (10)

6



with α2
m = γ2

m +Am[DTβ]2m, qm(y)2 = δ2m +A−1
m [DT (y−µ)]2m and K1 is the

modified Bessel function of order 1.

It is interesting to note that the multiple scaled GH distribution allows po-

tentially each dimension to follow a particular case of the GH distribution family.

For example, in a bivariate setting Y = [Y1, Y2]
T , the variate Y1 could follow a

hyperboloid distribution (λ1=0) and Y2 a NIG distribution (λ2 = −1/2).

2.3. Identifiability issues

In contrast to the standard multivariate GH distribution, constraining the

determinant of A to be 1 is not enough to ensure identifiability in the MSGH

case. Indeed, assuming the determinant |A| = 1, if we set A′, δ′,γ′ so that

A′

m = k2mAm, δ′m = δm/km and γ′

m = kmγm, for all values k1 . . . km satis-

fying
∏M

m=1 k
2
m = 1, it follows that the determinant |A′| = 1 and that the

MSGH(y,µ,D,A′,β,λ,γ′, δ′) and MSGH(y,µ,D,A,β,λ,γ, δ) expressions

are equal. Identifiability can be guaranteed by adding that all δm’s (or equiv-

alently all γm’s) are equal. In practice, we will therefore assume that for all

m = 1 . . .M , δm = δ.

2.4. Some properties of the multiple scaled GH distributions

The MSGH distribution (as defined in (8)) provides for very flexible distribu-

tional forms. For illustration, in the bivariate case, several contour plots of the

multiple scaled NIG (MSNIG), i.e. for all m, λm = −1/2, are shown in Figure 1

and compared with the standard multivariate NIG. In this two-dimensional set-

ting, we use for D a parameterisation via an angle ξ so that D11 = D22 = cos ξ

and D21 = −D12 = sin ξ, where Dmd denotes the (m, d) entry of matrix D.

Similar to the standard NIG the parameter β measures asymmetry and its sign

determines the type of skewness. For the standard NIG the contours are not

necessarily elliptical and this is also the case with the MSNIG. In the case of

the MSNIG additional flexibility is provided by allowing the parameter γ to be

a vector of dimension M instead of a scalar. Keeping all δm’s equal to the same

δ, this vectorisation of γ effectively allows each dimension to be governed by

different tail behaviour depending on the values of γ. The parameters γ and
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β govern the tail behaviour of the density with smaller values of γ implying

heavier tails, and larger values lighter tails. Other multiple scaled and standard

GH distributions are also illustrated in Figure 1. As shown in Figure 1(g,i), for

different values of λm the shape of the contours do not change significantly but

larger values of λm tend to produce heavier tails. This can also be seen from

the tail behaviour analysis of the MSGH, which is similar to that of the GH

with tails governed by a combined algebraic and exponential form. Details are

given in section C of the Supplementary Materials.

Moments of the MSGH distribution can be obtained using the moments of

the GIG distribution (see Jorgensen, 1982), i.e., if W follows a GIG(λ, γ, δ)

distribution, for all r ∈ Z+,

E[W r] =

(

δ

γ

)r
Kλ+r(δγ)

Kλ(δγ)
. (11)

It follows from representation (9) that when Y follows a MSGH distribution,

E[Y] = E[E[Y|W]] = µ+DE[∆w]ADTβ

= µ+D diag

(

δm
γm

Kλm+1(δmγm)

Kλm
(δmγm)

)

ADTβ, (12)

where for short, we denoted by diag(um) the M -dimensional diagonal matrix

whose diagonal components are {u1, . . . , uM}.

For the covariance matrix, we obtain,

Var[Y] =E[Var[Y|W]] + Var[E[Y|W]]

=DE[∆W]ADT +DA Var[∆WD
Tβ]ADT

=D diag

(

δmAm

γm

Kλm+1(δmγm)

Kλm
(δmγm)

(

1 +
δm
γm

[DTβ]2mAm (13)

×

(

Kλm+2(δmγm)

Kλm+1(δmγm)
−

Kλm+1(δmγm)

Kλm
(δmγm)

)))

DT

For details of the mean and variance for the MSNIG distribution see section B

of the Supplementary Materials.

As can be seen from (13), the variance of the MSGH takes a slightly compli-

cated form with some dependency on the skewness parameter β. This depen-

dency is also present in the variance, recalled below, of the standard multivariate

GH as given in (2),
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Figure 1: Top and middle panels: contour plots of bivariate MSNIG (λ1 = λ2 = −1/2)
distributions (solid lines) with µ = [0, 0]T and δ = {1, 1}. The difference with the
standard multivariate NIG (red dashed lines) is illustrated with univariate δ and γ
values taken as the first respective component of the bivariate δ and γ. The (a-d)
panels correspond to the same Σ built from A = diag(3/2, 2/3) and ξ = π/4 with
(a) β = [2, 2]T , γ = [1, 1]T , (b) β = [0, 5]T ,γ = [2, 2]T , (c)β = [0,−5]T ,γ = [2, 2]T

and (d) β = [0,−5]T ,γ = [2, 10]T . The (e,f) panels correspond to Σ = I2 with (e)
β = [−2, 2]T ,γ = [1, 1]T , (f) β = [0,−5]T ,γ = [1, 1]T . Bottom panels: contour plots of
various multiple scaled (solid lines) and standard (red dashed lines) GH distributions
all with Σ = I2, β = [1, 1]T , γ = [2, 2]T , δ = [1, 1]T and (g) λ = [−1/2, 2]T , (h)
λ = [−2, 2]T , (i) λ = [2,−1/2]T .
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Var[YGH ] =
δ

γ

Kλ+1(δγ)

Kλ(δγ)
Σ+

δ2

γ2

(

Kλ+2(δγ)

Kλ(δγ)
−

K2
λ+1(δγ)

K2
λ(δγ)

)

ΣβTβΣ . (14)

In both expressions (13) and (14), the skewness parameter β affects the

correlation structure. This is not always the case. As noted by Sahu et al. (2003),

in their unrestricted characterization of the skew-t distribution, the skewness

parameter does not affect the correlation structure. In their case, the skewness

parameter acts only on the diagonal elements of the covariance matrix.

A notable difference between the covariance structure of the MSGH and

the standard GH is that in the case of a diagonal scale matrix Σ, variates of

the MSGH are independent of each other. Interestingly, this is not the case

for the standard multivariate GH where the same latent factor W is shared

across dimensions, and this effectively acts to induce some degree of dependency

between dimensions (although they may be uncorrelated). A similar situation

arises in the case of other distributions with shared latent factors, for example

the standard t-distribution. As mentioned previously, in the MSGH case the

latent factor W is allowed to vary independently across dimensions.

In terms of the marginals of the MSGH distribution, they are easy to sam-

ple from but computing their pdfs involves, in general, numerical integration.

Details are given in section D of the Supplementary Materials.

3. Maximum likelihood estimation of parameters

In this section, we outline an EM approach to estimate the parameters of

the MSNIG distribution as it appears to be the most popular case of the GH

family. As noted also by (Protassov, 2004; Barndorff-Nielsen, 1997), for the

GH distribution it can be very difficult to show a significant difference between

different values of λ due to the flatness of the likelihood and computational

difficulties arise in some cases where the likelihood can be infinite. For these

reasons we outline the particular case of allowing all λm’s to be fixed but we note

that it is relatively straightforward to extend our proposed approach to the more

general case. Also for identifiability reasons, we set all δm’s to the same δ value so
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that the parameters to estimate in the MSNIG case are Ψ = {µ,D,A,β,γ, δ}

with |A| = 1.

Estimation of most of the parameters for the MSNIG distribution is relatively

straightforward but the separate estimation of D and A requires an additional

minimization algorithm based on the Flury and Gautschi algorithm (Flury,

1984; Flury and Gautschi, 1986).

Let us consider an i.i.d sample y = {y1, . . . ,yN} of the MSNIG distribution

defined in (10). As in the standard NIG distribution case (Karlis, 2002), a

convenient computational advantage of the EM approach is to view the weights

as an additional missing variable W . The observed data y are seen as being

incomplete and additional missing weight variables W1 . . .WN with for i ∈

{1 . . .N}, Wi = [Wi1 . . .WiM ]T are introduced. These weights are defined so

that ∀i ∈ {1 . . .N}:

Yi|Wi = wi ∼ NM (µ+D∆wi
ADTβ,D∆wi

ADT ) , (15)

and Wi ∼ IG(γ1, δ)⊗ · · · ⊗ IG(γM , δ) ,

where ∆wi
= diag(wi1, . . . , wiM ) .

As a way of circumventing the restriction that the determinant |A| = 1 in

the M-step, representation (15) above can be rewritten equivalently as,

Yi|Wi = wi ∼ NM (µ+D∆wi
DT β̃,D∆wi

ÃDT ) , (16)

Wi ∼ IG(γ̃1, 1)⊗ · · · ⊗ IG(γ̃M , 1) ,

where Ã = δ2 A, β̃ = DÃDTβ, γ̃ = δ γ and Ã is now a general (positive

definite) diagonal matrix. Note that in the location term in the definition above

(16), D∆wi
DT β̃ = D∆wi

ÃDTβ.

3.1. E step

At iteration (r) with ψ(r) being the current parameter value, the E-step

leads to the computation for all i = 1, . . . , N , of the missing variables poste-

rior distributions p(wi|yi;ψ
(r)). It consists then of calculating p(wi|yi;ψ

(r)) ∝
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p(yi|wi;ψ
(r))p(wi;ψ

(r)) which can be shown (see Appendix of Karlis and San-

tourian, 2009) to follow a GIG distribution (see definition (5)). In our case, and

assuming the Wi’s are independent we have,

p(wi|yi;ψ
(r)) =

M
∏

m=1

GIG(wim;−1, α̂(r)
m , φ

(r)
im), (17)

where

φ
(r)
im =

√

1 +
[D(r)T (yi − µ(r))]2(m)

Ã
(r)
m

,

α̂(r)
m =

√

γ̃
(r)2
m +

[D(r)T β̃(r)]2m

Ã
(r)
m

.

As all moments of a GIG distribution exist (see (11)), it follows that we have

closed form expressions for the following quantities needed in the E-step,

s
(r)
im = E[Wim|yi;ψ

(r)] =
φ
(r)
imK0(φ

(r)
imα̂

(r)
m )

α̂
(r)
m K−1(φ

(r)
imα̂

(r)
m )

,

t
(r)
im = E[W−1

im |yi;ψ
(r)] =

α̂
(r)
m K−2(φ

(r)
imα̂

(r)
m )

φ
(r)
imK−1(φ

(r)
imα̂

(r)
m )

.

Note that equivalently K−1 = K1 and K−2 = K2. The Bessel function can

be numerically evaluated in most statistical packages. All computations in this

paper were undertaken using R (Team, 2011).

3.2. M step

For the updating of ψ, the M-step consists of two independent steps for

(µ,D, Ã, β̃) and γ̃,

(µ,D, Ã, β̃)(r+1) =arg max
µ,D,A,β

N
∑

i=1

E[logp(yi, |Wi;µ,D, Ã, β̃)|yi,ψ
(r)] (18)

=arg max
µ,D,A,β

{ N
∑

i=1

−
1

2
log|Ã| −

1

2
(yi − µ−DS

(r)
i DT β̃)T

× DÃ−1T
(r)
i DT (yi − µ−DS

(r)
i DT β̃)

}

,
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and

γ̃(r+1) = argmax
γ̃

N
∑

i=1

M
∑

m=1

E[logp(Wim; γ̃m, 1)|yi,ψ
(r)] (19)

= argmax
γ̃

{ N
∑

i=1

M
∑

m=1

γ̃m −
1

2
γ̃2
ms

(r)
im)

}

,

where T
(r)
i = diag(t

(r)
i1 , . . . , t

(r)
iM ) and S

(r)
i = diag(s

(r)
i1 , . . . , s

(r)
iM ) and ignoring

constants.

The optimization of these steps leads to the following update equations.

Updating µ. It follows from (18) that for fixed D and A (ignoring constants)

µ(r+1) = argmin
µ

{ N
∑

i=1

(yi−µ−DS
(r)
i DT β̃)TDÃ−1T

(r)
i DT (yi−µ−DS

(r)
i DT β̃)

}

,

(20)

which by fixing D to the current estimation D(r), leads to

µ(r+1) =

(∑N
i=1 T

(r)
i D(r)T

N
−N (

N
∑

i=1

S
(r)
i )−1

)

−1

×

(∑N
i=1 T

(r)
i D(r)Tyi

N
−

N
∑

i=1

yi (

N
∑

i=1

S
(r)
i )−1

)

.

Updating β̃. To update β̃ we have to minimize the following quantity,

β̃(r+1) = argmin
β̃

{ N
∑

i=1

(yi−µ−DS
(r)
i DT β̃)TDÃ−1T

(r)
i DT (yi−µ−DS

(r)
i DT β̃)

}

,

(21)

which by fixing D and µ to their current estimations D(r) and µ(r+1), leads to

β̃(r+1) =D(r)(

N
∑

i=1

S
(r)
i )−1D(r)T

N
∑

i=1

(yi − µ
(r+1)) .

Updating D. Using the equality xTSx = trace(SxxT ) for any matrix S, it

follows that for fixed Ã and µ, D is obtained by minimizing

D(r+1) =argmin
D

{ N
∑

i=1

trace(DT
(r)
i Ã(r)−1DTVi) +

N
∑

i=1

trace(DS
(r)
i Ã(r)−1DTBi)

− 2
N
∑

i=1

trace(DÃ(r)−1DTCi)

}

,

13



where Vi = (yi − µ(r+1))(yi − µ(r+1))T ,Bi = β̃(r+1)β̃(r+1)T , Ci = (yi −

µ(r+1))β̃(r+1)T .

Using current values µ(r+1),β(r+1) and Ã(r), the parameter D can be up-

dated using an algorithm derived from Flury and Gautschi (see Celeux and

Govaert (1995)) which is outlined in section E of the Supplementary Materials.

Although not considered in this work, in a model-based clustering context, ad-

ditional information for an efficient implementation can be found in Lin (2014).

Updating Ã. To update Ã we have to minimize the following quantity (See

section F of the Supplementary Materials).

Ã(r+1) =argmin
Ã

{

trace((

N
∑

i=1

Mi) Ã
−1) +N logÃ

}

,

whereMi = T
(r)1/2
i D(r+1)TViD

(r+1)T
(r)1/2
i +S

(r)1/2
i D(r+1)TBiD

(r+1)S
(r)1/2
i −

D(r+1)T (Ci +C
T
i )D

(r+1) and Mi is a symmetric positive definite matrix.

Using a corollary found in Celeux and Govaert (1995) (See section F of the

Supplementary Materials) and by setting D and µ to their current estimations

D(r+1) and µ(r+1) we find for all m,

Ã(r+1)
m =

1

N

N
∑

i=1

(

[D(r+1)T (yi − µ
(r+1))]2mt

(r)
im + [D(r+1)T β̃(r+1)]2ms

(r)
im (22)

− 2[D(r+1)T (yi − µ
(r+1))]m[D(r+1)T β̃(r+1)]m

)

.

Updating γ̃. It follows from (19) that to update γ̃ we have to minimize,

γ̃(r+1)
m = argmin

γ̃

{ N
∑

i=1

M
∑

m=1

1

2
γ̃2
ms

(r)
im − γ̃m)

}

, (23)

which for all m = 1, . . . ,M leads to γ̃
(r+1)
m =

N
∑N

i=1 s
(r)
im

.

Updating constrained γ̃. Similar updating equations can be easily derived

when γ̃ is assumed to be equal for several dimensions. If we assume that for all

14



m, γ̃m = γ̃ then

γ̃(r+1) =
NM

∑N
i=1

∑M
m=1 s

(r)
im

.

It is also quite easy to extend the above equation to the case where γ̃ is as-

sumed to be equal for only some of the dimensions. For either case, model choice

criteria could be used to justify the appropriateness of the assumed parameter

space for γ̃.

Eventually, to transform the estimated parameters back to their original

form we can take δ = |Ã|
1

2M , γm = γ̃m/δ,β = DÃ−1DT β̃ and A = Ã/|Ã|1/M .

3.3. Mixture of multiple scaled NIG distributions

The previous results can be extended to cover the case of K-component

mixture of MSNIG distributions. With the usual notation for the proportions

π = {π1, . . . , πK} and ψk = {µk,Dk,Ak,βk,γk, δk} for k = 1 . . .K, we con-

sider,

p(y;φ) =
K
∑

k=1

πkMSNIG(y;µk,Dk,Ak,βk,γk, δk) ,

where k indicates the kth component of the mixture and φ = {π,ψ} with

ψ = {ψ1, . . .ψK} the mixture parameters. Details on the EM framework are

given in section G of the Supplementary Materials.

As the results of the EM algorithm can be particularly sensitive to initial

values (Karlis and Xekalaki, 2003), for the results to follow we used a number

of approaches to generate different initial values for parameters, including the

use of random partitions, k-means and trimmed k-means (Garcia-Escudero and

Gordaliza, 1999). Often the most successful strategy found was by estimating

µk, Dk and Ak using the results from a trimmed k-means clustering (with

βk = 0) and setting γkm = δk = 1 for all k = 1 . . .K and m = 1 . . .M .

The computational speed of the EM algorithm for the MSNIG distribution is

comparable to the standard NIG case with the exception that the update of

D can be slow for high dimensional applications as the Flury and Gautschi

algorithm involves sequentially updating every pair of column vectors of D.
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A more global approach to the update of D has been proposed recently by

Browne and McNicholas (2012) which has the potential to significantly speed

up the computation time. Browne and McNicholas (2014) have also proposed

the use of majorization-minimization algorithms for the same purpose.

4. Applications of multiple scaled NIG distributions

In this section we present an application of the MSNIG distribution on a

real dataset to demonstrate its flexibility in analyzing skewed multivariate data.

Additional results on simulated data and two more real datasets are reported in

sections H, I and K of the Supplementary Materials where the performance of the

MSNIG compares favourably to the standard NIG and other tested distributions

(see section 4.1), with the MSNIG providing a better fit.

4.1. Lymphoma data

To illustrate some of the differences between the standard NIG and MSNIG

we examine a clustering problem for a lymphoma dataset recently analysed by

Lee and McLachlan (2013c). The data consists of a subset of data originally

presented and collected by Maier et al. (2007). In Maier et al. (2007) blood

samples from 30 subjects were stained with four fluorophore-labeled antibodies

against CD4, CD45RA, SLP76(pY 128), and ZAP70(pY 292) before and after

an anti-CD3 stimulation. In the first example we will look at clustering a subset

of the data containing the variables CD4 and ZAP70 (Figure 2), which appear

to be bimodal and display an asymmetric pattern. In particular, one of the

modes appears to show both strong correlation between the two variables and

substantial skewness.

Of interest in this example is to compare the goodness of fit from fitting

mixtures of standard NIG and MSNIG distributions. For comparison, we also

present the results of fitting using mixtures of skew-normal (Lachos et al., 2010)

and skew-t distributions using two types of formulation: the unrestricted char-

acterization (Sahu et al., 2003; Lee and McLachlan, 2014b; Lin, 2010) and the

restricted one (Azzalini and Capitanio, 2003; Basso et al., 2010; Branco and
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Dey, 2001; Cabral et al., 2012; Pyne et al., 2009). Estimation of the parameters

for these distributions was undertaken using the R package mixsmsn (Cabral

et al., 2012) and for the unrestricted skew-t case using R code available on:

http://www.maths.uq.edu.au/ gjm/mix soft/EMMIX-skew/index.html. Also

available on CRAN, R package EMMIXuskew (Lee and McLachlan, 2013a).

We also show the results obtained with the mixture of coalesced GH distri-

butions described in (Tortora et al., 2014b) and implemented in the R package

MixGHD available on the CRAN (Tortora et al., 2014a). The so-called co-

alesced GH distribution is a mixture of two distributions, a standard GH and

a multiple scaled GH distributions. Although their definitions of the GIG and

GH distributions are equivalent to ours, the resulting formula for the multiple

scaled GH distribution (eq. (19) in Tortora et al. (2014b)) is different. More-

over, we provide an exact EM algorithm for inference which is not the case for

the algorithm provided in (Tortora et al., 2014b). For comparison, we ran the

MixGHD package to fit two versions of the coalesced GH mixture. The first

version corresponds to the most general model (denoted by Coalesced GH). In

the second version, we fitted a mixture of multiple scaled GH distributions by

setting the corresponding inner weights in the coalesced distributions to 0. This

version is denoted by MSGHTFBM to distinguish it from our own MSGH distri-

bution. Both results are different from the results obtained with our algorithm

(see Figure 2 (e,f)) and do not provide realistic classification results as shown in

Section J of our Supplementary Materials (See also the clearly worse likelihood

and BIC values reported in Table 1). The reason for this is twofold. First,

as mentioned in the introduction, the formula defining the multiple scaled GH

distribution in Tortora et al. (2014b) is not equivalent to ours. Further, the con-

straint imposed on the parameterization, namely δ = γ in our notation, makes

their multiple scaled GH not as flexible, particularly in modeling different tail

behaviors (γ parameter).

Figures 2 (a) to (d) show the separate contour lines (of each component)

from fitting mixtures of: standard NIG (Karlis and Santourian, 2009)(a); unre-

stricted Skew-t (Sahu et al., 2003; Lee and McLachlan, 2014b; Lin, 2010) (b);
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Skew-t (Azzalini and Capitanio, 2003; Basso et al., 2010; Branco and Dey, 2001;

Cabral et al., 2012; Pyne et al., 2009) (c); and MSNIG (d). Likelihood values

and estimates of the BIC for the different approaches are also provided in Ta-

ble 1. As we can see from Figure 2 there is quite a difference in the goodness

of fit between the approaches. In particular, we see a clear difference in the

fitted results between the standard NIG and MSNIG with the latter providing

a closer fit to the data. Similar results to the standard NIG are obtained for

the restricted Skew-t (c) and Skew-normal (Lachos et al., 2010) (not shown) ap-

proaches. Note that in the mixsmsn package used, the Skew-t mixture is fitted

with equal degree-of-freedom parameters for each component. Interestingly the

fitted results of the unrestricted Skew-t (b) and the MSNIG (d) appear to be

similar. BIC values for these two approaches are also similar (MSNIG = 47,266,

unrestr. Skew-t = 47,140) but with more support for the unrestricted Skew-t.

Table 1: Results for Lymphoma dataset (Par. is the number of parameters)

Example 1 (CD4 v. ZAP70) Example 2 (CD45 v.CD4)
Model Log-likelihood Par. BIC Log-likelihood Par. BIC

MSNIG -23,545 19 47,266 -16,444 39 33,219

NIG -23,842 17 47,841 -16,573 35 33,443

Skew-t (Unrestr.) -23,492 17 47,140 -16,540 35 33,378

Skew-t -23,868 16 47,672 -16,561 32 33,394

Skew-normal -23,762 15 47,874 -16,573 31 33,410

Coalesced GH -24,477 43 49,350 -18,319 87 37,379

MSGHTFBM -24,754 23 49,720 -17,509 47 35,418

As suggested by Lee and McLachlan (2013b) a possible reason for the dif-

ference in the results between the unrestricted Skew-t and the skew-normal and

Skew-t is the differing impact of the skewness parameter on the correlation

structure. As mentioned previously, in the skew-t formulation of Sahu et al.

(2003) the skewness parameter acts only on diagonal elements of the covariance

matrix and does not affect the correlation structure, which is not the case for

the other formulations of the skew-t and skew-normal approaches.
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(e) Coalesced GH (f) MSGHTFBM

Figure 2: Lymphoma data, CD4 v. ZAP70. Fitted contour lines for: (a) Standard NIG
(Karlis and Santourian, 2009); (b) Unrestricted Skew-t (Sahu et al., 2003); (c) Skew-t (Azzalini
and Capitanio, 2003); (d) Multiple scaled NIG; (e) Coalesced GH (Tortora et al., 2014b) and
(f) Multiple scaled GH (Tortora et al., 2014b).
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We now consider a second example to highlight further differences between

the standard NIG and MSNIG in a clustering context using the same dataset.

In this example we look at a subset of the dataset containing the variables CD45

and CD4, which also appear to be highly multimodal and asymmetric in shape.

The fitted results from a mixture model with four components are shown in

Figure 3 with contour lines representing the fitted density of each component

(see also results in Table 1). From the fitted results we can see a better fit from

the MSNIG (BIC = 33,219) compared to the standard NIG (BIC = 33,443).

The better fit appears to come from the increased flexibility of the MSNIG to

represent non-elliptical shapes. The fitted results for the Skew-t and unrestr.

Skew-t are slightly better than for the standard NIG (BIC = 33,394 and 33,378,

respectively). Similar results to the Skew-t are found for the Skew-normal (not

shown).

Results using the MixGHD package as specified above are also shown in

Figure 3 (e) and (d). The final results are not very satisfying although we

checked that the algorithm started from a good initialization (see Figure 9 in

the Supplementary Materials).

In section J of the Supplementary Materials, we also provide the results found

using the MixGHD package when λ is set to -1/2, which corresponds to NIG

distributions. The resulting MSNIGTFBM distribution (supplementary Figure

10) does not behave much better than its MSGHTFBM generalization. Also we

observed (supplementary Figure 11) that the GH parameterization proposed in

(Browne and McNicholas, 2013) provided results very close to the standard NIG

distribution (Figure 2 (a) and Figure 3 (c)).

In section K of the Supplementary Materials we also compare the classifi-

cation performance of the different approaches on a flow cytometry problem

using lymphoma data where the true group labels are known (through manual

gating).
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Figure 3: Lymphoma data, CD45 v. CD4. Fitted contour lines for: (a) Skew-t; (b) Unre-

stricted Skew-t; (c) Standard NIG; (d) Multiple scaled NIG; (e) Coalesced GH (Tortora et al.,
2014b) and (f) Multiple scaled GH (Tortora et al., 2014b).
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5. Conclusion

We have proposed a relatively simple way to extend location and scale mix-

ture distributions, such as the multivariate generalised hyperbolic distribution

(GH), to allow for different tail behaviour in each dimension. In contrast to ex-

isting approaches, the main advantages include closed form densities, the possi-

bility of arbitrary correlation between dimensions and the applicability to high

dimensional spaces. Various properties of the MSGH family are well defined

and estimation of the parameters is also relatively straightforward using the

familiar EM algorithm. Assessments of the performance of the proposed model

on simulated and real data suggest that the extension provides a considerable

degree of freedom and flexibility in modelling data of varying tail behaviour and

directional shape.

For future research, parsimonious models could be considered using spe-

cial decompositions of the scale matrix such as in the model-based cluster-

ing approach of Celeux and Govaert (1995) and Fraley and Raftery (2002),

which would be straightforward to generalize to multiple scaled distributions

(see O’Hagan et al. (2014) for mixtures of standard NIG distributions). Simi-

larly, for very high dimensional data, other parsimonious models could also be

considered with special modelling of the covariance matrix such as in the High

Dimensional Data Clustering (HDDC) framework of Bouveyron et al. (2007).

As it is natural in an EM setting, learning with missing observations could also

be addressed following the work of Lin et al. (2006); Lin (2014); Wang (2015)

with interesting applications including sound source separation and localization

(e.g. Deleforge et al. (2015)).

Although we have illustrated the approach on clustering examples, the multi-

ple scaled NIG is applicable to other contexts including, for example, regression

modelling (Young and Hunter, 2010; Hunter and Young, 2012), outlier detec-

tion and modelling of spatial data (Forbes et al., 2010). An R package for the

proposed approach will also be available in the near future.
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