Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Johan Segers1 Ramon van den Akker2 Bas J.M. Werker2

1Université catholique de Louvain (BE)
Institut de statistique, biostatistique et sciences actuarielles

2Tilburg University (NL)
CentER

45e Journées de Statistique
Toulouse, May 27–31, 2013
How to recover the correlation matrix of latent Gaussian variables?

\[
\begin{pmatrix}
Z_1 \\
Z_2
\end{pmatrix} \sim N_2 \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \theta \\ \theta & 1 \end{pmatrix} \right)
\]

\[
\begin{pmatrix}
X_1 \\
X_2
\end{pmatrix} = \begin{pmatrix}
\eta_1(Z_1) \\
\eta_2(Z_2)
\end{pmatrix}
\]
Increasing transformations of a latent Gaussian vector with standard margins and unknown correlation matrix

Observables: p-variate sample X_1, \ldots, X_n

Model: X_i are iid $X = (X_1, \ldots, X_p)'$ where

$$X_j = \eta_j(Z_j), \quad j = 1, \ldots, p,$$

$$Z = (Z_1, \ldots, Z_p)' \sim N_p(0, R(\theta))$$

where

- $R(\theta)$ is a $p \times p$ correlation matrix indexed by $\theta \in \Theta \subset \mathbb{R}^k$
- p unknown strictly increasing functions $\eta_j : \mathbb{R} \to \mathbb{R}$

Contribution

Efficient inference on parameter vector θ in the presence of infinite-dimensional nuisance parameters η_1, \ldots, η_p
Solution in the bivariate case: normal scores rank correlation

Suppose $p = 2$. Normal scores rank correlation coefficient:

1. Compute component-wise ranks: for $i = 1, \ldots, n$ and $j = 1, 2$

 $$ R_{ij} = R_{ij}^{(n)} = \text{rank of } X_{ij} \text{ among } X_{1j}, \ldots, X_{nj} $$

2. Compute van der Waerden scores:

 $$ \hat{Z}_{ij} = \Phi^{-1}(R_{ij}/(n + 1)) $$

3. Compute their correlation:

 $$ \hat{\theta}_n = \frac{\frac{1}{n} \sum_{i=1}^{n} \hat{Z}_{i1} \hat{Z}_{i2}}{\frac{1}{n} \sum_{i=1}^{n} \{\Phi^{-1}(i/(n + 1))\}^2} $$

Semiparametrically efficient [KLAASSEN & WELLNER (1997)]
Higher dimensions: structured correlation matrices

Some k-dimensional models for $p \times p$ correlation matrices $R(\theta)$:

- **Full model:** if $p = 3$,

$$R(\theta) = \begin{pmatrix} 1 & \theta_{12} & \theta_{13} \\ \cdot & 1 & \theta_{23} \\ \cdot & \cdot & 1 \end{pmatrix}, \quad k = p(p - 1)/2$$

Pairwise normal scores rank correlations still efficient

[KLAASSEN & WELLNER (1997)]

- **Toeplitz matrices:** if $p = 4$:

$$R(\theta) = \begin{pmatrix} 1 & \theta_1 & \theta_2 & \theta_3 \\ \cdot & 1 & \theta_1 & \theta_2 \\ \cdot & \cdot & 1 & \theta_1 \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}, \quad k = p - 1$$

- **Exchangeable models, circular matrices, factor models, . . .**
Invariance suggests rank-based inference

Applying arbitrary increasing transformations T_1, \ldots, T_p produces

$$T(X) = (T_1(X_1), \ldots, T_p(X_p))$$

$$= (T_1 \circ \eta_1(Z_1), \ldots, T_p \circ \eta_p(Z_p)), \quad Z \sim N_p(0, R(\theta))$$

The parameter of interest, θ, remains the same.

Requirement

The estimator $\hat{\theta}_n$ is invariant w.r.t. increasing transformations: $\hat{\theta}_n(X_1, \ldots, X_n) = \hat{\theta}_n(T(X_1), \ldots, T(X_n)), \quad \text{all } T$

Therefore, the estimator $\hat{\theta}_n$ must depend on the data only through the vectors of component-wise ranks

$$\hat{\theta}_n(X_1, \ldots, X_n) = \hat{\theta}_n(R_1, \ldots, R_n),$$

$$R_i = (R_{i1}, \ldots, R_{ip})'$$
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Semiparametric Gaussian copula models

Estimators
- The infeasible MLE
- The PLE
- The one-step update estimator (new)

Asymptotics
- Asymptotic distribution
- Efficiency comparisons

Tangent space geometry
The Gaussian copula

To link up with the literature, use copulas.
Joint and marginal distributions of \(\mathbf{Z} = (Z_1, \ldots, Z_p)' \sim N_p(\mathbf{0}, R(\theta)) \):

\[
\Phi_{R(\theta)}(z_1, \ldots, z_p) = \Pr(Z_1 \leq z_1, \ldots, Z_p \leq z_p),
\]

\[
\Phi(z_j) = \Pr(Z_j \leq z_j), \quad N(0, 1)
\]

Probability integral transform:

\[
U_j = \Phi(Z_j) \sim \text{Uniform}(0, 1), \quad j = 1, \ldots, p
\]

The joint distribution of \(\mathbf{U} = (U_1, \ldots, U_j)' \) is the Gaussian copula:

\[
C_{R(\theta)}(u_1, \ldots, u_p) = \Pr(U_1 \leq u_1, \ldots, U_p \leq u_p)
\]

\[
= \Phi_{R(\theta)}(\Phi^{-1}(u_1), \ldots, \Phi^{-1}(u_p))
\]

From now on, abbreviate \(\Phi_\theta = \Phi_{R(\theta)} \) and \(C_\theta = C_{R(\theta)} \) etc.
The transformation model is a copula model

Recall $X_j = \eta_j(Z_j)$ with $Z \sim N_p(0, R(\theta))$.

Marginal distribution functions:

$$F_j(x_j) = \Pr(X_j \leq x_j) = \Pr[\eta_j(Z_j) \leq x_j] = \Phi(\eta_j^{-1}(x_j))$$

Joint distribution function:

$$F(x_1, \ldots, x_p) = \Pr(X_1 \leq x_1, \ldots, X_p \leq x_p)$$
$$= \Pr[\eta_1(Z_1) \leq x_1, \ldots, \eta_p(Z_p) \leq x_p]$$
$$= \Pr[\Phi(Z_1) \leq F_1(x_1), \ldots, \Phi(Z_p) \leq F_p(x_p)]$$
$$= C_\theta(F_1(x_1), \ldots, F_p(x_p))$$

with C_θ the Gaussian copula with correlation matrix $R(\theta)$.

Decomposition is a particular case of Sklar’s theorem.
Finite-dimensional parameter of interest, infinite-dimensional nuisance parameters

Semiparametric model:

$$(X_1, \ldots, X_p) = (\eta_1(Z_1), \ldots, \eta_p(Z_p))$$

where $Z \sim N_p(0, R(\theta))$

$$F(x_1, \ldots, x_p) = C_\theta(F_1(x_1), \ldots, F_p(x_p))$$

where C_θ is Gaussian $R(\theta)$-copula

Parameter of interest: correlation parameter $\theta \in \Theta \subset \mathbb{R}^k$ in dimension $k \leq p(p - 1)/2$

Nuisance parameters: functions η_1, \ldots, η_p or, alternatively, the margins F_1, \ldots, F_p (infinite-dimensional)
Questions

Information bound for θ?

- Minimal asymptotic variance of $\sqrt{n}(\hat{\theta}_n - \theta)$ for regular estimators?
- Compare with information bounds based on rank likelihood

 [Hoff, Niu & Wellner (2013)]

Efficient, rank-based estimators?

- Estimator achieving the minimal asymptotic variance?
- Finite-sample performance?
- Compare with pseudo-likelihood estimator [Genest, Ghoudi & Rivest (1995)]
- Efficient sieve estimator for semiparametric copula models: not rank-based [Chen, Fan & Tsyrennikov (2006)]

Information loss?

- Price to pay for not knowing the margins?
- Adaptivity?
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Semiparametric Gaussian copula models

Estimators
- The infeasible MLE
- The PLE
- The one-step update estimator (new)

Asymptotics
- Asymptotic distribution
- Efficiency comparisons

Tangent space geometry
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Semiparametric Gaussian copula models

Estimators
- The infeasible MLE
- The PLE
- The one-step update estimator (new)

Asymptotics
- Asymptotic distribution
- Efficiency comparisons

Tangent space geometry
Densities of latent and observable variables

Assumption

- \(R(\theta) \) is of full rank; put \(S(\theta) = R(\theta)^{-1} \)
- \(F_1, \ldots, F_p \) possess Lebesgue densities \(f_1, \ldots, f_p \)

1. Density of \(Z = (Z_1, \ldots, Z_p) \):

 \[
 \varphi(\theta)(z) = \frac{1}{\sqrt{(2\pi)^p \det R(\theta)}} \exp \left\{ -\frac{1}{2} z' S(\theta) z \right\}
 \]

2. Density of \(U = (\Phi(Z_1), \ldots, \Phi(Z_p))' \):

 \[
 c(u; \theta) = \frac{\varphi(\theta)(Z_1, \ldots, Z_p)}{\varphi(Z_1) \cdots \varphi(Z_p)}, \quad z_j = \Phi^{-1}(u_j)
 \]

3. Density of \(X = (F_1^{-1}(U_1), \ldots, F_p^{-1}(U_p))' \):

 \[
 f(x) = c(F_1(x_1), \ldots, F_p(x_p); \theta) f_1(x_1) \cdots f_p(x_p)
 \]
If margins were known, we could estimate the correlation parameter by maximum likelihood

If margins f_1, \ldots, f_p are known, the model is parametric in θ. Estimate θ by, for instance, maximum likelihood:

$$
\hat{\theta}_{n,\text{MLE}} = \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} \left(\log c(F_1(X_{i1}), \ldots, F_p(X_{ip}); \theta) + \sum_{j=1}^{p} \log f_j(X_{ij}) \right)
$$

Under regularity conditions on $\theta \mapsto R(\theta)$, the MLE behaves as expected, see below.
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Semiparametric Gaussian copula models

Estimators
- The infeasible MLE
- The PLE
- The one-step update estimator (new)

Asymptotics
- Asymptotic distribution
- Efficiency comparisons

Tangent space geometry
If margins are unknown, estimate them nonparametrically and pretend they are known

Pseudo-likelihood estimator for θ

1. Estimate F_j by the empirical distribution function

\[
\hat{F}_{n,j}(x_j) = \frac{1}{n+1} \sum_{i=1}^{n} \mathbf{1}(X_{ij} \leq x_j)
\]

2. Pretend these are the true margins and use MLE:

\[
\hat{\theta}_{n,PLE} = \arg \max_{\theta \in \Theta} \sum_{i=1}^{n} \log c(\hat{F}_{n,1}(X_{i1}), \ldots, \hat{F}_{n,p}(X_{ip}); \theta)
\]

- The estimator is rank-based: \(\hat{F}_{n,j}(X_{ij}) = \frac{1}{n+1} R_{ij} \)
- Pseudo-likelihood: margins are ignored
Although not necessarily efficient, the PLE works quite well in practice

- Estimation strategy applies to general copula models, but the PLE need not semiparametrically efficient
 \[\text{Genest, Ghoudi, Rivest (1995), Genest \& Werker (2002)}\]
- For multivariate Gaussian copula models, \(R(\theta) \), compare with information bound from rank likelihood:
 - For some models, the PLE is efficient, e.g. full model
 - For some other models, the PLE is not efficient, although it still performs quite well, e.g. circular model
 \[\text{Hoff, Niu \& Wellner (2013)}\]
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Semiparametric Gaussian copula models

Estimators
The infeasible MLE
The PLE
The one-step update estimator (new)

Asymptotics
Asymptotic distribution
Efficiency comparisons

Tangent space geometry
Building blocks of the estimator: some linear algebra

Linear algebra conventions:

\[l_p = p \times p \text{ identity matrix} \]

\[\nu_p = (1, \ldots, 1)' \in \mathbb{R}^p \]

\[A \circ B = (A_{ij}B_{ij})_{ij} \quad \text{elementwise product of matrices} \]

\[\text{diag}(b) = \text{diagonal matrix with diagonal } b \]

Partial derivatives of \(R(\theta) \) and \(S(\theta) = R(\theta)^{-1} \):

\[\dot{R}_m(\theta) = \partial R(\theta)/\partial \theta_m \]

\[\dot{S}_m(\theta) = \partial S(\theta)/\partial \theta_m \]
Efficient scores and their covariance matrix

Verify that the following quantities can be readily computed:

\[g_m(\theta) = -\left(I_p + R(\theta) \circ S(\theta) \right)^{-1} \left(\dot{R}_m(\theta) \circ S(\theta) \right) \nu_p \]

\[D_\theta(b) = S(\theta) \text{diag}(b) + \text{diag}(b) S(\theta) \]

\[A_m(\theta) = D_\theta(g_m(\theta)) - \dot{S}_m(\theta) \]

Efficient score function

For each component \(m = 1, \ldots, k \) of \(\theta \):

\[\ell_{\theta,m}(u; \theta) = \frac{1}{2} z' A_m(\theta) z, \quad z_j = \Phi^{-1}(u_j) \]

Efficient information matrix

For \(m, m' = 1, \ldots, k \):

\[I_{mm'}^*(\theta) = \frac{1}{2} \text{tr}\{ R(\theta) A_m(\theta) R(\theta) A_{m'}(\theta) \} \]
Description of the one-step estimator: updating an initial estimator

1. Compute $\hat{F}_{n,j}(X_{ij}) = R_{ij}/(n + 1)$ for $i = 1, \ldots, n$ and $j = 1, \ldots, p$

2. Compute an initial, rank-based estimate $\tilde{\theta}_n$
 - Should be \sqrt{n}-consistent.
 - For instance take the PLE.
 - In theory, needs to discretized to a grid in \mathbb{Z}^k of mesh $n^{-1/2}$.

3. Compute $A_m(\tilde{\theta}_m)$ for $m = 1, \ldots, k$

4. Compute $\ell_{\tilde{\theta},m}(\cdot; \tilde{\theta}_n)$ and $l_{mm'}^*(\tilde{\theta}_n)$ for $m, m' = 1, \ldots, k$

5. Compute the one-step update estimator:

$$\hat{\theta}_{n,\text{OSE}} = \tilde{\theta}_n + \frac{1}{\sqrt{n}} \sum_{i=1}^n l^*(\tilde{\theta}_n)^{-1} \ell_{\tilde{\theta}}^*(\hat{F}_{n,1}(X_{i1}), \ldots, \hat{F}_{n,p}(X_{ip}); \tilde{\theta}_n)$$
Getting some feeling for the one-step estimator

\[\hat{\theta}_{n,\text{OSE}} = \tilde{\theta}_n + \frac{1}{\sqrt{n}} \sum_{i=1}^{n} l^*(\tilde{\theta}_n)^{-1} \dot{l}_{\theta}^*(\hat{F}_{n,1}(X_{i1}), \ldots, \hat{F}_{n,p}(X_{ip}); \tilde{\theta}_n) \]

- Reminiscent of one-step update estimators in parametric models
 - The “efficient score” replaces the ordinary score function
- If initial estimator is rank-based, so is one-step estimator
- Update step is easy to implement – linear algebra only

Q: So where does it come from?
A: Tangent space calculations…

Q: Cute, but does it really work?
A: Yes!
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Semiparametric Gaussian copula models

Estimators
 The infeasible MLE
 The PLE
 The one-step update estimator (new)

Asymptotics
 Asymptotic distribution
 Efficiency comparisons

Tangent space geometry
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Semiparametric Gaussian copula models

Estimators
The infeasible MLE
The PLE
The one-step update estimator (new)

Asymptotics
Asymptotic distribution
Efficiency comparisons

Tangent space geometry
Semiparametric Gaussian copula model

Let

\[\mathcal{F}_{ac} = \{ \text{absolutely continuous distributions on } \mathbb{R} \} \]

\[P_{\theta,F_1,\ldots,F_p} = \text{law of } \boldsymbol{X} \text{ with copula } C_\theta \text{ and margins } F_1, \ldots, F_p \]

Model for one observation \(\boldsymbol{X} \):

\[\mathcal{P} = \left(P_{\theta,F_1,\ldots,F_p} \mid \theta \in \Theta, \ F_1, \ldots, F_p \in \mathcal{F}_{ac} \right), \]

Data-generating process: \(\boldsymbol{X}_1, \ldots, \boldsymbol{X}_n \) iid \(\boldsymbol{X} \).
Assumption on the correlation matrices

Suppose $\Theta \subset \mathbb{R}^k$ is open and for all $\theta \in \Theta$:

(i) The inverse $S(\theta) = R^{-1}(\theta)$ exists.

(ii) The matrices of partial derivatives $\dot{R}_m(\theta)$, for $m = 1, \ldots, k$, exist and are continuous in θ.

(iii) The matrices $\dot{R}_1(\theta), \ldots, \dot{R}_k(\theta)$ are linearly independent.

Under this assumption, the parametric model in θ with known margins in \mathcal{F}_{ac} is regular.
The one-step estimator is efficient

Theorem

Suppose there exists a rank-based estimator \(\tilde{\theta}_n \) such that

\[
\tilde{\theta}_n = \theta + O_p(1/\sqrt{n}) \quad \text{under every } P_{\theta,F_1,\ldots,F_p} \in \mathcal{P}
\]

Then for all \(F_1, \ldots, F_p \in \mathcal{F}_{ac} \) and \(\theta \in \Theta \),

\[
\sqrt{n} \left(\hat{\theta}_{n,OSE} - \theta \right) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} I^*_{-1}(\theta) \ell^{*}_{\theta}(F_1(X_{i1}), \ldots, F_p(X_{ip}); \theta) + o_P(1)
\]

\[\xrightarrow{d} N_k(0, I^*(\theta)^{-1})\]

Moreover, the one-step estimator is an efficient estimator of \(\theta \) in the semiparametric Gaussian copula model \(\mathcal{P} \).
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Semiparametric Gaussian copula models

Estimators
The infeasible MLE
The PLE
The one-step update estimator (new)

Asymptotics
Asymptotic distribution
Efficiency comparisons

Tangent space geometry
Asymptotic covariance matrices: The OSE is at least as efficient as the PLE

For the MLE for \(\theta \) if margins are known:

\[
I(\theta)^{-1} \quad \text{where} \quad I_{mm'}(\theta) = \frac{1}{2} \text{tr}\{R(\theta) \dot{S}_m(\theta) R(\theta) \dot{S}_{m'}(\theta)\}
\]

For the one-step estimator:

\[
I^*(\theta)^{-1} \geq I(\theta)^{-1}
\]

For the pseudo-likelihood estimator:

\[
\Sigma_{\text{PLE}}(\theta) \geq I^*(\theta)^{-1}
\]

Notation: \(A \succeq B \) iff \(A - B \) is positive semi-definite
Still, the PLE is often (almost) as efficient as the OSE

Asymptotic relative efficiency of pseudo-likelihood estimator: (nearly) 1

\[R(\theta) = \begin{pmatrix}
1 & \theta & \theta \\
\cdot & 1 & \theta \\
\cdot & \cdot & 1
\end{pmatrix} \]

\[R(\theta) = \begin{pmatrix}
1 & \theta & \theta^2 & \theta \\
\cdot & 1 & \theta & \theta^2 \\
\cdot & \cdot & 1 & \theta \\
\cdot & \cdot & \cdot & 1
\end{pmatrix} \]
Even when the PLE is efficient
the OSE does still a bit better in finite samples

Exchangeable model: Finite-sample variances

\[
R(\theta) = \begin{pmatrix}
1 & \theta & \theta \\
\cdot & 1 & \theta \\
\cdot & \cdot & 1
\end{pmatrix}, \quad -1/2 < \theta < 1
\]
Even when the PLE is efficient, the OSE does still a bit better in finite samples.

Exchangeable model: Finite-sample bias

\[R(\theta) = \begin{pmatrix} 1 & \theta & \theta \\ \cdot & 1 & \theta \\ \cdot & \cdot & 1 \end{pmatrix}, \quad -1/2 < \theta < 1 \]
Even when the PLE is nearly efficient the OSE does still a bit better in finite samples

Circular model: Finite-sample variances

\[
R(\theta) = \begin{pmatrix}
1 & \theta & \theta^2 & \theta \\
\cdot & 1 & \theta & \theta^2 \\
\cdot & \cdot & 1 & \theta \\
\cdot & \cdot & \cdot & 1 \\
\end{pmatrix}, \quad -1 < \theta < 1
\]
Even when the PLE is nearly efficient the OSE does still a bit better in finite samples.

Circular model: Finite-sample bias

\[R(\theta) = \begin{pmatrix} 1 & \theta & \theta^2 & \theta \\ \cdot & 1 & \theta & \theta^2 \\ \cdot & \cdot & 1 & \theta \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}, \quad -1 < \theta < 1 \]
In high dimensions, the OSE seems less biased

\[R(\theta) = \begin{pmatrix} 1 & \theta & \cdots & \cdots & \theta \\ \cdot & 1 & \theta & \cdots & \theta \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdot & \cdots & 1 \end{pmatrix} \]

\[p = 100, \quad n = 50 \]
Sometimes, the PLE is quite inefficient

Toeplitz model in $p = 4$: boxplots for $\hat{\theta}_{n,1} - \theta_1$

$$R(\theta) = \begin{pmatrix} 1 & \theta_1 & \theta_2 & \theta_3 \\ \cdot & 1 & \theta_1 & \theta_2 \\ \cdot & \cdot & 1 & \theta_1 \\ \cdot & \cdot & \cdot & 1 \end{pmatrix}$$

$\theta = (0.4945, -0.4593, -0.8462)$
Semiparametric Gaussian copula models: Geometry and efficient rank-based estimation

Semiparametric Gaussian copula models

Estimators
- The infeasible MLE
- The PLE
- The one-step update estimator (new)

Asymptotics
- Asymptotic distribution
- Efficiency comparisons

Tangent space geometry
Intermezzo: the Fréchet–Cramér–Rao inequality

Parametric model \(\{ f_\theta : \theta \in \mathbb{R} \} \), statistic \(T(X) \). Score

\[
\dot{\ell}_\theta(X) = \frac{\partial}{\partial \theta} \log f_\theta(X)
\]

By Cauchy–Schwarz:

\[
(cov_\theta \{ T(X), \dot{\ell}_\theta(X) \})^2 \leq var_\theta \{ T(X) \} \cdot \left[var_\theta \{ \dot{\ell}_\theta(X) \} \right] = I(\theta)
\]

On the other hand,

\[
cov_\theta \{ T(X), \dot{\ell}_\theta(X) \} = \ldots = \frac{\partial}{\partial \theta} \int T(x) f_\theta(x) \mu(dx) = E_\theta T(X)
\]

As a consequence, we find a lower bound for the variance of \(T(X) \):

\[
var_\theta \{ T(X) \} \geq I(\theta)^{-1} \left\{ \partial E_\theta T(X) / \partial \theta \right\}^2
\]
Efficiency via tangent spaces

- Estimation of θ in the semiparametric model is at least as hard as in a parametric submodel.
- For a parametric submodel, the inverse Fisher information gives a lower bound for the asymptotic variance of regular estimators.
- The largest such lower bound is a lower bound for the asymptotic variance of a regular estimator in the semiparametric model.
- This lower bound can be found via the geometry of tangent spaces and the theory of limits of experiments.

[Le Cam & Yang (1990), Bickel, Ritov, Klaassen & Wellner (1993), van der Vaart (1998), ...]
Tangent space of the model at a distribution:
collection of score functions of parametric submodels

Recall

\[\mathcal{F}_{ac} = \{ \text{absolutely continuous distributions on } \mathbb{R} \} \]
\[P_{\theta,F_1,...,F_p} = \text{law of } X \text{ with copula } C_\theta \text{ and margins } F_1, \ldots, F_p \]

Tangent space at \(P_{\theta,F_1,...,F_p} \in \mathcal{P} \):
collection of scores functions of local parametric submodels

\[
\frac{\partial}{\partial \eta} \log p_{\theta+\eta\alpha,F_1,\eta,...,F_p,\eta}(x) \bigg|_{\eta=0}, \quad x \in \mathbb{R}^p,
\]

- \(\eta \mapsto F_{j,\eta} \) is a path in \(\mathcal{F}_{ac} \) that passes through \(F_j \) at \(\eta = 0 \)
- \(p_{\theta+\eta\alpha,F_1,\eta,...,F_p,\eta} \) is the density of \(P_{\theta+\eta\alpha,F_1,\eta,...,F_p,\eta} \)

Local description of the model in \(L^2(P_{\theta,F_1,...,F_p}) \)
The tangent space is the sum of a parametric and a nonparametric part

Tangent space at \(P_\theta = P_{\theta, F_1, \ldots, F_p} \) for \(F_j \) Uniform(0, 1):

- **Parametric part**: only \(\theta \) changes, whereas the margins are fixed

 \[
 \text{linear span of } \ell_{\theta, m}(u; \theta) = \frac{\partial}{\partial \theta_m} \log c(u; \theta)
 \]

- **Nonparametric part**: only the margins change, whereas \(\theta \) is fixed

 \[
 \text{linear span of } h(u_j) + \ell_j(u; \theta) \int_0^{u_j} h(v) \, dv
 \]

where

- \(h \in L^2([0, 1]) \) and \(\int_0^1 h(v) \, dv = 0 \)
- \(\ell_j(u) = \frac{\partial}{\partial u_j} \log c(u; \theta) \)
The efficient score function is a projection of the parametric score function

Parametric and nonparametric scores quantify how the distribution changes if θ and the margins change.

If parametric and nonparametric scores are correlated, not knowing the margins makes identifying changes in θ harder. Otherwise: adaptivity – not knowing the margins does not matter.

Efficient score function $\dot{\ell}_\theta(u; \theta)$: orthogonal projection in $L^2(P_\theta)$ of parametric scores on the ortocomplement of the space of nonparametric scores.

Efficient information matrix $I^*(\theta)$: variance matrix of the efficient score function. Its inverse yields a lower bound for the variance of regular estimators.
For Gaussian copulas, the efficient score function can be explicitly computed.

For general copula models, computing the efficient score function amounts to a system of coupled Sturm–Liouville differential equations.

For Gaussian copula models, these equations can be solved explicitly, leading to the expression stated earlier:

\[
\dot{\ell}^*,m(u; \theta) = \frac{1}{2} z' A_m(\theta) z,
\]

where

\[
A_m(\theta) = D_\theta(g_m(\theta)) - \dot{S}_m(\theta)
\]

\[
D_\theta(b) = S(\theta) \text{ diag}(b) + \text{ diag}(b) S(\theta)
\]

\[
g_m(\theta) = - (I_p + R(\theta) \circ S(\theta))^{-1} \left(\dot{R}_m(\theta) \circ S(\theta) \right) \nu_p
\]

Whence the paper…
All relevant functions are quadratic forms

All relevant score and influence functions turn out to be centered quadratic forms in the Gaussianized observations z:

$$q_A(z) = \frac{1}{2} z' A z - \frac{1}{2} \mathbb{E}_\theta [Z' A Z]$$

Identifying q_A with A (symmetric $p \times p$) leads to an inner product for matrices that also appeared in the efficient information matrix:

$$\langle A, B \rangle_\theta = \text{cov}_\theta \{ q_A(Z), q_B(Z) \} = \frac{1}{2} \text{tr} \{ R(\theta) A R(\theta) B \}$$

Recall the efficient information matrix:

$$I_{mm'}^*(\theta) = \langle A_m(\theta), A_{m'}(\theta) \rangle_\theta$$
Quadratic forms and symmetric matrices

- Statistical interpretation of reduction to quadratic forms: least favourable submodel is Gaussian with unknown variances
 \[\text{[Hoff, Niu & Wellner (2013)]} \]

- Identification with matrices yields convenient criteria for
 - (in)efficiency of the pseudo-likelihood estimator
 - adaptivity: iff \(\text{diag}(R(\theta) \dot{S}_m(\theta)) = 0 \) for all \(m = 1, \ldots, k \)
Conclusion: efficient inference for (Gaussian) copulas

Contributions

- Inference in semiparametric Gaussian copula model with structured correlation matrices
- One-step estimator: rank-based and semiparametrically efficient
- Outperforms the popular pseudo-likelihood estimator both asymptotically and in finite samples
- Adaptivity occurs at independence and exceptionally in other cases

Next: general semiparametric copula models?

- Efficient score function and information matrix?
- One-step estimator?

Thank you!