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ABSTRACT 
Modern GPUs enable widely affordable personal computers to 
carry out massively parallel computation tasks. NVIDIA’s CUDA 
technology provides a wieldy parallel computing platform. Many 
state-of-the-art algorithms arising from different fields have been 
redesigned based on CUDA to achieve computational speedup. 
Differential evolution (DE), as a very promising evolutionary 
algorithm, is highly suitable for parallelization owing to its data-
parallel algorithmic structure. However, most existing CUDA-
based DE implementations suffer from excessive low-throughput 
memory access and less efficient device utilization. This work 
presents an improved CUDA-based DE to optimize memory and 
device utilization: several logically-related kernels are combined 
into one composite kernel to reduce global memory access; kernel 
execution configuration parameters are automatically determined 
to maximize device occupancy; streams are employed to enable 
concurrent kernel execution to maximize device utilization. 
Experimental results on several numerical problems demonstrate 
superior computational time efficiency of the proposed method 
over two recent CUDA-based DE and the sequential DE across 
varying problem dimensions and algorithmic population sizes. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search 

Keywords 
CUDA, Compute Unified Device Architecture, DE, Differential 
Evolution, GPU, Graphics Processing Unit, Massively Parallel 
Computing 

1. INTRODUCTION 
In past decades, evolutionary algorithms (EAs) [1] have shown 

remarkable efficacy for solving diverse real-world optimization 
problems. However, they may expend considerable computation 
time when handling large-scale and complex tasks. Consequently, 
EAs are off-limits to a range of applications with demanding 
computational budgets. 

EAs consist of a population of candidate solutions that explore a 
given solution space using various nature-inspired operations, 
such as selection, reproduction and replacement, to gradually 
evolve the population in the quest for global optima. This type of 
algorithms is inherently parallelizable since population members 
are typically subjected to same operations. However, a majority 
of the existing EAs had been designed and implemented in the 
sequential way because hardware and software platforms that 
facilitate parallel computing were not widely available and 
affordable in the past. 

In recent years, the graphics processing unit (GPU) has emerged 
as a powerful computing device that can support general-purpose 
massively data-parallel computation by means of its hundreds of 
streaming processors (SPs). Nowadays, with affordable prices and 
wieldy parallel computing platforms, modern GPUs have 
empowered numerous personal computers (PCs) the capability of 
developing parallel applications. 

Among existing parallel computing platforms on GPU, NVIDIA’s 
compute unified device architecture (CUDA) [2, 3] provides an 
intuitive and scalable programming model based on an extended 
C programming language: CUDA-C. Developers can simply write 
a C-style routine to process one data element, which then gets 
automatically distributed across hundreds of SPs for thousands of 
threads to process different data elements. Due to little efforts for 
developers already familiar with the C language to grasp CUDA-
C, many state-of-the-art algorithms from different scientific and 
engineering fields have been redesigned based on CUDA to speed 
up their computation. However, computational time efficiency of 
CUDA-C applications depends on comprehensive consideration 
of various technical properties of GPUs during development and 
implementation. Without delicate consideration, parallel programs 
written in CUDA-C might even run slower than their sequential 
counterparts. 

Differential evolution (DE) [4], as one of the most promising 
state-of-the-art EAs, has consistently demonstrated superiority for 
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solving challenging optimization problems. In fact, DE is highly 
suitable for parallelization owing to its data-parallel algorithmic 
structure. Although several CUDA-based DE implementations 
already exist [6-13], their computational time efficiency is 
hampered by excessive low-throughput global memory access and 
less efficient device utilization. This work presents an improved 
CUDA-based DE, called cudaDEi where the subscript “i” stands 
for “improved”, to enhance memory and device utilization. Major 
features of cudaDEi are highlighted as follows: 

 Several logically-related kernel functions are unified into one 
composite kernel function to reduce global memory access by 
maximizing the use of shared memory. 

 Each thread during the kernel execution will process a unique 
data element to maximize the degree of parallelism. 

 Kernel execution configuration parameters are automatically 
determined to maximize the streaming multiprocessor (SM) 
occupancy by fully utilizing the available shared memory and 
registers while considering problem properties and compute 
capability of GPU. 

 Streams are used to enable concurrent kernel execution for the 
maximization of device utilization.                             

We evaluate the performance of cudaDEi on several numerical 
test problems, and compare cudaDEi with two recent CUDA-
based DE implementations and the sequential DE implemented in 
the C language in terms of computation time. Experiment results 
demonstrate the consistent superiority of cudaDEi across varying 
problem dimensions and algorithmic population sizes.  

The remaining paper is organized as follows. Section 2 introduces 
GPU computing with CUDA followed by a description of DE and 
its CUDA-based implementations in Section 3. The improved 
CUDA-based DE is detailed in Section 4 with experimental 
results reported and analyzed in Section 5. Finally, Section 6 
draws conclusions with some future plans. 

2. GPU COMPUTING WITH CUDA 
Modern GPUs are no longer exclusively designed for and used in 
graphics and gaming applications. Additionally, they can provide 
a powerful and budget parallel computing environment in favor of 
massively data-parallel applications, i.e. different parts of data are 
subjected to same operations. Nowadays, common PCs have been 
widely equipped with GPUs having hundreds of SPs, and thus 
become highly suitable for developing parallel applications. 

Compared to the central processing unit (CPU) that contains one 
or several sophisticated processors working at high clock speed, 
GPU consists of hundreds of SPs having simplified structures and 
working at lower clock speed. Although CPU can rapidly tackle 
many general-purpose tasks owing to its high clock speed, 
operation re-scheduling ability and large cache memory, it is less 
efficient in massively data-parallel applications. In contrast, GPU 
that operates based on the single instruction multiple data (SIMD) 
model can allow the simultaneous execution of same operations 
on many data elements, and thus can lead to high computational 
speed in data-parallel applications via massive parallelism. 

As the graphics hardware advances, its application programming 
interfaces (APIs) keep being improved to facilitate development. 
In the early stage of general-purpose GPU computing, developers 
needed to transform scientific calculations into problems that can 
be represented by triangles and polygons so as to solve them on 

GPU using graphics APIs for programming [5]. Nowadays, user-
friendly APIs suitable for general-purpose GPU computing have 
been developed to reduce programming difficulty.  

NVIDIA’s CUDA technology [2, 3] provides a parallel 
computing architecture on modern NVIDIA’s GPUs in which 
hundreds of SPs are grouped into several SMs. Each SM contains 
a number of SPs that share control logic, instruction cache, shared 
memory with low latency, registers, and so on. All SMs share 
global memory with high latency. The number of SMs and the 
size of global memory vary as per GPU models and brands. 
However, in each SM, the number of SPs, the size of shared 
memory and the number of registers depend on GPU’s compute 
capability [2].  

CUDA also refers to an intuitive and scalable programming 
model based on an extended C programming language, called 
CUDA-C [2, 3]. This model unifies CPU and GPU, so-called host 
and device, into a heterogeneous computing system to make the 
best advantage out of both of them. Specifically, CUDA-C 
contains three types of functions: (1) host functions, called and 
executed only by the host, which are exactly the same functions 
available in the C language; (2) kernel functions, only called by 
the host and executed by the device, which require a qualifier 
“__global__” being declared before the function’s return value 
type that must be “void”; (3) device functions, called and 
executed only by the device, which requires a quantifier 
“__device__” being declared before the function’s return value 
type that can be any types. The sequential operations should be 
programmed as host functions that are executed on CPU. The 
parallelizable operations should be programmed as kernel or 
device functions that are executed on GPU. Both host and kernel 
functions will be encapsulated and called in a main host function. 

In fact, each kernel function will be executed on GPU by a large 
number of threads at the same time following the SIMD model. In 
the CUDA programming model, these threads are organized into a 
grid of thread blocks with each block containing a certain number 
of threads. The grid can have up to three dimensions of blocks. Its 
size is denoted by a predefined struct variable gridDim with three 
fields x, y and z storing the block numbers in three dimensions 
respectively. Each block in a grid can be indexed by a predefined 
struct variable blockIdx with three fields x, y and z storing the 
position of the corresponding block in the grid. The block can 
have up to three dimensions of threads with its size denoted by a 
predefined struct variable blockDim having three fields x, y and z 
storing the thread numbers in three dimensions respectively. Each 
thread in a block can be indexed by a predefined struct variable 
threadIdx with three fields x, y and z storing the position of the 
corresponding thread in the block.  

The dimension and size of the grid and block usually depend on 
the characteristics of problems and algorithms. Once a grid of 
blocks is determined, each block of threads will be executed on 
one SM. Since each SM allows a maximal number of resident 
blocks determined by the device’s compute capability, once all 
SMs are fully occupied the remaining blocks have to wait for any 
available slots released by the completed blocks on any SMs. This 
scheme ensures the transparent scalability of CUDA-C programs 
executed on future generations of GPUs that contain more SMs. 

When launching a kernel function, its associated kernel execution 
configuration parameters, such as gridDim and blockDim, must be 
specified within “<<<…>>>”. When determining configuration 
parameters, we should consider: each thread block has a maximal 



number of threads determined by the device’s compute capability; 
each SM has the limited shared memory size and register number, 
which will influence the allowed number of threads per block and 
the allowed number of blocks per SM; all threads in one block 
can access the same data stored on shared memory while threads 
in different blocks can only communicate via global memory. 

3. DIFFERENTIAL EVOLUTION 
Differential evolution (DE) [4] emerged as a simple and powerful 
EA more than a decade ago and has now developed into a very 
promising research area in the field of evolutionary computation. 

3.1 Overview of DE 
DE evolves a population of candidate solutions to seek for global 
optima using three major operations, i.e. mutation, crossover and 
replacement. The quality of each candidate solution is evaluated 
as per specific objective functions. 

Firstly, a size-fixed population is randomly initialized within the 
given solution space. Then, each population member, so-called 
target vector, undergoes three operations in sequence: 

 Mutation: a base vector is generated from the population, 
determining the reference point of the mutation. Then, the 
vector difference of randomly selected population members 
excluding the target vector under consideration is scaled and 
added to the base vector to produce a mutant vector. 

 Crossover: crossover is applied with a certain probability (CR) 
between the above-generated mutant vector and the target 
vector under consideration to generate a trial vector.  

 Replacement: if the trial vector has better quality than the 
target vector under consideration, it will replace the target 
vector and enter the population of the next generation. 
Otherwise, the target vector will remain in the population of 
the next generation. 

The population is updated iteratively using these three operations 
until certain termination criteria are met, e.g. a pre-specified 
maximal number of function evaluations is reached. 

The success of DE attributes to its unique differential mutation 
scheme, which distinguishes DE from other existing EAs and 
accordingly coins its name. One most popular DE algorithm 
“DE/rand/1/bin” randomly selects a population member as the 
base vector to which the scaled vector difference of two randomly 
sampled population members is added to generate a mutant vector:  
                                  ( )iii rrri F
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where j is the element index and randj(0,1) denotes a uniform 
random number generated in (0,1) with respect to the jth element. 
The element index k is randomly chosen to ensure that at least one 
element of the trial vector to come from the mutant vector. 

 
Figure 1. Flow chart of a basic CUDA-based DE. 

3.2 CUDA-based DE implementation 
A basic CUDA-based DE implementation is illustrated in Figure 
1, which encapsulates different DE operations into separate kernel 
functions that are communicated via global memory. Specifically, 
there are six kernel functions: 

kernel(I): initializes the population and writes it into global 
memory. This kernel requires random numbers. 

kernel(E): evaluates the objective function values of population 
members as per the problem being solved and writes them into 
global memory. The evaluation of each population member can 
take up one or more threads. This kernel needs to read the 
population to be evaluated from global memory. 

kernel(P): prepares the mutually exclusive indices of randomly 
sampled population members for each target vector to generate 
the mutant vector. The indices are structured into a matrix and 
written into global memory. This kernel requires random numbers. 

kernel(M): performs the DE mutation to generate mutant vectors, 
which are then written into global memory. This kernel needs to 
read the current population from global memory and requires 
random numbers. 

kernel(C): performs the DE crossover to generate trial vectors, 
which are written into global memory. This kernel needs to read 
the current population and mutant vectors generated in kernel(M) 
from global memory and requires random numbers. 

kernel(R): performs the objective function values comparison 
between trial vectors and their corresponding target vectors to 
form the population of the next generation, which is then written 
into global memory. This kernel needs to read the objective 
function values of trial and target vectors, trial vectors and the 
current population from global memory. 



 
Figure 2. Flow chart of the proposed cudaDEi. 

After necessary memory allocation (host and device memories) 
and initialization (random number generators and algorithmic 
variables), kernel(I) and kernel (E) are invoked in sequence by the 
host. Then, the host repeatedly invokes the sequence of kernel(P), 
kernel(M), kernel(C), kernel(E) and kernel(R) until the main loop 
terminates. 

Although the implementation depicted in Figure 1 is very intuitive, 
its computational time efficiency can be influenced by excessive 
global memory access since the main loop consists of several 
kernels involving low-throughput data transfer via global memory. 
Furthermore, if the execution configuration parameters of kernels 
in the main loops result in the low occupancy of SMs during the 
kernel execution, computational speed can be much reduced.  

The first CUDA-based DE (cudaDE) [6] was developed in 2010. 
Since then, other CUDA-based DE implementations emerged [7-
13]. Among them, the fully parallel differential evolution (FPDE) 
[8] is worthy of note, which had participated in the competition 
on “GPUs for Genetic and Evolutionary Computation” held at the 
2011 Genetic and Evolutionary Computation Conference. We 
choose cudaDE and FPDE to compare with our work. The codes 
of cudaDE and FPDE are provided by the original authors. 

In contrast to the implementation in Figure 1, cudaDE does not 
contain kernel(P) but generates the indices matrix for mutation by 
the host, and transfers the generated matrix from host memory to 
device global memory. Moreover, cudaDE combines kernel(I) 
and kernel(E) for initialization and unifies kernel(M) and 
kernel(C) into one kernel as well as kernel(E) and kernel(R) into 
one kernel in the main loop. FPDE mostly conforms to the 
implementation in Figure 1. Both cudaDE and FPDE use pre-
specified kernel execution configuration parameters: cudaDE 
employs a 1D grid of 240 blocks with each block composed of a 
1D array of 64 threads. FPDE uses a 1D grid of N or ⎡ ⎤16N  
blocks with each block containing a 1D array of 16 threads. N 
denotes the population size. FPDE utilizes texture memory in 
several kernels to accelerate data reading, and uses CURAND 
library [14] to generate random numbers from the device to 
overcome the difficulty encountered by cudaDE of generating 
random numbers in a multithreaded way. 

4.  IMPROVED CUDA-BASED DE 
Existing CUDA-based DE implementations suffer from two major 
deficiencies: 

 Excessive low-throughput global memory access: existing 
CUDA-based DE implementations usually involve several 
kernel functions performing different DE operations. In fact, 
most of these kernels rely on results produced by  previously 
launched kernels. However, since global memory is the only 
data communication media between kernels, results generated 
by a currently executing kernel have to be written into global 
memory in order to be used by subsequently launched kernels. 
When too much such global memory data transfer is invoked 
in the main loop, the program will become fairly slow.  

 Less-efficient device utilization: most of the existing CUDA-
based DE implementations use pre-specified kernel execution 
configuration parameters, which are independent of problem 
properties, e.g. the problem dimension. Consequently, when 
problem properties do not match the specified configuration, 
computational speed tends to decrease due to the reduced 
occupancy of SMs. For example, when each thread block 
handles a single population member [6], if the problem 
dimension is much smaller than the block size, SMs will have 
the very low occupancy since each SM can accommodate a 
limited number of blocks while only a small fraction of 
threads are active in each block. On the other hand, if the 
population dimension is much higher than the block size, 
some threads in the block have to sequentially handle multiple 
population member elements, which degrades computational 
time efficiency. 

To address the above issues, we propose an improved CUDA-
based DE implementation (cudaDEi) as shown in Figure 2, which 
consists of only three kernel functions, i.e. kernel(IE), kernel(P), 
kernel(MCER), and uses CURAND library [14] to generate 
random numbers. Its major characteristics are as follows: 

 Several logically-related kernel functions are unified into one 
composite kernel to minimize global memory access via the 
maximal use of shared memory. Specifically, two kernel 
functions: kernel(I) and kernel(E), as shown in Figure 1, are 
combined into kernel(IE) shown in Figure 2. Four kernel 
functions: kernel(M), kernel(C), kernel(E) and kernel(R) are 
unified into kernel(MCER) shown in Figure 2. Since the latter 
combination occurs in the main loop, much global memory 
access can be reduced.  

 Kernel execution configuration parameters are automatically 
determined to maximize the SM occupancy by fully utilizing 
the available shared memory and registers while considering 
the device’s compute capability. Specifically, each population 
member element is assigned with a unique thread while the 
whole population is partitioned into a number of blocks with 
each block containing an integer number of members. The 
number of population numbers per block is maximized 
provided that (1) each thread should reserve enough registers 
to use; (2) the total shared memory required by a block, 
calculated according to problem and algorithm characteristics, 
should not exceed the size of shared memory in SM; (3) the 
block number and size per SM should not exceed the device’s 
compute capability. The finally determined kernel execution 
configuration parameters will satisfy all these constraints. 
Note that configuration parameters derived in the above way 



will limit the maximal problem dimension. However, higher 
dimensions can be handled by letting some threads to process 
more than one population member elements. 

 Streams are used to enable concurrent kernel execution to 
maximize device utilization. Specifically, two streams are 
created to make the concurrent execution of kernel(MCER) 
and kernel(P) in the main loop. Two stream indices and two 
memory space addresses are swapped per generation for 
kernel(MCER) and kernel(P) to ensure data consistence. For 
example, after completing an initial execution of kernel(P) in 
stream0 to generate a mutation indices matrix in global 
memory addressed by M0, kernel(MCER) is launched in 
stream0, which uses the generated matrix stored at address 
M0. At the same time, kernel(P) is launched in stream1 to 
generate a new mutation indices matrix in global memory 
addressed by M1. Since the next execution of kernel(MCER) 
requires a new mutation indices matrix, the next launch of 
kernel(MCER) will be invoked in steam1 to make use of the 
generated matrix stored at address M1. Simultaneously, the 
next launch of kernel(P) will be invoked in stream0 to 
generate another new mutation indices matrix in global 
memory addressed by M0. 

5. EXPERIMENTAL RESULTS 
We evaluate the performance of cudaDEi and compare cudaDEi 
with two recent CUDA-based DE implementations (cudaDE and 
FPDE) and the sequential DE implementation (sDE) in terms of 
computation time using four numerical problems of 10D, 50D and 
100D respectively, where “D” denotes the dimension. Different 
algorithmic population sizes (P50, P100, P500 and P1000) are 
examined to reveal their impacts on computational time efficiency. 

5.1 Experimental Setup 
Experiments are conducted on a PC equipped with an Intel XEON 
E5410 CPU at 2.33 Ghz and a NVIDIA GTX560 GPU with 1GB 
of GDDR5 global memory. GTX560 supports compute capability 
2.1, which has 336 SPs evenly deployed in seven SMs, i.e. each 
SM consists of 48 SPs. Our development environment is made of 
Ubuntu 11.10 operating system, CUDA toolkit 4.0, NVIDIA 
driver version 290.10. 

All of four DE implementations in comparison, i.e. sDE, cudaDEi, 
cudaDE and FPDE, are based on the “DE/rand1/bin” algorithm 
with parameters set as: CR = 0.3, F = 0.5. Population sizes are set 
to 50, 100, 500 and 1000 respectively for each test case. 

For each test problem of a specific dimension, each DE 
implementation under a specific parameter setting is executed 25 
times starting from different random states while all of four 
implementations share the same initial random state for any 
individual run. The algorithm terminates once the maximal 
number of function evaluations is reached, which is set to 104 
times the problem dimension, e.g. for a 10D problem, the 
maximal number of function evaluations is 105. 

5.2 Test Problems 
We choose four numerical problems [15] for testing: 

F1: Shifted sphere function 
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Figure 3. Comparison of the average computation time 
(seconds) over 25 runs of four DE implementations (sDE, 
cudaDEi, cudaDE and FPDE) across varying population sizes 
(P50, P100, P500 and P1000) on test problem F1 of different 
dimensions (10D, 50D and 100D). 

 

 
Figure 4. Comparison of the average computation time 
(seconds) over 25 runs of four DE implementations (sDE, 
cudaDEi, cudaDE and FPDE) across varying population sizes 
(P50, P100, P500 and P1000) on test problem F2 of different 
dimensions (10D, 50D and 100D). 

F2: Shifted Rosenbrock’s function 
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F3: Shifted Griewank’s function 
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F4: Shifted Rastrigin’s function 
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Here, o = [o1,...,oD] is the shifted global optimum. For all of three 
CUDA-based DE implementations in comparison, the function 
evaluation routines are programmed in a parallel manner, i.e. the 
objective function values are calculated using multiple threads 
with each thread processing function components corresponding 
to one or more elements of one or more population members. 



 
Figure 5. Comparison of the average computation time 
(seconds) over 25 runs of four DE implementations (sDE, 
cudaDEi, cudaDE and FPDE) across varying population sizes 
(P50, P100, P500 and P1000) on test problem F3 of different 
dimensions (10D, 50D and 100D). 

 

 
Figure 6. Comparison of the average computation time 
(seconds) over 25 runs of four DE implementations (sDE, 
cudaDEi, cudaDE and FPDE) across varying population sizes 
(P50, P100, P500 and P1000) on test problem F4 of different 
dimensions (10D, 50D and 100D). 

5.3 Results 
We evaluate and compare computational time efficiency of four 
DE implementations, i.e. sDE, cudaDEi, cudaDE and FPDE, 
using four numerical problems under different problem 
dimensions and algorithmic population sizes. 

Figures 3~6 illustrate, for each of four test problems, the average 
computation time over 25 runs of four DE implementations across 
varying algorithmic population sizes (P50, P100, P500 and P1000) 
and under different problem dimensions (10D, 50D and 100D). 
Major observations are as follows: 

(1) Different test problems reveal similar comparison results 
with magnitudes of computation time depending on problem 
complexity. 

(2) For all of test problems, cudaDEi consistently demonstrates 
superior computational time efficiency with respect to any 
population sizes and any problem dimensions under test. 

(3) Given any specific problem dimension, as the population 
size increases, computation time of three CUDA-based DE 
implementations decreases. Among the three, FPDE shows 
the most remarkable decrease, followed by cudaDE and 
cudaDEi. 

(4) When solving 10D problems using smaller population sizes, 
e.g. P50 and P100, both cudaDE and FPDE perform worse 
than sDE while cudaDEi outperforms sDE. When the 
problem dimension increases, cudaDE starts to outperform 
sDE. However, FPDE can beat sDE only when using larger 
population sizes, e.g. P500 and P1000. 

(5) When solving 100D problems using larger population sizes, 
e.g. P500 and P1000, the difference of computation time 
between cudaDEi and cudaDE is less significant.  

Given a specific problem dimension that corresponds to a specific 
maximal number of function evaluations, the population size 
determines the total number generations (main loops) and thus the 
execution times of those kernels involving low-throughput global 
memory access in the main loop. The more such kernels exist, the 
more computation time tends to increase with increasing the total 
number of generations via decreasing the population size. Since 
FPDE contains the most such kernels while cudaDEi has the least 
ones, varying population sizes will influence most on FPDE while 
least on cudaDEi, which explains observation (3).  

Given pre-specified kernel execution configuration parameters, 
both problem dimensions and population sizes may influence the 
degree of parallelism and consequently impact computation time. 
Furthermore, problem dimensions may also significantly 
influence the SM occupancy. Specifically, cudaDE specifies 240 
thread blocks with each block having 64 threads to cope with a 
single population member. When the problem dimension exceeds 
64, some threads within one block have to sequentially process 
several population member elements. When the population size is 
over 240, some blocks have to process several population 
members in sequence. Such a configuration can handle any 
problem dimensions and population sizes at the expense of the 
loss of parallelism. Moreover, it allows at most 512 threads per 
SM due to the limitation of eight blocks per SM, which results in 
the maximum of 33% SM occupancy. When solving 10D 
problems, the SM occupancy will reduce to 5%, which explains 
observation (4): using smaller population sizes, e.g. P50 and P100, 
cudaDE will execute kernels involving low-throughput global 
memory access in the main loop for considerable times under 
such low SM occupancy, which causes its computation time 
longer than sDE. However, as the problem dimension increases, 
e.g. 50D and 100D, cudaDE operates under the much increased 
SM occupancy and thus outperforms sDE. 

FPDE encounters similar issues. For kernels related to algorithmic 
operations, FPDE uses ⎡ ⎤16N  thread blocks with each block 
having 16 threads to handle at least 16 population members. For 
the function evaluation kernel, FPDE uses N thread blocks with 
each block containing 16 threads to process at least 16 elements 
of one or more population members. N denotes the population 
size. Such configurations may significantly reduce the degree of 
parallelism. Meanwhile, they can allow at most 128 threads per 
SM due to the limitation of eight blocks per SM, which leads to 
the maximum of 8% SM occupancy. When solving 10D problems, 
FPDE will operate under the 5% SM occupancy. When solving 
50D and 100D problems, FPDE will operate under the 8% SM 



occupancy. Due to operating under the very low SM occupancy 
and involving many kernels that require low-throughput global 
memory access in the main loop, FPDE cannot beat sDE unless 
using larger population sizes, e.g. P500 and P1000, which can 
significantly reduce the maximal number of generations. This fact 
explains observation (4). 

cudaDEi needs not to pre-specify kernel execution configuration 
parameters. Instead, it can automatically determine configuration 
parameters to maximize the SM occupancy by fully utilizing the 
available shared memory and registers while satisfying various 
constraints detailed in Section 4. Therefore, cudaDEi can operate 
under the high SM occupancy for any problem dimensions and 
population sizes. Furthermore, cudaDEi consists of less kernels 
requiring low-throughput global memory access in the main loop. 
These benefits explain observation (2). 

cudaDEi tends to maximize the block size and consequently may 
decrease the maximal number of active blocks per SM. When 
solving 100D problems using larger population sizes, both 
cudaDE and cudaDEi operate under the desirable SM occupancy 
while cudaDE has eight active blocks per SM and cudaDEi has 
one active block per SM. Although cudaDEi involves less kernels 
requiring low-throughput global memory access in the main loop 
than cudaDE, a large block may perform less time-efficiently than 
several small blocks containing the same number of threads in 
total when the kernel involves thread synchronization operations. 
This fact explains observation (5) and deserves further study. 

Tables 1~3 elaborate the performance of the proposed cudaDEi, 
measured by: (1) the mean value and standard deviation of the 
best error function values (EFVs), i.e. the difference of objective 
function values between the best solution found so far and the 
global optimum, achieved when the algorithm terminates over 25 
runs; (2) the average computation time (seconds) over 25 runs; (3) 
the success rate (SR) over 25 runs. One run is claimed to succeed 
once it achieves an EFV smaller than 10-8. It can be observed that 
larger population sizes may not definitely result in better solution 
quality although leading to less computation time. 

6. CONCLUSIONS AND FUTURE WORK 
We proposed an improved CUDA-based DE implementation to 
optimize memory and device utilization. Several logically-related 
kernels are unified into one composite kernel to minimize global 
memory access by maximizing the use of shared memory. Kernel 
execution configuration parameters are automatically determined 
to maximize the SM occupancy by fully utilizing available shared 
memory and registers while considering problem properties and 
compute capability of GPU. Streams are employed to enable 
concurrent kernel execution to maximize device utilization. The 
consistent superiority of the proposed cudaDEi over two recent 
CUDA-based DE and the sequential DE in terms of 
computational time efficiency is verified using several numerical 
test problems across varying problem dimensions and algorithmic 
population sizes. 

Ongoing and planned research agendas include: further improving 
cudaDEi by studying the relation between computation time and 
the number of active blocks per SM given the high occupancy of 
SMs; enabling cudaDEi to solve problems of more than 1000D; 
evaluating cudaDEi on complex and high-dimensional problems 
as well as real-world applications. 

 

Table 1. Performance of cudaDEi in terms of the mean value 
and standard deviation (in bracket) of the best EFVs achieved 
when the algorithm terminates, the mean value and standard 
deviation of computation time (seconds) as well as the success 
rate over 25 runs with respect to four population sizes (P50, 
P100, P500 and P1000) on four 10D test problems. 

 P50 P100 P500 P1000 
Best 
EFV 

0.000 
(0.000)

0.000 
(0.000) 

0.000 
(0.000)

0.000 
(0.000) 

Time 
(sec) 

1.159 
(0.002)

0.633 
(0.001) 

0.228 
(0.000)

0.192 
(0.000) 

F1

SR 1.00 1.00 1.00 1.00 
Best 
EFV 

0.388 
(1.235)

0.044 
(0.068) 

1.306 
(1.388)

2.597 
(1.847) 

Time 
(sec) 

1.159 
(0.003)

0.632 
(0.001) 

0.229 
(0.000)

0.196 
(0.000) 

F2

SR 0.44 0.32 0.00 0.00 
Best 
EFV 

0.000 
(0.000)

0.000 
(0.000) 

0.000 
(0.000)

0.000 
(0.000) 

Time 
(sec) 

1.261 
(0.002)

0.648 
(0.002) 

0.222 
(0.000)

0.210 
(0.000) 

F3

SR 1.00 1.00 1.00 1.00 
Best 
EFV 

0.000 
(0.000)

0.000 
(0.000) 

0.000 
(0.000)

0.000 
(0.000) 

Time 
(sec) 

1.158 
(0.003)

0.635 
(0.001) 

0.207 
(0.000)

0.192 
((0.001)

F4

SR 1.00 1.00 1.00 1.00 
 

 

Table 2. Performance of cudaDEi in terms of the mean value 
and standard deviation (in bracket) of the best EFVs achieved 
when the algorithm terminates, the mean value and standard 
deviation of computation time (seconds) as well as the success 
rate over 25 runs with respect to four population sizes (P50, 
P100, P500 and P1000) on four 50D test problems. 

 P50 P100 P500 P1000 
Best 
EFV 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000)

Time
(sec) 

6.881 
(0.011) 

4.937 
(0.004) 

3.453 
(0.001) 

3.348 
(0.001)

F1

SR 1.00 1.00 1.00 1.00 
Best 
EFV 

213.544 
(625.959)

12.244 
(7.100) 

46.968 
(19.274)

56.365
(24.123)

Time
(sec) 

6.940 
(0.009) 

5.055 
(0.004) 

3.549 
(0.005) 

3.443 
(0.007)

F2

SR 0.00 0.04 0.00 0.00 
Best 
EFV 

0.001 
(0.002) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000)

Time
(sec) 

8.142 
(0.009) 

5.902 
(0.005) 

4.349 
(0.005) 

4.282 
(0.001)

F3

SR 0.92 1.00 1.00 1.00 
Best 
EFV 

18.286 
(3.97) 

2.936 
(1.472) 

28.345 
(14.084)

65.628
(8.607)

Time
(sec) 

7.006 
(0.010) 

4.914 
(0.004) 

3.851 
(0.007) 

3.692 
(0.002)

F4

SR 0.00 0.04 0.04 0.00 
 

 



Table 3. Performance of cudaDEi in terms of the mean value 
and standard deviation (in bracket) of the best EFVs achieved 
when the algorithm terminates, the mean value and standard 
deviation of computation time (seconds) as well as the success 
rate over 25 runs with respect to four population sizes (P50, 
P100, P500 and P1000) on four 100D test problems. 

 P50 P100 P500 P1000 
Best 
EFV 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

0.000 
(0.000) 

Time 
(sec) 

18.624 
(0.013) 

16.396 
(0.008) 

12.289 
(0.003) 

11.557 
(0.002) 

F1 

SR 1.00 1.00 1.00 1.00 
Best 
EFV 

15.720 
(24.466) 

42.293 
(32.790) 

113.292 
(22.349) 

118.43 
(33.239)

Time 
(sec) 

19.003 
(0.012) 

16.919 
(0.008) 

12.679 
(0.002) 

11.917 
(0.003) 

F2 

SR 0.00 0.00 0.00 0.00 
Best 
EFV 

0.002 
(0.006) 

0.005 
(0.027) 

0.000 
(0.002) 

0.000 
(0.000) 

Time 
(sec) 

22.376 
(0.012) 

20.929 
(0.011) 

15.784 
(0.003) 

14.794 
(0.002) 

F3 

SR 0.84 0.96 0.96 1.00 
Best 
EFV 

63.166 
(8.984) 

48.329 
(9.172) 

40.891 
(8.539) 

114.234
(47.738)

Time 
(sec) 

18.862 
(0.032) 

17.417 
(0.020) 

13.236 
(0.038) 

12.644 
(0.015) 

F4 

SR 0.00 0.00 0.00 0.00 
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