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Abstract

Clustering of genes into groups sharing common characteristics is a useful exploratory technique

for a number of subsequent computational analysis. A wide range of clustering algorithms have been

proposed in particular to analyze gene expression data, but most of them consider genes as independent

entities or include relevant information on gene interactions in a sub-optimal way.

We propose a probabilistic model that has the advantage to account for individual data (eg. expres-

sion) and pairwise data (eg. interaction information coming from biological networks) simultaneously.

Our model is based on hidden Markov random field models in which parametric probability distributions

account for the distribution of individual data. Data on pairs, possibly reflecting distance or similarity

measures between genes, are then included through a graph where the nodes represent the genes and

the edges are weighted according to the available interaction information. As a probabilistic model, this

model has many interesting theoretical features. Also, preliminary experiments on simulated and real

data show promising results and points out the gain in using such an approach.

Availability: The software used in this work is written in C++ and is available with other supple-

mentary material at http://mistis.inrialpes.fr/people/vignes/transparentia/ieeetcbb2007.html.

Index Terms

Markov random fields, model-based clustering, metabolic networks, gene expression

I. INTRODUCTION

As an increasing amount of post-genomic data are available, there is a great need to develop

methodologies to analyze and to use the information contained in this data. A major challenge in

bioinformatics is to reveal interactions between components of living organisms and discover the

corresponding networks responsible for their biological complexity. In this framework, clustering

of genes into groups sharing common characteristics is a useful exploratory technique. It is

frequently used as the basis for further computational analysis. As an example, the function of

a gene can be predicted according to known functions of other genes from the same cluster.

With the introduction of DNA microarray technology, researchers are now able to measure the

expression levels of thousands of genes simultaneously at various time points of the biological

process or under various experimental conditions. As data accumulate, the tendency to investigate

general regulatory mechanisms by clustering genes from their expression profiles increases.

A wide range of clustering algorithms have been proposed to analyze gene expression data.
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Various methods have been applied such as hierarchical clustering [8], self-organizing maps

[20], k-means algorithms [22], and more recently Support Vector Machines methods [4] or

graph analysis by bi-clustering [21]. More generally, approaches fall mainly in two categories.

Some focus on individual data and assume that they are independent. Typically, [25] use a

statistically based model which does not incorporate possible relationships between genes. Others

try to integrate several sources of data, setting for instance, expression data into a Bayesian

graphical model framework [11], combining expression data with phylogenetic profiles [17], or

defining distances between genes combining different data types [15]. Typically, the procedure

in the work of [10] uses information on pairs of genes in the form of networks or graphs

and combines it with distances computed from individual expression profiles. This requires

transforming individual information into distances or similarity measures and does not directly

use individual data associated to genes in the networks, loosing some potentially interesting

information in the process. Kernel-based approaches to data fusion ( [14], [24], [23]) also

consist of representing various data sets via kernel functions which define generalized similarity

relationships. Also, sequential procedures that cluster first individual data alone and incorporate

additional information only after the clusters are determined are necessarily suboptimal.

It appears that models able to integrate simultaneously information on individuals (without

reducing it to pairwise information) and pairwise relationships in the same procedure have not

yet been proposed. The novelty of our work is to propose a model-based approach, as opposed

to the distance-based approaches mentioned above, to take into account simultaneously data

from individual genes, ie. data that make sense and exist for each genes, and data from pairs

of genes reflecting for instance some distance or some similarity measure defined on the genes,

possibly using some recent kernel-based approaches. To our knowledge, the only similar attempts

have been proposed in [18]. However, the formulation of their probabilistic model does not fully

exploit gene dependencies. It is written to account for gene interaction but one of the assumptions

made is only valid under gene independence. In addition, no estimation procedure is proposed

to estimate the model parameters and they then need to be fixed to arbitrary values. We propose

an integrated Markov model, meaning by that a specific instance and usage of a Hidden Markov

model. Parametric probability distributions account for the distribution of individual data while

data on pairs are included through a graph where the nodes represent the genes and the edges are

weighted according to the available interaction information (eg. distances or similarity measures
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between genes). As regards parameter estimation and classification step, we consider recent

procedures based on the EM algorithm and mean field-like approximations [6]. Such procedures

were shown to be more efficient in many ways than standard Gibbs samplers or Markov Chain

Monte Carlo (MCMC) techniques traditionally used in computer vision.

This model and the EM classification framework (Section II) have many interesting features.

As a probabilistic model, it leads to various possible statistical criteria to select automatically

the number of clusters and it provides confidence measures such as posterior probabilities that

an object (eg. a gene) is assigned to a class. It is flexible in that various pairwise relationship

information and features on individual data can be easily incorporated possibly with different

weights. Its generalization to include missing data, that often occur when dealing with expression

data, is straightforward and its extension to overlapping clustering methods, to deal with more

realistic situations where genes can belong to many groups at the same time, can also be

considered. Although such a model is relevant in various other applications, we specify in Section

III the type of data used in this work. Experiments on simulated data are reported and results

on real data are then shown in Section IV. A discussion section ends the paper.

II. INTEGRATED MARKOV MODELS

The basic assumption is that measures (e.g. expression profiles) corresponding to each objects

are random variables with a specific probability distribution in each class. A standard way to

represent class-specific density functions is to approximate them as Gaussian distributions whose

parameters depend on the class. In the work of [25], a Gaussian mixture model is assumed

which corresponds to Gaussian class-specific distributions but also to genes independence. This

is not fully satisfying since it can exist strong neighborhood relationships between genes sharing

common functions. To overcome this limitation, we propose to improve on the Gaussian mixture

model by assuming that the distribution of the observed features is that of a Hidden Markov

Random Field (HMRF) with
�

components and appropriate parametrization. To define such a

model, one needs to specify a neighborhood structure indicating which genes are statistically

linked but this structure is not necessarily related to the clusters. Dependent genes may be in

different classes and genes from the same class may be independent.
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A. Hidden Markov fields for biological networks

Let � be the number of genes to be clustered and �������	���	�
��� denote the individual data observed

for the genes numbered by ���������������� . The observed data are usually multi-dimensional vectors,

e.g. expression profiles. For �����������	�	��� , we model the probability of observing ��� as��� ���
�! #"$� %&'�( � ���*) �+� , ' � -�"$. � ���/�10 ' "�� where . � �����10 ' " denotes the multivariate Gaussian

distribution with parameters 0 ' namely the mean 2 ' and covariance matrix 3 ' . Notation
) �

denotes the random variable representing the class of gene � . ) � can take values in 4, ' �657�
�8����� � � denoting the

�
possible classes. More specifically, it is convenient to consider , ' as

a
�

-dimensional indicator vector with all components being 0 except the 5�9;: which is 1. Note

that we assume in this section that
�

is fixed but this can be generalized (see Section II-B).

Notation - denotes additional parameters defining the distribution of the
) � ’s and  denotes

the whole model parameters i.e.  <� � 0 ' ��-=�65>�?�8����� � " . As an example, the model used by

[25] for
��� ���
�! #" is an independent Gaussian mixture model and corresponds, in our framework,

to assume that the
) � ’s are independent variables. Our approach differs in that our aim is to

account for dependencies. This requires the definition of neighborhood relationships between

genes. We will think of a set of genes as a graph with edges emanating from each gene to other

genes within its neighborhood. We will illustrate in Section III how such a graph can be built

from biological network data. The dependencies between neighboring genes are then modelled

by further assuming that the joint distribution of
) �6��������� ) � is a discrete Markov Random Field

on this specific graph. Denoting @A� �CB �����	����� B �D" specified values of the
) � ’s, we define��� @�� -�"E� F � -�"HG �JI�KML �ONQP7� @R��-�"
" (1)

where F � -�" is a normalizing constant and
P

is a function assumed to be of the following form

(we restrict to pair-wise interactions),
P7� @R��-�"S� �&� ( � T � �CB �U��-�"WV & X;Y ZX\[�Z T �^] �CB �*� B ]_��-�"�� where the

T � ’s
and

T �^] ’s are respectively functions referred to as singleton and pair-wise potentials. We write

�a`cb when genes � and b are neighbors on the graph, so that the second sum above is over

neighboring genes. Parameters - consist of two sets -d� �Ce � IB " where
e

and IB are defined as

follows. We consider pair-wise potentials
T �^] that depend on

B � and
B ] but also possibly on � and

b . Since the
B � ’s can only take a finite number of values, for each � and b , we can define a

�gfh�
matrix IB �^]i� �

IB �^] � 5j�Hkl"
"H�Um '�n o m % and write without lost of generality
T �^] �CB �*� B ]p��-�"=� N

IB �^] � 5q��kC" ifB ���r, ' and
B ]s�r, o . Using the indicator vector notation and denoting

B 9� the transpose of vector
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B � , it is equivalent to write
T �^] �lB �t� B ]_��-�"#� NQB 9� IB �^] B ] . This latter notation has the advantage

to make sense also when the vectors are arbitrary and not necessarily indicators. This will be

useful when describing the algorithms of Section II-C. Similarly we consider singleton potentialsT � that may depend on
B � and on � , so that denoting by

e � a
�uN

dimensional vector, we can

write
T � �CB �t��-�"v� NQe � � 5R" if

B �J�w, ' , where
e � � 5R" is the 5x9;: component of

e � , or equivalentlyT � �CB �*��-�"=� NQB 9� e � . This vector
e � acts as weights for the different values of

B � . When
e � is zero,

no class is favored, i.e. for a given gene � , if no information on the neighboring genes is available,

then all classes have the same probability. If in addition, for all � and b , IB �1]y�{z f}| % where

z is a real scalar and
| % is the

�~f+�
identity matrix, parameters - reduce to a single scalar

interaction parameter z and we get the Potts model traditionally used for image segmentation.

Note that this model is probably the more appropriate for classifying genes since it tends to

favor neighbors that are in the same class. However, cases where the IB �^] ’s are far from z f�| %
could be useful in situations where neighboring genes are likely to be in different classes. Also,

when distance or similarity data,
�l� �^]�"�� n ] ( � n1�1�1� n � , between genes are available, IB �1] � 5q�Hkl" can be

decomposed as IB �1] � 5q�Hkl"8��� �C� �^]�"R, � 5q�Hkl" where � is a non increasing function of IR � and , � 5q�Hkl"
corresponds to a gain (or a loss depending on its sign) of assigning genes � and b respectively to

class , ' and , o . This is part of the flexibility and modelling capabilities of the model. However,

without specific information, we can choose , � 5q�Hkl"8�rz if 5���k and , � 5q�Hkl"8��� otherwise. In this

case, parameter z can be interpreted as a strength of interaction between neighbors. The higher

z the more weight is given to the interaction graph. If z is set to � , only the individual features

are taken into account, reducing our model to traditional existing approaches. In practice, these

parameters can be tuned according to expert or a priori knowledge or they can be estimated

from the data. In the first case, our software can deal with the most general parametrization,

namely -d� �Ce � , IB �^] ). In the latter case, the part to be estimated is usually assumed independent

of the genes indices � and b , so that in what follows we will reduce
e

and IB respectively to

a single vector and a single matrix. Note that in Section IV, the model is further reduced to
e

equal to 0 and IB equal to z f�| % (See comments in this section).

Meanwhile, to keep a general presentation, the observed data is then represented by an HMRF

defined by parameters  being  ?� � _2 ' �63 ' � 'H( � n1�1�1� n % � e � IB " .
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B. Selecting the number of classes

Choosing the probabilistic model that best accounts for the observed data is an important first

step for the quality of the subsequent estimation and classification stages. In statistical problems,

a commonly used selection criterion is the Bayesian Information Criterion (BIC) of [19]. The

BIC is computed given the data � and a model � with parameters  . It is defined by:

�A|x��� ��"8��������� ��� ���� �� o " N�� �����=�}�
where  �� o is the maximum likelihood estimate of  ,  �� o �����
�8��� K ��� ���J ��6��"�� � is

the number of free parameters in model � and � is the number of observations. BIC allows

comparison of models with differing parametrizations and/or differing number of classes. Many

other approaches can be found in the literature on model selection but BIC has become quite

popular due to its simplicity and its good results. In this study, we will consider the Markov

model (
e

, IB) as fixed. More specifically, the experiments reported in Section IV correspond to

the simplest model with
e �r� and IB ��z f>| % . More important in practice is the choice of

�
and of the covariance model ( 3 ' ’s). For multivariate Gaussian class-specific distributions, there

exists a number of different choices for the 3 ' ’s. See [1] and [5] for a description of these forms

and their meaning. The simplest models are those for which the 3 ' ’s are diagonal matrices. Our

choice of
�

and 3 ' ’s then can be based on BIC. However, for HMRFs, its exact computation

is not tractable due to the dependence structure induced by the Markov model. A possibility is

then to compute BIC for independent mixture models, forgetting any spatial information. Not

to loose such information, we rather choose to use the mean field like approximations of BIC

proposed by [9] (see Section II-C for additional details). As regards covariance matrices, we

restrict to diagonal models in most cases or consider an original reduction dimension techniques

[3]. In the context of the present work however, we did not observe significant improvement

over the simple diagonal models for the data (only 10 dimensional) we consider in Section IV.

C. Classifying genes

Our aim is to classify each gene in one of the
�

classes. To do so we consider a Maximum

Posterior Marginal (MPM) principle consisting in assigning gene � to class , ' that maximizes���*) ��� , ' � ���� #" . Such maximizations depend on  which is usually unknown, or partly

unknown when prior knowledge can be incorporated, and has to be estimated. The parameters
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to be estimated are the parameters defining the Gaussian distributions namely the 2 ' and

3 ' for 5$����������� � and the parameters defining the interaction model, namely the
e�� 5R" for

5 �<��������� � and the
� fu�

dimensional matrix IB. The EM algorithm is a commonly used

algorithm for parameter estimation in problems with missing data (here the class assignments).

For independent mixture models, the independence assumption leads to an easy implementation

of the algorithm. For HMRFs, due to the dependence structure, the exact EM is not tractable

and approximations are required. In this paper, we use some of the approximations presented in

[6]. These approximations are based on the mean field principle which consists in replacing the

intractable Markov distributions by factorized ones for which the exact EM can be carried out.

This allows to take the Markovian structure into account while preserving the good features

of EM. [6] generalized the mean field principle and introduced different factorized models

resulting in different procedures. Note that in practice, these algorithms have to be extended to

incorporate the estimation of matrix IB and to include irregular neighborhood structure coming

from biological networks and not from regular pixel grids like in [6].

Briefly, these algorithms can be presented as follow. They are based on the EM algorithm which

is an iterative algorithm aiming at maximizing the log-likelihood (for the observed variables

� ) of the model under consideration by maximizing at each iteration the expectation of the

complete log-likelihood (for the observed and hidden variables � and @ ) knowing the data and

a current estimate of the model parameters. When the model is an Hidden Markov Model with

parameters  , there are two difficulties in evaluating this expectation. Both the normalizing

constant F � -�" in (1) and the conditional probabilities
���lB �8�p�=�� �" and

���CB �*� B ]A�p�=�� �" for b in

the neighborhood ¡ � �t" of � , cannot be computed exactly. Informally, the mean field approach

consists in approximating the intractable probabilities by neglecting fluctuations from the mean

in the neighborhood of each gene � . More generally, we talk about mean field-like approximations

when the value for gene � does not depend on the value for other genes which are all set to

constants (not necessarily to the means) independently of the value for gene � . These constant

values denoted by ¢B �����������D¢B � are not arbitrary but satisfy some appropriate consistency conditions

(see [6]). Let
Bp£8¤ �;¥ denote the set of variables  B ]4�Ub§¦{¡ � �t"6� associated to the set ¡ � �U" of

neighbors of � . It follows that
���lB �8�p�=�� �" is approximated by

���CB �8�p�=�D¢Bp£=¤ �;¥��� �"E¨ . � ���
� B 9� 0�" ���lB �
�©¢Bp£8¤ �;¥O�
-�"
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¨ . � ���
� B 9� 0�" I6KML �CB 9� �le V IB ª]H« £=¤ �;¥ ¢B ]	"/"
where 0 denotes the vector

� 0��������	�	�H0 % " . The normalizing constant is not specified but its

computation is not an issue. Then, for all b�¦d¡ � �U" , ���CB �t� B ]y�p�=�� �" is approximated by���CB �h�j�8��¢Bp£8¤ �;¥O�� #" ���lB ]��¬�8��¢Bp£8¤ ]
¥U�� �" . Both approximations are easy to compute. Using such

approximations leads to algorithms which in their general form consist in repeating two steps.

At iteration  ,
(1) Create from the data � and some current parameter estimates  ¤\® G �C¥ a configuration

¢B ¤\® ¥� �	������¢B ¤¯® ¥� , i.e. values for the
) � ’s. Replace the Markov distribution

��� @�� -�" of (1) by the

factorized distribution
�°� ( � ���CB �
�±¢B

¤\® ¥£8¤ �;¥ ��-�" . It follows that the joint distribution
��� ����@��² �" can also

be approximated by a factorized distribution:�³
� ( � . � ���
� B 9� 0�" ���lB �
�©¢B

¤¯® ¥£=¤ �´¥ ��-�"
and the two problems encountered when considering the EM algorithm with the exact joint

distribution disappear. The second step is therefore,

(2) Apply the EM algorithm for this factorized model with starting values  ¤\® G �C¥ , to get

updated estimates  ¤\® ¥ of the parameters.

In particular the mean field and simulated field algorithms consist in two different ways of

performing step (1). The mean field algorithm consists in updating the ¢B � ¤¯® ¥ ’s by setting, for

all ���?�����	���	��� , ¢B � ¤¯® ¥ to the mean of distribution
���CB �µ�M�=�D¢B ¤¯® ¥£8¤ �;¥ �� ¤\® G �C¥ " . Note that as

B � is an

indicator vector, the mean value ¢B � ¤\® ¥ is a vector made of the respective probabilities to be in each

of the
�

classes. In the simulated field algorithm, ¢B � ¤\® ¥ is simulated from
���CB �8�p�=�D¢B ¤¯® ¥£8¤ �;¥ �� ¤\® G �C¥ " .

Note also that to save additional notation, the updating described above is synchronous while

we actually implemented a sequential updating of the ¢B � ¤¯® ¥ ’s: each node � is updated in turn

using the new values of the other nodes as soon as they become available rather than waiting

until all nodes have been updated. Then, in practice, at step (2), performing one EM iteration

is usually enough. Then, the HMRF estimation provides us with estimations for the means and

covariance matrices of the
�

Gaussian distributions, namely 2 ' and 3 ' for 5}�¶�����	��� � , but

also for the hidden field parameters, matrix IB and vector
e

. It follows easily approximations of

the
���C) �q�·, ' � �=�� ¸" required to classify each genes using the MPM principle.

In this work, we mainly consider the so-called simulated field algorithm for its better perfor-

mance in practice.
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III. FROM BIOLOGICAL NETWORKS TO INTERACTION GRAPHS

Many kinds of biological networks are freely available. They contain a lot of information

that should not be ignored to provide optimal clustering but the quality and the access to that

information is far from being uniform. As an example, biological networks are not all related

to the same objects. They may contain links between genes, gene products, proteins complexes

or families, etc. and the links may stand for experimentally based or assumed relationships.

Our goal is to build a graph with objects which are individually subject to other measurements,

as genes are to microarrays. There is no universal way to build such a graph but we give an

illustration in this section. We choose to focus on gene expression data and metabolic networks

like those given in the Reaction (part of Ligand) KEGG database (http://www.genome.ad.

jp/kegg/reaction/). A mapping between genes and objects in the network must then be

derived. Chemical reactions of interest are those which are assigned one or several ¹ � numbers

corresponding to enzymes that may catalyze them. To each ¹ � number are associated one or

more genes.

A first stage consists in building a graph whose nodes are enzymes. An edge exists between

two enzymes if and only if they catalyze two reactions that share at least a common chemical

compound either as substrate or product. The interpretation is that an edge stands for the

possibility that two reactions follow each other in metabolic pathways. However, all the links

between reactions cannot be considered. In particular those which involve compounds that are

very common (eg. water, etc.) are usually not relevant to the biological interpretation and may

hide or bias the biological information. Two possibilities are either to use the main compounds

(according to KEGG database) or to remove compounds which would link too many reactions

(above a given threshold). We choose the first solution for the restricted database has the

advantage of being produced by experts who manually removed somewhat irrelevant compounds

such as water, carbon dioxide, etc. In addition, weights
�l� �^]�"U� n ] ( � n1�1�1� n � can be assigned to edges.

They may reflect in a quantitative way enzymes proximity or thermodynamical properties. Such

information is not available yet but would be easily dealt with in our model. As an illustration,

we consider the Saccharomyces cerevisiae genome and derive a graph on genes with the network

of chemical reactions given in the database. Figure 1 gives an example based on the compounds

acting in the Citrate cycle with only part of the reactions represented for clarity (Figure 1
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(A)). For example, reactions º»���½¼�¾�¿ , º»�À�p¿���� and º»����¾���¿ all share compound Isocitrate.

They are therefore neighbors and so are the enzymes catalyzing each of these reactions (Figure

1 (B)). Two enzymes catalyzing the same reaction are neighbors as well (eg. ¹ � �x�\ÁÀ�²ÁÀ�²Â and

¹ � �M�²ÁÀ�²ÁÀ�Ã� ). Reversibility is allowed. Also a common enzyme may catalyze different reactions,

eg. ¹ � �������Ã���!¼�� is active in reactions º»�À�pÂ�¿�¿ , º»���D��Ä�Â and º»���D��ÄD¾ . It must then be linked to

any enzyme catalyzing reactions sharing a compound with the later.

A second stage in building the final graph is to go from enzymes to genes. Two cases have to

be considered. In the first one a gene maps to several enzymatic functions while in the second

one several genes map to a single enzymatic ¹ � number. A way to deal with both cases is to

consider couples of objects
�ÆÅMÇ � Ç �H¹ � " and connect them in the graph as soon as their second

components are connected. In the first case, enzymes already correspond to different nodes.

These nodes only need to be fused keeping neighborhood relationships. The measure about

the gene is then assigned to the resulting node. The second case is illustrated in the transition

from graph (B) to graph (C) of Figure 1. Links (see graph (B)) between enzymes correspond

to solid lines while each set of associated genes corresponds to dotted lines. A node is added

for each of the gene corresponding to the same enzymatic function. New nodes are then linked

to keep the same relationships than that existing between enzymes. In our example (Figure 1

(C)), ¹ � ¼R�¯�x�����²Á splits into genes ÈÊÉÌËS����� � and ÈyË8º»Á���¼ � . Note that information related to

¹ � �M�²ÁÀ�\ÁM�\Â is lost because no known yeast gene is assigned to that enzyme. Besides an obvious

limitation of our graph construction is that it ignores genes not related to EC numbers. Many

of them (eg. regulators) can be responsible for relevant interactions. A more complete (and less

automatic) graph construction would have required additional expert knowledge not available in

this study. Note that beyond the biological relevance, the size of the graph is not a problem.

The model can deal with large numbers of genes, edges and experiments. In different contexts,

experiments were made with the equivalent of thousands of genes and edges and up to 300

experiments using diagonal covariance matrices or dimension reduction techniques [3].

IV. RESULTS

As mentioned earlier, the experiments reported in this section correspond to the simplest

Markov model with
e ��� and IB �¶z fu| % . In particular for the yeast data, more complex

models, when estimated, seem to be penalized by their larger number of parameters (see Figure
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Citrate

Oxaloacetate

Isocitrate

Oxalosuccinate

cis−Aconitate

2−Oxo−glutarate

R00351
R01900R01325

R00709

R00268

R01899

Succinate+Glyoxylate

R00479

R00267

EC 2.3.3.8

EC 2.3.3.1

EC 4.1.3.1

EC 1.1.1.42

EC 1.1.1.41

EC 2.3.3.8

EC 2.3.3.1

EC 4.2.1.3

EC 4.1.3.1

EC 1.1.1.42

EC 1.1.1.41

YCR005c
YNR001c
YPR001w

YJL200c

YOR136c
YNL037w

YDL066w
YLR174w
YNL009w

YPR006c
YER065c

(145 react.)

(41 react)

YLR304c

YCR005c

YNR001c

YPR001w YNL037w

YNL009w

YLR174w

YDL066w
YJL200c

YLR304c

YOR136c

(C)

(B)

(A)
R01324

EC 4.2.1.3

0

YPR006c

YER065c

Fig. 1. From the graph of chemical metabolic reactions (A) to the gene interaction network (C) via the enzyme network (B).

For clarity, only edges between reactions in the metabolic subgraph (A) are represented.
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4 (b) for an illustration).

A. Synthetic data sets

We first assess our method performance on synthetic data for which the classes are known.

Modelling gene expression data sets is an ongoing effort by many researchers and there is no

well-established model to represent gene expression data yet. The simulation method we use is

based on a proposal by [25]. It aims at simulating cyclic data, ie. cyclic behavior of genes over

different time points. We create five data sets following the same model. Each set is made of

1536 genes for which we simulate 20 experiments. These genes come from 6 classes equal in

size (256 genes per class) corresponding to different behavior over the time course. Let �Í�^] be

the simulated expression level of gene � under experiment b in the data set. We first consider

the following periodic behaviors (before adding noise). When the gene class is
B �Q�¶, ' with

5���������	���	��¼M� , we set

Î �^]J�rÏp�C� � �4Ð¬bxÑM�p� N Ð�5ÀÑ½¼�" for bÒ�Ó���	�����H�½� .
When 5��ÕÔ and 5���Ä , we consider the linear behaviors Î �^]a�§bxÑ���� et Î �^]Q� N bxÑ���� . Noise is

then added,

���^]i� Î �^]=V×ÖO�^] for ���Ó�����������_Ô�Á�Ä and bØ�Ó�����	���	�6�½� ,
where the Ö/�^] ’s are generated according to the normal distribution with mean 0 and standard

deviation Ù��^] . The Ù��^] ’s are drawn, randomly from standard deviations observed on the real data

described by [12]. We further increase the noise by multiplying the ÖH�^] ’s by 6 (the corresponding

standard deviation is then ÄµÚ8Ù��^] ). We refer to [16] and the web site http://expression.

washington.edu/publications/kayee/ for a graphical illustration of such data.

As regards network data, we are not aware of any well established simulation methods.

For a simple illustration, we consider the genes as the nodes of a ¼DÂ f Á�� regular grid with

neighborhoods made of the 8 nearest neighbors. The 6 classes are then chosen as shown in

Figure 2 (left-hand image) where each color is associated to a class. Although such a network as

no biological interpretation, the classification quality is easy to assess by non expert users and

it provides a clear visual illustration of the gain in taking into account network relationships.

We compare the standard EM algorithm, which assumes genes independence and the EM-like
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procedures we propose. BIC is computed in both cases for
� �rÁ to

� �r¿ . Typical curves are

shown in Figure 2. EM-like procedures show higher BIC values than standard EM. The criterion

selects the right number of classes except for data sets 1 and 4 for which 7 classes are preferred.

However, this is consistent with the obtained classifications shown in Figure 3. For standard EM,

2 bands are wrongly merged except for data set 2. For the simulated field algorithm, the bands

are correctly recovered except for sets 1 and 4. In these latter cases, the 7-group classifications

are visually better for data sets 1 and 4 (bottom row of Figure 3) as suggested by BIC values.

The interpretation is that in these very noisy cases it may be worth considering an extra class

with no specific meaning but that gathers outliers or too ambiguous measures. Simulated field

and mean field algorithms perform similarly except for data set 5. In this case the simulated field

algorithm selects 6 classes and gives a better classification. In the following developments, we

will only refer to the simulated field algorithm.

Table I shows the global recognition rates (proportions of well-classified genes) obtained with

the EM and simulated field algorithms for each data sets, while Table II shows the confusion

matrix obtained for set 5. Rows correspond to the true classes while columns correspond to

the obtained classes. The diagonal terms are the proportions of well classified genes in each

class. The other terms are proportions of badly classified genes. All data sets show similar

improvements when comparing EM to the simulated field algorithm.

On such synthetic data, the gain in taking into account network information or dependencies

between genes appears clearly with improved recognition rates. BIC or its approximation in

our Markov field setting, also appears as a satisfying criterion as regards the selection of the

number of classes. It selects a number of classes which is consistent with the visual quality

of the corresponding classification. These first conclusions will guide, in the next section, our

analysis of the experiments on real data for which no ground-truth is available.

B. Saccharomyces cerevisiae (yeast) data

Although, our approach is valid for any organism provided individual data and network

information is available, we focus on data related to Saccharomyces cerevisiae which is a widely

studied organism with well established information and data on its mechanisms. The expression

data we use are described by [7] and correspond to the developmental program of sporulation

(gametogenesis in yeast). It consists of meiosis overlapped by spore formation. Sporulation can be
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Fig. 2. Reference classification and BIC values for 3 data sets when Û varies from 3 to 9. Solid line: Simulated field algorithm,

Dotted line: EM algorithm, Dashed line: Mean field algorithm.

Fig. 3. Top and middle rows: 6 color classifications for 5 synthetic data sets using standard EM algorithm assuming independence

(top row) and simulated field algorithm (middle row). Bottom row: 7 color classifications using the Simulated field algorithm.

Note that the colors are arbitrarily assigned and may not match.

data sets 1 2 3 4 5

EM 64.8 79.2 63.3 68.1 64.3

Simulated field 77.5 95.8 93.6 78.6 91.3

TABLE I

RECOGNITION RATES IN % FOR SYNTHETIC DATA (K=6).
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global recognition rate= 91.3 %

Class 1 2 3 4 5 6

1 94.1 1.2 0 0 0.8 3.9

2 1.2 89.1 3.1 0 2.0 4.7

3 0 1.2 80.9 1.6 5.9 10.5

4 0 0 1.6 84.0 12.1 2.3

5 0 0 0 0 99.6 0.4

6 0 0 0 0 0 100

TABLE II

CONFUSION MATRIX FOR FIGURE 3 MIDDLE RIGHT IMAGE.

characterized in terms of four distinct sets of genes which play different sequential roles according

to their transcriptional activation during the process: early, middle, mid-late and late. The study

proved this characterization to be suboptimal and a seven expression patterns description was

preferred. Changes in the concentrations of the mRNA transcripts from each gene were measured

at seven successive intervals after synchronisation; yeast cells were transferred to a nitrogen-

limited medium that induces sporulation. The samples were taken at times ( � h, �À�\Ô h, � h, Ô h,

¾ h, ¿ h, �����\Ô h) based on the independently monitored expression pattern of known early, middle,

mid-late, and late genes. Three additional points were measured when an essential transcription

factor activated at the end of the meotic prophase is missing; cells are then non-sporulating.

The measures we use are related to these specific times. This leads to 10 dimensional profiles

that should capture essential activity behavior of yeast genes during sporulation. As regards

network data, we use the KEGG Reaction database as described in Section III. The resulting

graph consists of Ä�ÁDÔ genes (amongst the ÄÀ���pÂ ORFs expression measurements available, only

Ä�ÁDÔ are present in the metabolic network). Since our aim is mainly to assess the benefit in adding

network information, we then restrict to these 635 genes. In this case, the appropriate number

of classes is unknown. We compute BIC values for
� �r� to

� �Ó�p� . The corresponding curve

(Figure 4 (a)) does not show a clear maximum. We then consider as a reasonable choice of
�

, the

value after which the difference in two successive BIC does not increase significantly anymore.
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Fig. 4. BIC values for yeast data when Û varies from 2 to 10. (a) comparing Simulated field and EM algorithms. Solid line:

Simulated field algorithm, Dashed line: EM algorithm; (b) Differences in two successive BIC for the Simulated field algorithm;

(c) comparing various Markov models for the Simulated field algorithm: Solid line: Ü¸ÝØÞ�ßSà/á model, Dashed line: diagonalÜ model, Dotted line: full Ü model.

This leads to selecting
� �âÄ as the number of classes (Figure 4 (b)). We then compare into

more details classifications obtained with standard EM and with the simulated field algorithm.

To assess the quality of such classifications is not an easy task since there is no universal criteria

to measure the relative performance of the algorithms. We therefore illustrate the gain in using

our approach on the following specific features chosen for their relevance with regards to the

data under consideration. Note that presenting the resulting clustering as a whole is not possible

due to the size of the graph. An appropriate visualization tool is missing to provide a global

biologically meaningful idea of the clusters. However, the clusters are available in separate files

on our website.

Ideally, we would like to check whether our approach results in clusters better related to

real biological networks. However, since this experiment is based on a graph that accounts for

dependencies that are expected to be strongly related to pathway information, we assess the

quality and relevance of the various clusters by comparing them to groups of genes in the same

metabolic pathway or in related pathways. [13] propose a method to detect significant pathways

associated to the [7] expression data set we are using. They describe three scoring functions

to characterize pathways at the transcriptional level based on gene expression, coregulation and

cascade effect. Their pathway scores show relevance towards the biological background. This
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Transcription pathway (KEGG) Simulated Field result EM result

Fig. 5. ARN polymerase Transcription pathway as taken from KEGG. The middle and right columns show the results obtained

by merging two clusters, respectively using the simulated field algorithm (middle) and the EM algorithm (right). Pink colored

proteins correspond to genes that are included in the two merged clusters while green ones correspond either to genes that do

not belong to the clusters or to genes that were not included in the analysis. The simulated field algorithm (missing proteins: B4,

B12, C2, C5, A49) outperforms EM (missing proteins: B4, B7, B11, B12, C2, C4, C5, C11, C25, C31) in grouping together

this class of genes.

work provides an interesting tool to evaluate the performance of gene expression clustering

techniques. High Activity Scores are awarded to pathways that exhibit many genes expressed

above a given threshold or under another threshold in the case of repression effects. Coregulation

Scores are higher for pathways in which genes show greater similarity in their expression

patterns. Cascade Scores account for genes that do not show huge deviation from the reference

time point and for the structure and ordering of the reactions in the pathway. In particular,

they are useful to find out in which pathway a reaction chain is active or shutdown for the

particular experiment under study. For example, Transcription/Translation pathways are given a

high Activity Score. This is well captured by our simulated field algorithm which gathers 16 out

of the 28 genes involved in Transcription mechanisms in cluster Ä . In comparison, standard EM

succeeds in gathering 11 of these genes at best. When considering two clusters, these numbers

raise respectively to 24 genes for our approach against 19 for the independent gene case (see

Figure 5). Note that due to the restriction of our data set, we have no genes corresponding to

B12 in our data although it corresponds to some yeast gene. Similar results hold for Translation

involved genes.

We can also refer to the Vitamins metabolism that is given a high Cascade Score by [13].
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The simulated field algorithm gathers ��Ä genes in the same cluster while EM recovers �p¿ at

best. If two clusters are merged, these numbers respectively raise to ¼�¼ and 35 genes out of

the ¾�� involved in the Vitamins Metabolism. Another pathway that is reported to be related

to sporulation is the Oxydative Phosphorilation pathway that has a high Coregulation Score in

[13]. Our method finds �½¼ genes in cluster Ä while EM groups at most �pÄ out of the Ô�� genes

involved. The detected genes are up-regulated at the second time point and are specific to ATP

synthesis. The analysis shows that cluster Ä is related to Energy metabolism (eg. Oxydative

Phosphorilation) as well as metabolisms that deal with Transcription (eg. RNA polymerase),

Translation (eg. Aminoacyl-tRNA synthetase) and Vitamins. Other pathways can be more fully

recovered using our approach and the additional graph information. As an illustration, for the

glycolysis pathway, �½¼ genes belong to the same simulated field cluster while EM groups ��¿
out of the ¼�¼ in our data set. Figure 6 shows genes assigned to simulated field cluster � that

are involved in Glycolysis. This cluster is mainly related to Carbohydrate metabolism (see Table

III).

Our method has the ability to group genes with a coordinated activity during glycolysis despite

some expression dissimilarities. This is the case for ÈAË8ºØ�_Ô�Á � ( ¹ � ÄÀ�\�M�Ã���Ã� ) and È � ËS��ÄÀ�_F
( ¹ � ���¯�M�Ã���²Á ) which have a slowly increasing expression while genes in the main way converting

glucose 6-phosphate into pyruvate (or conversely) are immediately over-expressed. As a matter of

fact the two former genes are not assigned to the same cluster as the others when using standard

EM. The glycolysis example suggests that, as expected, our method outperforms traditional

clustering methods in grouping functionally related genes into clusters even if their expression

pattern is not a sufficient clue.

To further assess the gain in using network information, we also consider an ontological

analysis approach to help with the biological interpretation of the results. We used the 1935 GO

terms available, at the time of the study, from the Gene Ontology database (see the full list and ad-

ditional information on our website http://mistis.inrialpes.fr/people/vignes/

transparentia/ieeetcbb2007.html). Two series of statistical tests are driven. The null

hypothesis always being that a GO term is not over/under-represented and the alternative being

that a GO term is over- (first series) or under-represented (second series). P-Values are computed

with False Discovery Rate (expected proportion of erroneous rejections among all rejections)

corrections, which addresses the multiple testing issue (see [2]). Moreover, dependencies between
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Fig. 6. Glycolysis pathway: colored EC numbers are in our data set. Pink ones belong to the same simulated field cluster while

green ones (numbers 5.4.2.2, 5.1.3.3, 2.3.1.12, 1.2.4.1, 1.8.1.4, 1.2.1.5) do not.
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groups are taken into account. The analysis is summarized in Table III which shows respective

P-values for over-represented GO terms in the clusters found by the simulated field and standard

EM algorithms. Note that since clustering results for simulated field and standard EM algorithms

differ, the cluster numbering corresponds to the simulated field algorithm. The last column of the

table shows the best corresponding P-Values computed among all the EM clusters. Although this

does favor EM, the results show that the simulated field approach still performs better. Under-

represented GO-terms are not listed for sake of brevity and because most of over-represented

GO terms in one cluster show under-representation in the other clusters and this with significant

P-values. The ontological analysis is consistent with the previous observations on pathways. In

addition, it suggests that our method tends to produce clusterings with more specificity than

traditional EM in the sense that GO terms that are significantly over-expressed in one cluster

are significantly under-expressed in the other clusters. This is usually true but to a much lesser

extent for clusters found by EM. The simulated field algorithm provides highly specific clusters.

The genes classified under GO term ãyä åJ������Â�Ä�Ô�� : amino-acid biosynthesis (see Table III)

are a first example. The P-Values show that the simulated field cluster (1) is highly specific

towards this function whereas the corresponding standard EM cluster is not (P-value equal to

0.3). Simulated field cluster Ô is an even more relevant example. It contains most of the sporulation

specific genes ( ãhäEå�����Á���¼DÁD¾ )listed in [7] (available on the paper website or with our data).

The test conclusion is that this cluster is specific towards the invoked function with a P-Value

at ���!¼�æ . For comparison, the best results among standard EM clusters is �À�\��Ä which does not

lead to the conclusion that this term is over-represented. Note that this is somewhat surprising

since these genes are apparently not linked by any of the association types provided in the

STRING database (http://string.embl.de). We looked for links related to databases, co-

expression, physical location on the chromosome, fusion, experiments, co-occurrence in different

genomes, etc. but only a text-mining link was detected certainly due to the fact that many of

the genes are referenced in the [7] paper. According to this paper, ÁD� among Á�¼ genes in cluster

5 take a significant part in the temporal program of yeast sporulation. This cluster does not

include however the class of metabolic genes (very quickly induced) that are mainly recovered

in another much bigger cluster. A possible interpretation is that these latter genes have a quite

different regulator.
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Simul. field GO terms Simul. field standard EM

Cluster P-value P-value

1 GO:0008652 : amino-acid biosynth. 1.6E-3 0.3

2 GO:0006006 : glucose metabolism 5.6E-8 3.3E-7

GO:0006090 : pyruvate metabolism 2.5E-5 3.4E-7

GO:0006144 : purine base metabolism 1.2E-2 0.18

GO:0015980 : energy dev. by oxid... 1.8E-2 ç
3 GO:0006261 : DNA-dep. DNA replic. 1.9E-2 1.2E-1

4 no significant GO term N.A. N.A.

5 GO:0030437 : sporulation 1.4E-2 2.6E-1

6 GO:0006360 : transcr. from RNA pol. 1.6E-2 2.5E-2

GO:0006164 : purine nucleo biosynt. 2.0E-2 6.1E-2

TABLE III

ONTOLOGICAL ANALYSIS: OVER-REPRESENTED GO CATEGORIES RELATED TO THE DIFFERENT CLUSTERS AND

CORRESPONDING P-VALUES. SIMULATED FIELD (RESP. STANDARD EM) P-VALUES ARE COMPUTED FOR SIMULATED FIELD

(RESP. STANDARD EM) CLUSTERS.

V. DISCUSSION AND CONCLUSION

Our aim was to show that Hidden Markov models could be introduced to incorporate vari-

ous types of information about biological objects (eg. genes) and in particular to account for

interactions between these objects (through biological networks for instance). We focused on the

task of classifying genes from their expression profiles and from metabolic pathways data as an

illustration. The introduction of Markov models in this context is new. They provide parametric

models where the parameters have a natural interpretation. Some of them (the
e ' ’s) can be

related to class proportions while others (matrix IB) to pair-wise interactions (see Section II-A).

In our method, parameters are estimated but tuning is also possible, for instance, to incorporate

a priori knowledge regarding class proportions or strength of interactions to put more weight

on network data. Other clustering methods are much less readable in that sense.

Preliminary results are promising. Experiments on simulated data show that our approach can

improve significantly classification rates. They also suggest that criteria based on BIC could

be used to guide the choice of the number of classes. Additional experiments on real data

(yeast) point out further interesting features of our approach. The simulated field algorithm

leads to biologically more plausible and more fully identified clusters. When compared to

clustering methods based on gene expression only (eg. EM clustering), it has the advantage
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to produce clusters associated to pathways with possible coordinated change in gene expression.

When compared with methods incorporating network data, it has the advantage to consist in

a statistically well founded approach which does not require to choose a distance or a kernel

function and allows further statistical analysis regarding additional issues such as model selection.

It is also part of the soft clustering methods that provide membership probabilities instead of

hard (usually more biased) classifications.

Future work would be to investigate this general methodology in other contexts, with applica-

tions in proteomics, using genes or proteins as central concepts through a variety of information

sources such as sequences, structures, expression patterns, position in networks, etc. Before that,

more specific analysis would be useful as regards the generalization to missing data that often

occur in biological studies. Our mean field-like framework allows such a generalization. Also, in

a variety of applications, overlapping clustering, wherein some items are allowed to be members

of two or more discovered clusters, is more appropriate. Methods have been proposed that would

worth more investigation in the context of genetic data analysis.
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