
An Improved CUDA-Based Implementation of Differential
Evolution on GPU

A. K. Qin
INRIA Grenoble Rhone-Alpes

655 avenue de l’Europe, Montbonnot
38334 Saint Ismier Cedex, France

kai.qin@inria.fr

Federico Raimondo
INRIA Grenoble Rhone-Alpes

655 avenue de l’Europe, Montbonnot
8334 Saint Ismier Cedex, France

federaimondo@gmail.com
Yew Soon Ong

School of Computer Engineering
Nanyang Technological University

Nanyang Avenue, 639798, Singapore

asysong@ntu.edu.sg

Florence Forbes
INRIA Grenoble Rhone-Alpes

655 avenue de l’Europe, Montbonnot
8334 Saint Ismier Cedex, France

florence.forbes@inria.fr

ABSTRACT
Modern GPUs enable widely affordable personal computers to
carry out massively parallel computation tasks. NVIDIA’s CUDA
technology provides a wieldy parallel computing platform. Many
state-of-the-art algorithms arising from different fields have been
redesigned based on CUDA to achieve computational speedup.
Differential evolution (DE), as a very promising evolutionary
algorithm, is highly suitable for parallelization owing to its data-
parallel algorithmic structure. However, most existing CUDA-
based DE implementations suffer from excessive low-throughput
memory access and less efficient device utilization. This work
presents an improved CUDA-based DE to optimize memory and
device utilization: several logically-related kernels are combined
into one composite kernel to reduce global memory access; kernel
execution configuration parameters are automatically determined
to maximize device occupancy; streams are employed to enable
concurrent kernel execution to maximize device utilization.
Experimental results on several numerical problems demonstrate
superior computational time efficiency of the proposed method
over two recent CUDA-based DE and the sequential DE across
varying problem dimensions and algorithmic population sizes.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

Keywords
CUDA, Compute Unified Device Architecture, DE, Differential
Evolution, GPU, Graphics Processing Unit, Massively Parallel
Computing

1. INTRODUCTION
In past decades, evolutionary algorithms (EAs) [1] have shown

remarkable efficacy for solving diverse real-world optimization
problems. However, they may expend considerable computation
time when handling large-scale and complex tasks. Consequently,
EAs are off-limits to a range of applications with demanding
computational budgets.

EAs consist of a population of candidate solutions that explore a
given solution space using various nature-inspired operations,
such as selection, reproduction and replacement, to gradually
evolve the population in the quest for global optima. This type of
algorithms is inherently parallelizable since population members
are typically subjected to same operations. However, a majority
of the existing EAs had been designed and implemented in the
sequential way because hardware and software platforms that
facilitate parallel computing were not widely available and
affordable in the past.

In recent years, the graphics processing unit (GPU) has emerged
as a powerful computing device that can support general-purpose
massively data-parallel computation by means of its hundreds of
streaming processors (SPs). Nowadays, with affordable prices and
wieldy parallel computing platforms, modern GPUs have
empowered numerous personal computers (PCs) the capability of
developing parallel applications.

Among existing parallel computing platforms on GPU, NVIDIA’s
compute unified device architecture (CUDA) [2, 3] provides an
intuitive and scalable programming model based on an extended
C programming language: CUDA-C. Developers can simply write
a C-style routine to process one data element, which then gets
automatically distributed across hundreds of SPs for thousands of
threads to process different data elements. Due to little efforts for
developers already familiar with the C language to grasp CUDA-
C, many state-of-the-art algorithms from different scientific and
engineering fields have been redesigned based on CUDA to speed
up their computation. However, computational time efficiency of
CUDA-C applications depends on comprehensive consideration
of various technical properties of GPUs during development and
implementation. Without delicate consideration, parallel programs
written in CUDA-C might even run slower than their sequential
counterparts.

Differential evolution (DE) [4], as one of the most promising
state-of-the-art EAs, has consistently demonstrated superiority for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’12, July 7–11, 2012, Philadelphia, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07...$10.00.

solving challenging optimization problems. In fact, DE is highly
suitable for parallelization owing to its data-parallel algorithmic
structure. Although several CUDA-based DE implementations
already exist [6-13], their computational time efficiency is
hampered by excessive low-throughput global memory access and
less efficient device utilization. This work presents an improved
CUDA-based DE, called cudaDEi where the subscript “i” stands
for “improved”, to enhance memory and device utilization. Major
features of cudaDEi are highlighted as follows:

 Several logically-related kernel functions are unified into one
composite kernel function to reduce global memory access by
maximizing the use of shared memory.

 Each thread during the kernel execution will process a unique
data element to maximize the degree of parallelism.

 Kernel execution configuration parameters are automatically
determined to maximize the streaming multiprocessor (SM)
occupancy by fully utilizing the available shared memory and
registers while considering problem properties and compute
capability of GPU.

 Streams are used to enable concurrent kernel execution for the
maximization of device utilization.

We evaluate the performance of cudaDEi on several numerical
test problems, and compare cudaDEi with two recent CUDA-
based DE implementations and the sequential DE implemented in
the C language in terms of computation time. Experiment results
demonstrate the consistent superiority of cudaDEi across varying
problem dimensions and algorithmic population sizes.

The remaining paper is organized as follows. Section 2 introduces
GPU computing with CUDA followed by a description of DE and
its CUDA-based implementations in Section 3. The improved
CUDA-based DE is detailed in Section 4 with experimental
results reported and analyzed in Section 5. Finally, Section 6
draws conclusions with some future plans.

2. GPU COMPUTING WITH CUDA
Modern GPUs are no longer exclusively designed for and used in
graphics and gaming applications. Additionally, they can provide
a powerful and budget parallel computing environment in favor of
massively data-parallel applications, i.e. different parts of data are
subjected to same operations. Nowadays, common PCs have been
widely equipped with GPUs having hundreds of SPs, and thus
become highly suitable for developing parallel applications.

Compared to the central processing unit (CPU) that contains one
or several sophisticated processors working at high clock speed,
GPU consists of hundreds of SPs having simplified structures and
working at lower clock speed. Although CPU can rapidly tackle
many general-purpose tasks owing to its high clock speed,
operation re-scheduling ability and large cache memory, it is less
efficient in massively data-parallel applications. In contrast, GPU
that operates based on the single instruction multiple data (SIMD)
model can allow the simultaneous execution of same operations
on many data elements, and thus can lead to high computational
speed in data-parallel applications via massive parallelism.

As the graphics hardware advances, its application programming
interfaces (APIs) keep being improved to facilitate development.
In the early stage of general-purpose GPU computing, developers
needed to transform scientific calculations into problems that can
be represented by triangles and polygons so as to solve them on

GPU using graphics APIs for programming [5]. Nowadays, user-
friendly APIs suitable for general-purpose GPU computing have
been developed to reduce programming difficulty.

NVIDIA’s CUDA technology [2, 3] provides a parallel
computing architecture on modern NVIDIA’s GPUs in which
hundreds of SPs are grouped into several SMs. Each SM contains
a number of SPs that share control logic, instruction cache, shared
memory with low latency, registers, and so on. All SMs share
global memory with high latency. The number of SMs and the
size of global memory vary as per GPU models and brands.
However, in each SM, the number of SPs, the size of shared
memory and the number of registers depend on GPU’s compute
capability [2].

CUDA also refers to an intuitive and scalable programming
model based on an extended C programming language, called
CUDA-C [2, 3]. This model unifies CPU and GPU, so-called host
and device, into a heterogeneous computing system to make the
best advantage out of both of them. Specifically, CUDA-C
contains three types of functions: (1) host functions, called and
executed only by the host, which are exactly the same functions
available in the C language; (2) kernel functions, only called by
the host and executed by the device, which require a qualifier
“__global__” being declared before the function’s return value
type that must be “void”; (3) device functions, called and
executed only by the device, which requires a quantifier
“__device__” being declared before the function’s return value
type that can be any types. The sequential operations should be
programmed as host functions that are executed on CPU. The
parallelizable operations should be programmed as kernel or
device functions that are executed on GPU. Both host and kernel
functions will be encapsulated and called in a main host function.

In fact, each kernel function will be executed on GPU by a large
number of threads at the same time following the SIMD model. In
the CUDA programming model, these threads are organized into a
grid of thread blocks with each block containing a certain number
of threads. The grid can have up to three dimensions of blocks. Its
size is denoted by a predefined struct variable gridDim with three
fields x, y and z storing the block numbers in three dimensions
respectively. Each block in a grid can be indexed by a predefined
struct variable blockIdx with three fields x, y and z storing the
position of the corresponding block in the grid. The block can
have up to three dimensions of threads with its size denoted by a
predefined struct variable blockDim having three fields x, y and z
storing the thread numbers in three dimensions respectively. Each
thread in a block can be indexed by a predefined struct variable
threadIdx with three fields x, y and z storing the position of the
corresponding thread in the block.

The dimension and size of the grid and block usually depend on
the characteristics of problems and algorithms. Once a grid of
blocks is determined, each block of threads will be executed on
one SM. Since each SM allows a maximal number of resident
blocks determined by the device’s compute capability, once all
SMs are fully occupied the remaining blocks have to wait for any
available slots released by the completed blocks on any SMs. This
scheme ensures the transparent scalability of CUDA-C programs
executed on future generations of GPUs that contain more SMs.

When launching a kernel function, its associated kernel execution
configuration parameters, such as gridDim and blockDim, must be
specified within “<<<…>>>”. When determining configuration
parameters, we should consider: each thread block has a maximal

number of threads determined by the device’s compute capability;
each SM has the limited shared memory size and register number,
which will influence the allowed number of threads per block and
the allowed number of blocks per SM; all threads in one block
can access the same data stored on shared memory while threads
in different blocks can only communicate via global memory.

3. DIFFERENTIAL EVOLUTION
Differential evolution (DE) [4] emerged as a simple and powerful
EA more than a decade ago and has now developed into a very
promising research area in the field of evolutionary computation.

3.1 Overview of DE
DE evolves a population of candidate solutions to seek for global
optima using three major operations, i.e. mutation, crossover and
replacement. The quality of each candidate solution is evaluated
as per specific objective functions.

Firstly, a size-fixed population is randomly initialized within the
given solution space. Then, each population member, so-called
target vector, undergoes three operations in sequence:

 Mutation: a base vector is generated from the population,
determining the reference point of the mutation. Then, the
vector difference of randomly selected population members
excluding the target vector under consideration is scaled and
added to the base vector to produce a mutant vector.

 Crossover: crossover is applied with a certain probability (CR)
between the above-generated mutant vector and the target
vector under consideration to generate a trial vector.

 Replacement: if the trial vector has better quality than the
target vector under consideration, it will replace the target
vector and enter the population of the next generation.
Otherwise, the target vector will remain in the population of
the next generation.

The population is updated iteratively using these three operations
until certain termination criteria are met, e.g. a pre-specified
maximal number of function evaluations is reached.

The success of DE attributes to its unique differential mutation
scheme, which distinguishes DE from other existing EAs and
accordingly coins its name. One most popular DE algorithm
“DE/rand/1/bin” randomly selects a population member as the
base vector to which the scaled vector difference of two randomly
sampled population members is added to generate a mutant vector:
 ()iii rrri F

321
XXXV −⋅+= (1)

where i
r1 , i

r2 and i
r3 are mutually exclusive indices of randomly

chosen population members with respect to the target vector Xi.
The scale factor F controls the mutation step size. Crossover is
then applied between the mutant vector and its corresponding
target vector to generate a trial vector Ui:

 ()
⎪⎩

⎪
⎨
⎧ =≤

=
otherwise ,

 1,0rand if ,

,

,
,

ji

jji
ji x

kjorCRv
u (2)

where j is the element index and randj(0,1) denotes a uniform
random number generated in (0,1) with respect to the jth element.
The element index k is randomly chosen to ensure that at least one
element of the trial vector to come from the mutant vector.

Figure 1. Flow chart of a basic CUDA-based DE.

3.2 CUDA-based DE implementation
A basic CUDA-based DE implementation is illustrated in Figure
1, which encapsulates different DE operations into separate kernel
functions that are communicated via global memory. Specifically,
there are six kernel functions:

kernel(I): initializes the population and writes it into global
memory. This kernel requires random numbers.

kernel(E): evaluates the objective function values of population
members as per the problem being solved and writes them into
global memory. The evaluation of each population member can
take up one or more threads. This kernel needs to read the
population to be evaluated from global memory.

kernel(P): prepares the mutually exclusive indices of randomly
sampled population members for each target vector to generate
the mutant vector. The indices are structured into a matrix and
written into global memory. This kernel requires random numbers.

kernel(M): performs the DE mutation to generate mutant vectors,
which are then written into global memory. This kernel needs to
read the current population from global memory and requires
random numbers.

kernel(C): performs the DE crossover to generate trial vectors,
which are written into global memory. This kernel needs to read
the current population and mutant vectors generated in kernel(M)
from global memory and requires random numbers.

kernel(R): performs the objective function values comparison
between trial vectors and their corresponding target vectors to
form the population of the next generation, which is then written
into global memory. This kernel needs to read the objective
function values of trial and target vectors, trial vectors and the
current population from global memory.

Figure 2. Flow chart of the proposed cudaDEi.

After necessary memory allocation (host and device memories)
and initialization (random number generators and algorithmic
variables), kernel(I) and kernel (E) are invoked in sequence by the
host. Then, the host repeatedly invokes the sequence of kernel(P),
kernel(M), kernel(C), kernel(E) and kernel(R) until the main loop
terminates.

Although the implementation depicted in Figure 1 is very intuitive,
its computational time efficiency can be influenced by excessive
global memory access since the main loop consists of several
kernels involving low-throughput data transfer via global memory.
Furthermore, if the execution configuration parameters of kernels
in the main loops result in the low occupancy of SMs during the
kernel execution, computational speed can be much reduced.

The first CUDA-based DE (cudaDE) [6] was developed in 2010.
Since then, other CUDA-based DE implementations emerged [7-
13]. Among them, the fully parallel differential evolution (FPDE)
[8] is worthy of note, which had participated in the competition
on “GPUs for Genetic and Evolutionary Computation” held at the
2011 Genetic and Evolutionary Computation Conference. We
choose cudaDE and FPDE to compare with our work. The codes
of cudaDE and FPDE are provided by the original authors.

In contrast to the implementation in Figure 1, cudaDE does not
contain kernel(P) but generates the indices matrix for mutation by
the host, and transfers the generated matrix from host memory to
device global memory. Moreover, cudaDE combines kernel(I)
and kernel(E) for initialization and unifies kernel(M) and
kernel(C) into one kernel as well as kernel(E) and kernel(R) into
one kernel in the main loop. FPDE mostly conforms to the
implementation in Figure 1. Both cudaDE and FPDE use pre-
specified kernel execution configuration parameters: cudaDE
employs a 1D grid of 240 blocks with each block composed of a
1D array of 64 threads. FPDE uses a 1D grid of N or ⎡ ⎤16N
blocks with each block containing a 1D array of 16 threads. N
denotes the population size. FPDE utilizes texture memory in
several kernels to accelerate data reading, and uses CURAND
library [14] to generate random numbers from the device to
overcome the difficulty encountered by cudaDE of generating
random numbers in a multithreaded way.

4. IMPROVED CUDA-BASED DE
Existing CUDA-based DE implementations suffer from two major
deficiencies:

 Excessive low-throughput global memory access: existing
CUDA-based DE implementations usually involve several
kernel functions performing different DE operations. In fact,
most of these kernels rely on results produced by previously
launched kernels. However, since global memory is the only
data communication media between kernels, results generated
by a currently executing kernel have to be written into global
memory in order to be used by subsequently launched kernels.
When too much such global memory data transfer is invoked
in the main loop, the program will become fairly slow.

 Less-efficient device utilization: most of the existing CUDA-
based DE implementations use pre-specified kernel execution
configuration parameters, which are independent of problem
properties, e.g. the problem dimension. Consequently, when
problem properties do not match the specified configuration,
computational speed tends to decrease due to the reduced
occupancy of SMs. For example, when each thread block
handles a single population member [6], if the problem
dimension is much smaller than the block size, SMs will have
the very low occupancy since each SM can accommodate a
limited number of blocks while only a small fraction of
threads are active in each block. On the other hand, if the
population dimension is much higher than the block size,
some threads in the block have to sequentially handle multiple
population member elements, which degrades computational
time efficiency.

To address the above issues, we propose an improved CUDA-
based DE implementation (cudaDEi) as shown in Figure 2, which
consists of only three kernel functions, i.e. kernel(IE), kernel(P),
kernel(MCER), and uses CURAND library [14] to generate
random numbers. Its major characteristics are as follows:

 Several logically-related kernel functions are unified into one
composite kernel to minimize global memory access via the
maximal use of shared memory. Specifically, two kernel
functions: kernel(I) and kernel(E), as shown in Figure 1, are
combined into kernel(IE) shown in Figure 2. Four kernel
functions: kernel(M), kernel(C), kernel(E) and kernel(R) are
unified into kernel(MCER) shown in Figure 2. Since the latter
combination occurs in the main loop, much global memory
access can be reduced.

 Kernel execution configuration parameters are automatically
determined to maximize the SM occupancy by fully utilizing
the available shared memory and registers while considering
the device’s compute capability. Specifically, each population
member element is assigned with a unique thread while the
whole population is partitioned into a number of blocks with
each block containing an integer number of members. The
number of population numbers per block is maximized
provided that (1) each thread should reserve enough registers
to use; (2) the total shared memory required by a block,
calculated according to problem and algorithm characteristics,
should not exceed the size of shared memory in SM; (3) the
block number and size per SM should not exceed the device’s
compute capability. The finally determined kernel execution
configuration parameters will satisfy all these constraints.
Note that configuration parameters derived in the above way

will limit the maximal problem dimension. However, higher
dimensions can be handled by letting some threads to process
more than one population member elements.

 Streams are used to enable concurrent kernel execution to
maximize device utilization. Specifically, two streams are
created to make the concurrent execution of kernel(MCER)
and kernel(P) in the main loop. Two stream indices and two
memory space addresses are swapped per generation for
kernel(MCER) and kernel(P) to ensure data consistence. For
example, after completing an initial execution of kernel(P) in
stream0 to generate a mutation indices matrix in global
memory addressed by M0, kernel(MCER) is launched in
stream0, which uses the generated matrix stored at address
M0. At the same time, kernel(P) is launched in stream1 to
generate a new mutation indices matrix in global memory
addressed by M1. Since the next execution of kernel(MCER)
requires a new mutation indices matrix, the next launch of
kernel(MCER) will be invoked in steam1 to make use of the
generated matrix stored at address M1. Simultaneously, the
next launch of kernel(P) will be invoked in stream0 to
generate another new mutation indices matrix in global
memory addressed by M0.

5. EXPERIMENTAL RESULTS
We evaluate the performance of cudaDEi and compare cudaDEi
with two recent CUDA-based DE implementations (cudaDE and
FPDE) and the sequential DE implementation (sDE) in terms of
computation time using four numerical problems of 10D, 50D and
100D respectively, where “D” denotes the dimension. Different
algorithmic population sizes (P50, P100, P500 and P1000) are
examined to reveal their impacts on computational time efficiency.

5.1 Experimental Setup
Experiments are conducted on a PC equipped with an Intel XEON
E5410 CPU at 2.33 Ghz and a NVIDIA GTX560 GPU with 1GB
of GDDR5 global memory. GTX560 supports compute capability
2.1, which has 336 SPs evenly deployed in seven SMs, i.e. each
SM consists of 48 SPs. Our development environment is made of
Ubuntu 11.10 operating system, CUDA toolkit 4.0, NVIDIA
driver version 290.10.

All of four DE implementations in comparison, i.e. sDE, cudaDEi,
cudaDE and FPDE, are based on the “DE/rand1/bin” algorithm
with parameters set as: CR = 0.3, F = 0.5. Population sizes are set
to 50, 100, 500 and 1000 respectively for each test case.

For each test problem of a specific dimension, each DE
implementation under a specific parameter setting is executed 25
times starting from different random states while all of four
implementations share the same initial random state for any
individual run. The algorithm terminates once the maximal
number of function evaluations is reached, which is set to 104
times the problem dimension, e.g. for a 10D problem, the
maximal number of function evaluations is 105.

5.2 Test Problems
We choose four numerical problems [15] for testing:

F1: Shifted sphere function

() ∑
=

−==
D

i
izf

1

2
1 , oxzx

Figure 3. Comparison of the average computation time
(seconds) over 25 runs of four DE implementations (sDE,
cudaDEi, cudaDE and FPDE) across varying population sizes
(P50, P100, P500 and P1000) on test problem F1 of different
dimensions (10D, 50D and 100D).

Figure 4. Comparison of the average computation time
(seconds) over 25 runs of four DE implementations (sDE,
cudaDEi, cudaDE and FPDE) across varying population sizes
(P50, P100, P500 and P1000) on test problem F2 of different
dimensions (10D, 50D and 100D).

F2: Shifted Rosenbrock’s function

() () ()()∑
−

=
+ −=−+−⋅=

1

1

22
1

2
2 ,1100

D

i
iii zzzf oxzx

F3: Shifted Griewank’s function

() ∑ ∏
= =

−=+−=
D

i

D

i

ii

i
zz

f
1 1

2

3 ,1)cos(
4000

oxzx

F4: Shifted Rastrigin’s function

() ()∑
=

−=+⋅−=
D

i
ii zzf

1

2
4 ,10)2cos(10 oxzx π

Here, o = [o1,...,oD] is the shifted global optimum. For all of three
CUDA-based DE implementations in comparison, the function
evaluation routines are programmed in a parallel manner, i.e. the
objective function values are calculated using multiple threads
with each thread processing function components corresponding
to one or more elements of one or more population members.

Figure 5. Comparison of the average computation time
(seconds) over 25 runs of four DE implementations (sDE,
cudaDEi, cudaDE and FPDE) across varying population sizes
(P50, P100, P500 and P1000) on test problem F3 of different
dimensions (10D, 50D and 100D).

Figure 6. Comparison of the average computation time
(seconds) over 25 runs of four DE implementations (sDE,
cudaDEi, cudaDE and FPDE) across varying population sizes
(P50, P100, P500 and P1000) on test problem F4 of different
dimensions (10D, 50D and 100D).

5.3 Results
We evaluate and compare computational time efficiency of four
DE implementations, i.e. sDE, cudaDEi, cudaDE and FPDE,
using four numerical problems under different problem
dimensions and algorithmic population sizes.

Figures 3~6 illustrate, for each of four test problems, the average
computation time over 25 runs of four DE implementations across
varying algorithmic population sizes (P50, P100, P500 and P1000)
and under different problem dimensions (10D, 50D and 100D).
Major observations are as follows:

(1) Different test problems reveal similar comparison results
with magnitudes of computation time depending on problem
complexity.

(2) For all of test problems, cudaDEi consistently demonstrates
superior computational time efficiency with respect to any
population sizes and any problem dimensions under test.

(3) Given any specific problem dimension, as the population
size increases, computation time of three CUDA-based DE
implementations decreases. Among the three, FPDE shows
the most remarkable decrease, followed by cudaDE and
cudaDEi.

(4) When solving 10D problems using smaller population sizes,
e.g. P50 and P100, both cudaDE and FPDE perform worse
than sDE while cudaDEi outperforms sDE. When the
problem dimension increases, cudaDE starts to outperform
sDE. However, FPDE can beat sDE only when using larger
population sizes, e.g. P500 and P1000.

(5) When solving 100D problems using larger population sizes,
e.g. P500 and P1000, the difference of computation time
between cudaDEi and cudaDE is less significant.

Given a specific problem dimension that corresponds to a specific
maximal number of function evaluations, the population size
determines the total number generations (main loops) and thus the
execution times of those kernels involving low-throughput global
memory access in the main loop. The more such kernels exist, the
more computation time tends to increase with increasing the total
number of generations via decreasing the population size. Since
FPDE contains the most such kernels while cudaDEi has the least
ones, varying population sizes will influence most on FPDE while
least on cudaDEi, which explains observation (3).

Given pre-specified kernel execution configuration parameters,
both problem dimensions and population sizes may influence the
degree of parallelism and consequently impact computation time.
Furthermore, problem dimensions may also significantly
influence the SM occupancy. Specifically, cudaDE specifies 240
thread blocks with each block having 64 threads to cope with a
single population member. When the problem dimension exceeds
64, some threads within one block have to sequentially process
several population member elements. When the population size is
over 240, some blocks have to process several population
members in sequence. Such a configuration can handle any
problem dimensions and population sizes at the expense of the
loss of parallelism. Moreover, it allows at most 512 threads per
SM due to the limitation of eight blocks per SM, which results in
the maximum of 33% SM occupancy. When solving 10D
problems, the SM occupancy will reduce to 5%, which explains
observation (4): using smaller population sizes, e.g. P50 and P100,
cudaDE will execute kernels involving low-throughput global
memory access in the main loop for considerable times under
such low SM occupancy, which causes its computation time
longer than sDE. However, as the problem dimension increases,
e.g. 50D and 100D, cudaDE operates under the much increased
SM occupancy and thus outperforms sDE.

FPDE encounters similar issues. For kernels related to algorithmic
operations, FPDE uses ⎡ ⎤16N thread blocks with each block
having 16 threads to handle at least 16 population members. For
the function evaluation kernel, FPDE uses N thread blocks with
each block containing 16 threads to process at least 16 elements
of one or more population members. N denotes the population
size. Such configurations may significantly reduce the degree of
parallelism. Meanwhile, they can allow at most 128 threads per
SM due to the limitation of eight blocks per SM, which leads to
the maximum of 8% SM occupancy. When solving 10D problems,
FPDE will operate under the 5% SM occupancy. When solving
50D and 100D problems, FPDE will operate under the 8% SM

occupancy. Due to operating under the very low SM occupancy
and involving many kernels that require low-throughput global
memory access in the main loop, FPDE cannot beat sDE unless
using larger population sizes, e.g. P500 and P1000, which can
significantly reduce the maximal number of generations. This fact
explains observation (4).

cudaDEi needs not to pre-specify kernel execution configuration
parameters. Instead, it can automatically determine configuration
parameters to maximize the SM occupancy by fully utilizing the
available shared memory and registers while satisfying various
constraints detailed in Section 4. Therefore, cudaDEi can operate
under the high SM occupancy for any problem dimensions and
population sizes. Furthermore, cudaDEi consists of less kernels
requiring low-throughput global memory access in the main loop.
These benefits explain observation (2).

cudaDEi tends to maximize the block size and consequently may
decrease the maximal number of active blocks per SM. When
solving 100D problems using larger population sizes, both
cudaDE and cudaDEi operate under the desirable SM occupancy
while cudaDE has eight active blocks per SM and cudaDEi has
one active block per SM. Although cudaDEi involves less kernels
requiring low-throughput global memory access in the main loop
than cudaDE, a large block may perform less time-efficiently than
several small blocks containing the same number of threads in
total when the kernel involves thread synchronization operations.
This fact explains observation (5) and deserves further study.

Tables 1~3 elaborate the performance of the proposed cudaDEi,
measured by: (1) the mean value and standard deviation of the
best error function values (EFVs), i.e. the difference of objective
function values between the best solution found so far and the
global optimum, achieved when the algorithm terminates over 25
runs; (2) the average computation time (seconds) over 25 runs; (3)
the success rate (SR) over 25 runs. One run is claimed to succeed
once it achieves an EFV smaller than 10-8. It can be observed that
larger population sizes may not definitely result in better solution
quality although leading to less computation time.

6. CONCLUSIONS AND FUTURE WORK
We proposed an improved CUDA-based DE implementation to
optimize memory and device utilization. Several logically-related
kernels are unified into one composite kernel to minimize global
memory access by maximizing the use of shared memory. Kernel
execution configuration parameters are automatically determined
to maximize the SM occupancy by fully utilizing available shared
memory and registers while considering problem properties and
compute capability of GPU. Streams are employed to enable
concurrent kernel execution to maximize device utilization. The
consistent superiority of the proposed cudaDEi over two recent
CUDA-based DE and the sequential DE in terms of
computational time efficiency is verified using several numerical
test problems across varying problem dimensions and algorithmic
population sizes.

Ongoing and planned research agendas include: further improving
cudaDEi by studying the relation between computation time and
the number of active blocks per SM given the high occupancy of
SMs; enabling cudaDEi to solve problems of more than 1000D;
evaluating cudaDEi on complex and high-dimensional problems
as well as real-world applications.

Table 1. Performance of cudaDEi in terms of the mean value
and standard deviation (in bracket) of the best EFVs achieved
when the algorithm terminates, the mean value and standard
deviation of computation time (seconds) as well as the success
rate over 25 runs with respect to four population sizes (P50,
P100, P500 and P1000) on four 10D test problems.

 P50 P100 P500 P1000
Best
EFV

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Time
(sec)

1.159
(0.002)

0.633
(0.001)

0.228
(0.000)

0.192
(0.000)

F1

SR 1.00 1.00 1.00 1.00
Best
EFV

0.388
(1.235)

0.044
(0.068)

1.306
(1.388)

2.597
(1.847)

Time
(sec)

1.159
(0.003)

0.632
(0.001)

0.229
(0.000)

0.196
(0.000)

F2

SR 0.44 0.32 0.00 0.00
Best
EFV

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Time
(sec)

1.261
(0.002)

0.648
(0.002)

0.222
(0.000)

0.210
(0.000)

F3

SR 1.00 1.00 1.00 1.00
Best
EFV

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Time
(sec)

1.158
(0.003)

0.635
(0.001)

0.207
(0.000)

0.192
((0.001)

F4

SR 1.00 1.00 1.00 1.00

Table 2. Performance of cudaDEi in terms of the mean value
and standard deviation (in bracket) of the best EFVs achieved
when the algorithm terminates, the mean value and standard
deviation of computation time (seconds) as well as the success
rate over 25 runs with respect to four population sizes (P50,
P100, P500 and P1000) on four 50D test problems.

 P50 P100 P500 P1000
Best
EFV

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Time
(sec)

6.881
(0.011)

4.937
(0.004)

3.453
(0.001)

3.348
(0.001)

F1

SR 1.00 1.00 1.00 1.00
Best
EFV

213.544
(625.959)

12.244
(7.100)

46.968
(19.274)

56.365
(24.123)

Time
(sec)

6.940
(0.009)

5.055
(0.004)

3.549
(0.005)

3.443
(0.007)

F2

SR 0.00 0.04 0.00 0.00
Best
EFV

0.001
(0.002)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Time
(sec)

8.142
(0.009)

5.902
(0.005)

4.349
(0.005)

4.282
(0.001)

F3

SR 0.92 1.00 1.00 1.00
Best
EFV

18.286
(3.97)

2.936
(1.472)

28.345
(14.084)

65.628
(8.607)

Time
(sec)

7.006
(0.010)

4.914
(0.004)

3.851
(0.007)

3.692
(0.002)

F4

SR 0.00 0.04 0.04 0.00

Table 3. Performance of cudaDEi in terms of the mean value
and standard deviation (in bracket) of the best EFVs achieved
when the algorithm terminates, the mean value and standard
deviation of computation time (seconds) as well as the success
rate over 25 runs with respect to four population sizes (P50,
P100, P500 and P1000) on four 100D test problems.

 P50 P100 P500 P1000
Best
EFV

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

0.000
(0.000)

Time
(sec)

18.624
(0.013)

16.396
(0.008)

12.289
(0.003)

11.557
(0.002)

F1

SR 1.00 1.00 1.00 1.00
Best
EFV

15.720
(24.466)

42.293
(32.790)

113.292
(22.349)

118.43
(33.239)

Time
(sec)

19.003
(0.012)

16.919
(0.008)

12.679
(0.002)

11.917
(0.003)

F2

SR 0.00 0.00 0.00 0.00
Best
EFV

0.002
(0.006)

0.005
(0.027)

0.000
(0.002)

0.000
(0.000)

Time
(sec)

22.376
(0.012)

20.929
(0.011)

15.784
(0.003)

14.794
(0.002)

F3

SR 0.84 0.96 0.96 1.00
Best
EFV

63.166
(8.984)

48.329
(9.172)

40.891
(8.539)

114.234
(47.738)

Time
(sec)

18.862
(0.032)

17.417
(0.020)

13.236
(0.038)

12.644
(0.015)

F4

SR 0.00 0.00 0.00 0.00

7. ACKNOWLEDGMENTS
We thank authors of cudaDE and FPDE for providing the codes.
This work was partially supported by the National Natural
Science Foundation of China (NSFC) under Grant No. 61005051,
the Specialized Research Fund for the Doctoral Program of
Higher Education (SRFDP) under Grant No. 20100092120027,
and the Media Development Authority of Singapore, Singapore-
MIT GAMBIT Game Lab.

8. REFERENCES
[1] De Jong, K. A. Evolutionary Computation: A Unified

Approach. The MIT Press, 2006.
[2] NVIDIA CUDA C Programming Guide Version 4.0.

http://developer.download.nvidia.com/compute/DevZone/do
cs/html/C/doc/CUDA_C_Programming_Guide.pdf.

[3] Kirk D., and Hwu, W.-M. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann,
2010.

[4] Price, K., Storn, R., and Lampinen, J. Differential Evolution:
A Practical Approach to Global Optimization. Springer-
Verlag, Berlin, Germany, 2005.

[5] Fok, K.-L., Wong, T. T., and Wong, M.-L. Evolutionary
computing on consumer-level graphics hardware. IEEE
Intelligent Systems, 22, 2, 2007, 69-78.

[6] Veronese, L. D. P., and Krohling, R. A. Differential
evolution algorithm on the GPU with C-CUDA. In Proc. of
the 2010 IEEE Congress on Evolutionary Computation
(CEC’2010), Barcelona, Spain, July 18-23, 2010.

[7] Zhu, W., and Li, Y. GPU-accelerated differential
evolutionary Markov Chain Monte Carlo method for multi-
objective optimization over continuous space. In Proc. of the
2nd Workshop on Bio-inspired Algorithms for Distributed
Systems, New York, NY, USA, June 7-11, 2010.

[8] Domínguez González, S. J., and Barriga, N. G. Fully parallel
differential evolution. In Competition of GPUs for Genetic
and Evolutionary Computation at the 2011 Genetic and
Evolutionary Computation Conference (GECCO’2011),
Dublin, Ireland, July, 2011.

[9] Kromer, P., Platos, J., Snasel, V., and Abraham, A. A
comparison of many-threaded differential evolution and
genetic algorithms on CUDA. In Proc. of the 2011 World
Congress on Nature and Biologically Inspired Computing
(NaBIC'2011), Salamanca, October 19-21, 2011.

[10] Kromer, P., Platos, J., and Snasel, V. Differential evolution
for the linear ordering problem implemented on CUDA. In
Proc. of the 2011 IEEE Congress on Evolutionary
Computation (CEC’2011), New Orleans, LA, USA, June 05-
08, 2011.

[11] Fabris, F., and Krohling, R. A. A co-evolutionary differential
evolution algorithm for solving min–max optimization
problems implemented on GPU using C-CUDA. Expert
Systems with Applications, available online, 2011. DOI =
http://dx.doi.org/10.1016/j.eswa.2011.10.015.

[12] Ramirez-Chavez, L. E., Coello Coello, C. A., and
Rodriguez-Tello, E. A GPU-based implementation of
differential evolution for solving the gene regulatory network
model inference problem. In Proc. of the 4th International
Workshop on Parallel Architectures and Bioinspired
Algorithms (WPABA'2011), Galveston Island, TX, USA,
October 10-14, 2011.

[13] Krömer, P., Snåšel, V., Platoš, J., and Abraham, A. Many-
threaded implementation of differential evolution for the
CUDA platform. In Proc. of the 2011 Genetic and
Evolutionary Computation Conference (GECCO’2011),
Dublin, Ireland, July, 2011.

[14] CURAND Library User Guide.
http://developer.download.nvidia.com/compute/DevZone/do
cs/html/CUDALibraries/doc/CURAND_Library.pdf.

[15] Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen,
Y.-P., Auger A., and Tiwari, S. Problem definitions and
evaluation criteria for the CEC 2005 special session on real
parameter optimization. Technical Report, Nanyang
Technological University, Singapore, May 2005 and
KanGAL Report #2005005, IIT Kanpur, India.

