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Abstract: This report summarizes my contributions to high dimensional learning. Four re-

search topics are addressed: Unsupervised nonlinear dimension reduction, high dimensional

classification, high dimensional regression and copulas construction.

Image analysis and computer vision are two important application domains for
high dimensional data analysis and, more precisely, for dimension reduction methods.
Indeed, a M ×M grey-level image can be represented as a p−dimensional vector with
p = M2 or by a set of local descriptors. In both case, even with moderate image
sizes, one obtains data living in very high-dimensional spaces. Principal Component
Analysis (PCA) is usually an efficient tool for reducing the dimension of such data.
However, even simple transformations between images can yield strong non-linearities
in the p-dimensional space and thus strongly reduce the PCA efficiency.

To overcome this problem, we have introduced Auto-Associative models allowing
to build new nonlinear dimension reduction methods. The dataset is approximated
by a differentiable manifold generalizing PCA’s linear subspaces [1, 2, 3, 4, 5, 6, 7].
The approximation algorithm is simple: it consists in incrementing the dimension of
the manifold step by step. When the dataset is scattered into several groups, we have
proposed a parametrization of the Gaussian mixture model. It is assumed that the high-
dimensional data live in subspaces with intrinsic dimensions smaller than the dimension
of the original space and that the data of different classes live in different subspaces with
different intrinsic dimensions. New high-dimensional data classifiers are introduced on
the basis of this model in both supervised and unsupervised contexts [8, 9, 10, 11, 12,
13]. The extension to non necessarily quantitative data is investigated in [14, 15, 16]
and the application to the classification of grasslands from high resolution satellite
image time series is addressed in [17, 18]. The challenging situation of irregularly
sampled time series is tackled using multivariate Gaussian processes [19, 20]. We also
refer to [21, 22, 23] for the estimation of the intrinsic dimension of a set points.
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Another aspect of multivariate data analysis is the modeling of dependence be-
tween variables. The theory of copulas provides a relevant tool to build multivariate
probability laws, from fixed marginal distributions and required degree of dependence.
From Sklar’s Theorem, the dependence properties of a continuous multivariate distri-
bution can be entirely summarized, independently of its margins, by a copula. We
have introduced a new semiparametric family of bivariate copulas. The family is gen-
erated by a univariate function, determining the symmetry (radial symmetry, joint
symmetry) and dependence property (quadrant dependence, total positivity, ...) of the
copulas [24, 25, 26]. An extension of this family is introduced in [27]. Inference is
addressed in [28]. While there exist various families of bivariate copulas, the construc-
tion of flexible and yet tractable copulas suitable for high-dimensional applications is
much more challenging. In [29, 30, 31], we construct a class of one-factor copulas and
a family of extreme-value copulas well suited for high-dimensional applications and
exhibiting a good balance between tractability and flexibility. The inference for these
copulas is performed either by using a least-squares estimator based on dependence co-
efficients [32] or using Bayesian methods [33]. In [34], we propose a class of multivariate
copulas based on products of transformed bivariate copulas. Finally, the tail copula
is widely used to describe the dependence in the tail of multivariate distributions. In
some situations such as risk management, the dependence structure may be linked with
some covariate. The tail copula thus depends on this covariate and is referred to as
the conditional tail copula. The aim of [35] is to propose a nonparametric estimator
of the conditional tail copula and to establish its asymptotic normality. Besides, the
definition of new families of copulas thanks to a nonlinear mapping in investigated
in [36].

Finally, I developped dimension reduction methods based on SIR for high dimen-
sional regression problems [37, 38, 39, 40, 41, 42, 43, 44]. Two major issues are ad-
dressed: regularization for very high dimensional problems and sequential learning for
very large datasets. See [45] for a review and [46, 47, 48, 49] for applications in astro-
physics. Finally, a new version of the PLS method dedicated to conditional distribution
tails has been proposed in [50].
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