

Estimating the genetic value of F1 apple progenies for irregular bearing during first years of tree production

<u>Jean-Baptiste Durand</u>^{1,4}, Baptiste Guitton², Jean Peyhardi^{4,6}, Yan Holtz^{3,5}, Yann Guédon^{2,3,4}, Catherine Trottier⁶, Evelyne Costes^{3,5}

Outline:

- Quantifying alternation of flowering and use in selection schemes.
- Quantification from data at tree and axis scales.
- Genetic and ontogenic effects.
- Prediction of yields and bearing behaviour.
- QTL detection
- Practical conclusions

What is alternation / biennial bearing?

At shoot scale

Return bloom versus

bourse (year t) = flowering growth unit

bourse (year t + 1)

No return bloom

bourse (year t)

vegetative growth unit (year t + 1)

bourse shoot (year t) vegetative growth unit

bourse shoot (year *t*+1) (hidden behind the leaves) bourse shoot (year t)

Cycle of floral induction

Physiological hypotheses

- In apple, floral induction (FI) for next year occurs during fruit development of the current year (Foster et al., 2003)
- Main putative causes of alternation

(Monselise and Goldschmidt, 1982)

- Carbohydrate resources: competition between « source » and « sink » organs
- Hormonal substances originating from seeds inhibit FI
 - Gibberellin
 - Auxin
 - Cytokinin

Alternation at shoot and tree scales

 Somehow related to alternation at tree scale?

Main components of orchard production

≻Number of flowers at bloom

→ Flowering regularity and return bloom

≻Fruit set

>Number and position of fruits within the canopy

→ Number of fruits per inflorescence

Alternation and agronomic issues

 Alternate and irregular bearing generates alternate and irregular incomes

- Negative impact on fruit size and quality
- Cost of fighting against alternation (thinning out):
 - manual / money (again...)
 - chemicals / environment (priceless)
- Is selection some possible way of obtaining "natural-born" regular cultivars?

Material

- F1 progenies from 'Strakrimson' x 'Granny Smith' cross (alternate v. regular bearing)
- 123 genotypes
- 2 replications per genotype
- measurements:
 - total number of inflorescences / fruits per year and per replication
 - about 20 sequences of AS (trunk, sequences along main axes or along short axes)

Some significant issues

- Annual yields subject to a trend (ontogeny)
- Quantifying regularity / alternation of yields requires detrending (models)
- Quantifying the part of genetic v. individual variability in yields
- Information lost (/ gained?) in subsamples of sequences
- Connection between alternation at whole tree and axes / AS scales?
- How do irregular bearing genotypes behave?

Usual indices for alternation

Hoblyn (1936)

• Biennial Bearing Index / BBI for yield $Y_{q,r,t}$ Wilcox (1944)

$$BBI = \frac{1}{\sum_{r} (T_{g,r} - 1)} \sum_{r} \sum_{t=2}^{T_{g,r}} \frac{\left| Y_{g,r,t} - Y_{g,r,t-1} \right|}{(Y_{g,r,t-1} + Y_{g,r,t})/2}$$

 \Rightarrow =0 for constant series, =2 for perfect alternation

$\Rightarrow BBI(T) \approx \frac{\ln T}{(T-1)}$ for affine series (not appropriate for trends)

⇒ not appropriate for noisy series (dependent on mean and variance of $Y_{g,r,t}$) Huff (2001)

Usual indices for alternation

• Number of sign changes in $Y_{g,r,2} - Y_{g,r,1}, \dots, Y_{g,r,t} - Y_{g,r,t-1}$

 \Rightarrow relative amplitudes of changes with respect to $Y_{g,r,t}$ are not considered

Index for synchronism

• Alternation synchronism

Lauri et al. (1995,1997)

Among all cases of ^{veg./fl.}
 odd vs. even years (0: balance, 1: asynchronism)
 ⇒ considers both alternation and synchronism
 (refinement in studies of alternation)

 \Rightarrow considers both alternation and synchronism!

(does not quantify alternation as such)

Indices for alternation at whole tree scale

• Trend model

Trend model

Linear mixed model, Verbeke & Molenberghs (2000)

intercept: specific part to replication (*r*, *g*) (random, statistically irrelevant here)

Parameter	β	α	$ au_{\xi}$	σ	
Estimate	43.1	90.7	20.9	160.4	
	(-108,194)	(36,145)	(13.7,24.0)	(155,168)	

(134, 172)

Residual model

Autoregressive (AR) model on the residuals (dependencies)

Pitfall of genotype AR coefficient γ_s

• The following two series would have same genotype AR coefficient

• Necessity to quantify intensity of alternation too

A BBI on residuals

Definition

BBI_res_norm =
$$\frac{\sum_{r} \sum_{t=2}^{T_{g,r}} |\hat{\varepsilon}_{g,r,t} - \hat{\varepsilon}_{g,r,t-1}| / \sum_{r} (T_{g,r} - 1)}{\sum_{r} \sum_{t=1}^{T_{g,r}} Y_{g,r,t} / \sum_{r} T_{g,r}}.$$

- Comments:
 - to quantify intensity of alternation as dispersion of yields around the trend
 - variance should work too (but slightly less efficient in QTL detection)

Examples on three genotypes

Clustering of genotypes

- Using Gaussian Mixtures : BBI_res_norm and γ_g are assumed Gaussian within each cluster.
- Their means depend on the cluster

BBI.res.norm

Clusters in space (BBI.res.norm, auto.cov)

First conclusions

 Objective criteria to assess genotype bearing behaviours

 Our models offer the possibility to predict future yields (nb flowers) and the behaviour of future genotypes

Model validation

- Reestimate the model parameters and clusters using every data except last year
- Predict yield (95% prediction interval) and clusters

Model validation: does it really work?

- True values in prediction intervals: 74%.
- Our models anticipate an increase of variance yields over years, but not sufficiently

$$\operatorname{var}(\varepsilon_t) = \rho^2 \frac{\left(1 - (\gamma_g)^{2t}\right)}{1 - \gamma_g^2}; \quad \gamma_g^2 \in [0, 1]$$

• Clustering: confusions between irregular

bearing behaviour	Cluster based on years 2005-2010 (truth)				
C		Reg.	Bien. bear.	Irreg.	
Cluster besed on users 2005	Reg.	28	0	5	
Cluster based on years 2005-	Bien. bear.	1	25	5	
2009 (prediction)	Irreg.	7	6	44	

Phenotyping at axis scale: what is at stake ?

- Our descriptors can be used for early selection of regular genotypes.
- But phenotyping the total number of inflorescences is much too costly (not realistic in practice for now).
- Descriptors have to be deduced from the sequences of AS.

Quantifying synchronism in flowering

- Rationale: *alternation at tree scale* should result from alternation at axis scale and synchronism
- *Regularity at tree scale* could result from complex configurations at axis scale
- A descriptor for synchronism at tree / genotype scale: entropy Bishop (2006)

$$Ent_{g,r} = -\sum_{t} \underbrace{\left(f_{g,r,t,0} \log f_{g,r,t,0} + f_{g,r,t,1} \log f_{g,r,t,1} \right)}_{t}$$

To average on replications Unpredictability of flowering at year t: 0 if $f_{g,r,t,0} = 0$ or 1 (perfect prediction) and maximal if $f_{g,r,t,0} = 0.5$ (just toss a coin!)

Illustration: typical values of entropy

	Genotypes		2005	2006	2007	2008	2009	Entropy
regular	g=85	Number of GUs	2	6	10	14	18	Total
		F _{g,r,t}	0.00	0.00	0.20	0.64	0.72	50
		Ent _{g,r}	0.00	0.00	0.50	0.65	0.59	0.50
biennial ——	<i>g</i> =107	Number of GUs	2	5	9	11	11	Total
		F _{g,r,t}	0.00	0.60	0.0	1.0	0.0	50
		Ent _{g,r}	0.00	0.67	0.00	0.00	0.00	0.09
irregular>	<i>g</i> =108	Number of GUs	5	9	13	15	12	Total
		F _{g,r,t}	0.00	0.22	0.15	0.53	0.00	54
		Ent _{g,r}	0.00	0.53	0.43	0.69	0.00	0.38

 $F_{q,r,t}$: frequency of flowering at AS scale

minimal values of entropy maximal values of entropy mean values of entropy

Using BBI_res_norm and γ_g on AS sequences

- Entropy can be computed from the sequences of AS
- Total number $Y_{g,r,t}^{loc}$ of inflorescences in sequences as an approximation of $Y_{g,r,t}$
- Computing BBI_res_norm and γ_g from $Y_{g,r,t}^{loc}$ yields two descriptors:

BBI_res_norm^{loc} and γ_g^{loc}

• These are approximations of

 BBI_res_norm and γ_g , respectively

Approximation of descriptors at tree scale from descriptors at AS scale

• How good are they?

	coefficient γ_g	Local BBI_res_norm	Local genotype AR coefficient γ_g^{loc}	Mean entropy	
DDI ros norm	-0.66	0.72	-0.58	-0.49	
DDI_Ies_II0IIII	(-0.75;-0.55)	(0.61;0.80)	(-0.69;-0.45)	(-0.62;-0.34)	
	1	-0.61	0.55	0.33	
γ_g	1	(-0.71;-0.49)	(0.41;0.67)	(0.16;0.48)	
Local		1	-0.63	-0.66	
BBI_res_norm		1	(-0.73;-0.51)	(-0.75;-0.54)	
Local genotype			1	0.33	
AR coefficient γ_g^{loc}			1	(0.15;0.48)	

Correlations (with confidence intervals)

• Multiple linear regressions

$$BBI_res_norm_g = \alpha_0 + \alpha_1 B_g^{loc} + \alpha_2 \gamma_g^{loc} + \varkappa_g \overline{Ent}_g + \eta_g^{(1)} \qquad R=0.74$$

$$\gamma_g = \beta_0 + \beta_1 B_g^{loc} + \beta_2 \gamma_g^{loc} + \varkappa \overline{Ent}_g + \eta_g^{(2)} \qquad R=-0.65$$

Prediction of bearing behaviour from descriptors at AS scale

• Gaussian mixture *clustering* of genotypes from

BBI _ *res* _ *norm*^{*loc*} and γ_g^{loc} (unsupervised)

• Does not take profit from the knowledge of the "true" clusters (realistic practical situation)

regular↔ biennial irregular ↔ other

Global error rate: 40%

Assessing the validity of predictions obtained from descriptors at AS scale

- Clustering: no information available at tree scale / new cross?
- Classification: use information available at tree scale / new descendants from same parents?

Global error rate: 36%

Classification: not much better than clustering here.

Graphical interpretation

- Plane where the 3 clusters have maximal separation
- Regular / biennial bearing: good separation
- Irregular genotypes are mixed between regular and biennial bearing genotypes
- NB. x-axis provides some scoring of the genotypes

FDA, Tabachnick & Fidell (2007)

1: regular

2: biennial

3: irregular

Clusters of genotypes in first FDA plane

A practical scheme for selection

- Some genotypes start exhibiting irregular or biennial bearing at some age (unknown in advance).
 - 1. Progressively suppress biennial or irregular genotypes after the first observation of a large decrease in flowering during the beginning of mature phase
 - 2. Confirm the regular fruiting behaviour of the pre-selected genotypes during stable mature phase.

Taking profit from information contained in sequences

 Between 4 and 45 sequences per genotype, containing information on alternation in flowering.

				2006	2007	2008	
D	ion		axis 1	0	0	1	
be (icat	in in in in in in in in in in	axis 2		1	1	
oty	epli	r	axis 3		0	0	
gene	Ē		axis 1	0	1	0	
00			•••				

Taking profit from information contained in sequences

 Between 4 and 45 sequences per genotype, containing information on alternation in flowering.

2nd-order Markov chain model

Markov chain as $\log \frac{P(F_{g,r,t,m,\ell}=1)}{P(F_{g,r,t,m,\ell}=0)} = \lambda + \underbrace{\mu_m + \phi_t}_{\text{fixed effects}} + \underbrace{\theta_{g,m} + \eta_{g,t} + \zeta_{g,r}}_{\text{random effects}}$

- μ_m common effect of memory m ($m \in \{00, 01, 10, 11\}$) / Markovian part
- ϕ_t common effect of year t (t $\in \{2006, 2007, 2008, 2009\}$)

 $\zeta_{\varrho,r}$

 $\boldsymbol{ heta}_{g,m}$ correction to transition probability from memory m due to genotype g

 $\eta_{g,t}$ correction to probability of flowering due to interaction year *t* x genotype *g*

correction to probability of flowering due to replication r of genotype g

Nature	Intercept	Fixed effects : memory			Fixed effects : year			Variances		
Parameter	λ	μ_{10}	μ_{01}	μ_{11}	ϕ_{2007}	ϕ_{2008}	\$\phi_{2009}\$	$\theta_{g,m}$	$\eta_{\scriptscriptstyle g,t}$	$\zeta_{g,r}$
Estimate	-1.68	2.69	0.81	1.29	0.54	2.21	0.17	0.70	1.48	0.36
p-value	1e-12	1e-16	1e-7	1e-10	0.05	1e-16	0.6	-	-	-

Behaviour at AS scale: biennial

- lowest probability to flower at year t after flowering at year t 1 ($\theta_{g,01}$ and $\theta_{g,11}$)
- lowest probability to flower in 2009 ($\eta_{g,2009}$) \rightarrow "off" year for the majority of biennial bearing genotypes
- Note that some biennial bearing genotypes have odd "on" years and even "off" years
- lowest entropy (synchronism at axis scale)

Behaviour at AS scale: regular

- highest probability to flower at year t after flowering at year t 1 ($\theta_{g,01}$ and $\theta_{g,11}$)
- highest probability to flower in 2009 ($\eta_{g,2009}$) \rightarrow "off" year
- highest entropy (asynchronism and some kind of irregularity at axis scale)

Behaviour at AS scale: irregular

- Intermediate values of descriptors at both scales $(\theta_{g,01}, \theta_{g,11}, \eta_{g,2009})$ + (BBI_res_norm, γ_g)
- Exception: high entropy (as high as for regular genotypes)
- Suggests that axes have a mixed behaviour between regular and biennial bearing (each axis, or half the axes for example?)

QTL detection: descriptors at tree scale

BBI_res_norm → 2 QTL in 2 separated genomic regions (linkage groups 1 and 8, LOD scores 6.17 and 5.27).

Trait variability explained: 17.7-20%

- Corroborates zones previously identified in Guitton et al. (2012). QTL cluster on LG1 colocating with those for inflorescence yield at year t and fruit yield at t-1.
- No QTL found for γ_{g} .

QTL detection: descriptors at AS scale

- BBI_res_norm^{loc} → 1 QTL in LG 8, LOD score
 4.32 (same LG as BBI_res_norm)
- $\gamma_g \rightarrow 2$ QTL in LG11 and LG14 (LOD scores 7.24 and 4.55). Unreported zones for flowering. Trait variability explained: 22.5% and 13.5%
- $\theta_{g,01} \rightarrow 2$ QTL in LG1 and LG8 (same LG as BBI_res_norm)
- $\theta_{g,00} \rightarrow 2$ QTL in LG10 and LG13 (precocity)
- No QTL found for entropy, $\theta_{g,10}$, $\theta_{g,11}$.

Summary of main results

- New descriptors at two scales to characterize alternation (relevance for other species).
- Possible selection strategy from subsamples, with elimination of biennial and some irregular bearing genotypes.
- Interpretation of regularity and irregularity as the result of behaviour at axis scale.
- Confirmation of the role of some genomic loci.
- New genomic loci (to be investigated, more genotypes...)

Current work and perspectives for future research

- Possibility of using local descriptors on new progenies (Y. Holtz's Master Thesis, PhD and projects in AFEF team)
- Investigate the two physiological hypotheses on alternation (competition? hormones?)
- Connection between branching and desynchronisation? (P. Fernique's PhD, VP team)

Relation between biennial bearing and tree architecture

- » Type I and II: high tendency to biennial bearing
- » Type III and IV: low tendency to biennial bearing
- » Architecture traits:
 - » Internode length
 - » Branching intensity
 - » Extinction rate (Lauri et al, 1995 et 1997)

Literature cited

- **Bishop CM. 2006**. Pattern Recognition and Machine Learning. Springer Verlag, 2006.
- **Cilas C, Montagnon C, Bar-Hen A**. **2011**. Yield stability in clones of *Coffea canephora* in the short and medium term: longitudinal data analyses and measures of stability over time. *Tree Genetics & Genomes* **7**: 421-429.
- Foster T, Johnston R, Seleznyova A. 2003. A Morphological and Quantitative Characterization of Early Floral Development in Apple (*Malus × domestica* Borkh.). The Annals of Botany **92**(2): 199-206.
- Guitton B, Kelner J-J, Velasco R, Gardiner SE, Chagné D, Costes E. 2012. Genetic control of biennial bearing in apple. *Journal of Experimental Botany* 63: 131-149.
- Hoblyn TN, Grubb NH, Painter AC, Wates BL. 1936. Studies in biennial bearing. International Journal of Pomology and Horticultural Science 14: 39-76.
- Huff A. 2001. A significance test for biennial bearing using data resampling. *Journal of Horticultural Science & Biotechnology* 76: 534-535.

- Lauri P-É, Térouanne E, Lespinasse J-M. 1997. Relationship between the early development of apple fruiting branches and the regularity of bearing - An approach to the strategies of various cultivars. *Journal of Horticultural Science* 72: 519-530.
- Lauri P-É, Térouanne E, Lespinasse J-M, Regnard J-L, Kelner J-J. 1995. Genotypic differences in the axillary bud growth and fruiting pattern of apple fruiting branches over several years - an approach to regulation of fruit bearing. *Scientia Horticulturae* **64**: 265-281.
- McLachlan GJ, Peel D. 2000. *Finite Mixture Models*. New York, Wiley
- Monselise SP, Goldschmidt EE. 1982. Alternate bearing in fruit trees. *Horticultural Reviews* 4: 128-173.
- **Tabachnick B, Fidell L**. **2007**. *Using multivariate statistics*. New York, USA: Harper and Row Publishers.
- Verbeke G, Molenberghs G. 2000. Linear mixed models for longitudinal data. New York, USA: Springer.
- Wilcox J. 1944. Some factors affecting apple yields in the Okanagan Valley: tree size, tree vigor, biennial bearing, and distance of planting. *Scientific Agriculture* 25: 189.

Bonus

Physiological hypotheses

- In apple, floral induction (FI) for next year occurs during fruit development of the current year (Foster et al., 2003)
- Main putative causes of alternation

(Monselise and Goldschmidt, 1982)

- Carbohydrate resources: competition between « source » and « sink » organs
- Hormonal substances originating from seeds inhibit FI
 - Gibberellin
 - Auxin
 - Cytokinin

Mutations in flowering genes may induce different sensibility to hormonal signals and different regulatory networks leading to FI

- Flowering integrator genes
- Meristem identity genes

QTL detection: descriptors at AS scale (1)

- BBI_res_norm^{loc} → 1 QTL in LG 8, LOD scores
 4.32 (same LG as BBI_res_norm)
- γ_g → 2 QTL in LG11 and LG14 (LOD scores 7.24 and 4.55). Unreported zones for flowering.
 Trait variability explained: 22.5% and 13.5%

QTL detection: descriptors at AS scale (2)

- $\theta_{g,01} \rightarrow 2$ QTL in LG1 and LG8 (same LG as BBI_res_norm).
- $\theta_{g,00} \rightarrow 2$ QTL in LG10 and LG13 (precocity). LOD scores 8.46 and 4.66).
- No QTL found for entropy.