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Abstract. Quantifying dependence is a central theme in probabilistic and statistical methods for multivariate

extreme values. Two situations are possible: one where, in a limiting sense, the extremes are dependent; the other

where, in the same sense, the extremes are independent. This paper comprises an overview of the principal issues

through a uni®ed approach which encompasses both these situations. Novel diagnostic measures for dependence

are also developed which provide complementary information about different aspects of extremal dependence.

The paper is written in an elementary style, with the methodology illustrated by application to theoretical

examples and typical data-sets. These data-sets and the S-plus functions used for the analyses are available online.

Key words. asymptotic independence, bivariate extreme value distribution, copula, point processes

1. Introduction

Extreme value analyses are frequently applied in the context of modeling environmental

data, for which the phenomenon of dependence is often intrinsic. Dependence occurs, for

example, when different processes under study have a stochastic behavior that is linked,

say, to common meteorological conditions. Dependence may also arise when a single

process is studied at different spatial locations or studied in terms of its temporal evolution.

For example, the sea-level is a combination of still-water level and waves, with both

processes being driven by regional meteorology. Flooding occurs at any particular location

when the combined still-water level and waves exceed a critical level. Whilst short-term

breaches of coastal defences are likely to be sustainable, persistence in high levels of the

process may cause severe damage. Furthermore, strong spatial dependence will lead to

such conditions occurring simultaneously along entire coastal stretches, thus creating the

potential for widespread regional damage. The total risk assessment therefore depends on

whether the still-water level and wave processes arise independently or not, and the

degrees of spatial and temporal dependence of each process. Similar environmental

examples occur in applications to climatology, hydrology and pollution control. Examples

from other ®elds are less common, though multivariate extreme value methods have been

used for the analysis of reliability, ®nance and athletics data.

Our objective is the development of measures of extremal dependence for bivariate

random variables �X;Y�. Assuming, for the moment, that the marginal distributions of X
and Y are identical, one natural measure is



w � lim
z?z�

Pr�Y4zjX4z�; �1:1�

where z* is the upper limit of the support of the common marginal distribution. Loosely

stated, w is the probability of one variable being extreme given that the other is extreme. In

the case w � 0 the variables are said to be asymptotically independent. The importance of

this class was recognized as far back as Geffroy (1958/59), Sibuya (1960), Tiago de

Oliveira (1962/63) and Mardia (1964). Moreover, empirical analysis of real data often

leads to estimates of w � 0. Despite this, standard methodology for multivariate extremes

is based on distributions for which either w40, or the special case of exact independence,

for which w � 0, suggesting a limitation in the applicability of standard methods. Applying

models for which w40 to asymptotically independent data leads to the over-estimation of

probabilities of extreme joint events, since there is a mis-placed assumption that the most

extreme marginal events may occur simultaneously.

Statistical models for the general class of distributions having w � 0 have been

developed only comparatively recently (Ledford and Tawn, 1996, 1997; Bruun and Tawn,

1998; Bortot and Tawn, 1998). Although all members of this class are asymptotically

independent, at ®nite levels quite different degrees of dependence are attainable. Thus, we

de®ne a new quantity, �w, which gives a suitable measure of extremal dependence within

the class, and develop associated diagnostics for estimation. We also establish the

connections between w and �w, and standard models for multivariate extreme values. For

ease of exposition, the development throughout is limited to bivariate vectors, but the

de®nitions and techniques extend naturally to vectors of arbitrary dimension.

The paper is structured in the following way. In Section 2 we introduce three data-sets

that are used throughout the paper to illustrate the various principles and procedures. These

examples demonstrate a range of contexts in which extremal dependence may arise in

practice, and also illustrate quite different forms of extremal behavior. In Section 3 we

derive, from elementary arguments, two fundamental measures of extremal dependence,

and develop non-parametric diagnostic procedures for estimating each. One of these

measures is linked to an established measure, but the second, obtained as a dual of the ®rst,

is novel. We argue that the complete pair of measures should be considered when

summarizing extremal dependence. In Section 4 we relate the extremal dependence

summaries to standard models and procedures for extreme value inference, showing that

these measures should be an integral part of diagnostic and inference procedures. In Section

5, we discuss connections between the present work and general models for multivariate

extremes. Access to the data, the S-plus functions used in the analyses in this paper and

information on their use is available online at URL: http://www.math.lancs.ac.uk./~coless.

2. Dependence in extreme value data

In this section, we introduce three data-sets which are used for illustration throughout the

paper. Respectively, the data-sets give examples of situations in which dependence at

extreme levels is a consequence of proximity in space, proximity in time and dependence

on a common covariate.
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2.1. Oxford and Worthing temperature series

Figure 1 plots the annual maximum temperatures at Oxford and Worthing, both in southern

England, for the period 1901±1980. The plot shows the data after the addition of a small

amount of noise to reduce the effect of the data being rounded to the nearest degree

Fahrenheit. The data demonstrate an apparent tendency for large maxima at one location to

coincide with large maxima at the other, though this interpretation requires some care

since the values themselves may not have arisen simultaneously. Nonetheless, the apparent

dependence in the data suggests that spatial cohesion in the temperature process induces

dependence in the series across locations. Thus, the probability of both locations

experiencing a particularly high annual maximum is greater than would be expected in the

case of independence; the extent to which this is so requires a measure of extremal

dependence. Smith (1990) considered this issue and also examined the marginal

distributions, which are found to be similar apart from a 5�F shift due to the cooler climate

of Worthing which is coastal.

2.2. Rainfall time series

Figure 2 shows a 54-year time series, and associated empirical marginal distribution, of

daily rainfall aggregates recorded at a single location in the south-west of England. The

marginal extremal properties of these data were studied by Coles and Tawn (1996) and

their temporal structure by Coles (1994). Persistence in meteorological conditions is likely

to induce short term dependence in such series, and if such a phenomenon were to manifest

itself at the most extreme levels, then ¯ooding would be likely as a consequence of rainfall

aggregation through time. As the rainfall distribution is long-tailed, even slight

dependence could lead to substantially greater estimates of ¯ood levels than those

Figure 1. Oxford and Worthing annual maximum temperatures measured in degrees Fahrenheit.
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obtained under the assumption of independence. From Figure 3, which shows pairs of

lagged values in the series, there is little apparent evidence for the most extreme levels of

rainfall to occur on consecutive days. Again, though, this needs to be veri®ed through a

more formal analysis.

2.3. Wave±surge levels

Figure 4 shows a ®ltered series of 3-hourly measurements of the surge and wave heights at

Newlyn, a coastal town in the south-west of England. The surge variable is the

meteorologically-induced non-tidal component of the still-water level of the sea. Hence,

both the surge and wave processes are driven by common meteorological conditions and

dependence at extreme levels is likely. This phenomenon seems to be borne out by Figure

4. The motivation for the study of such data is that ¯ooding is likely under the combined

conditions of extreme surges and wave heights, though the precise combination may be

rather complex. Thus, the immediate issue of quantifying the dependence between

constituent variables is supplemented by the need to understand the effect of such

dependence on the behavior of speci®ed variable combinations. Further details and

analyses of these particular data are given by Coles and Tawn (1994) and Bortot et al.

(2000).

Figure 2. Time series and histogram of daily rainfall aggregates. The data are recorded in tenths of

millimeters.
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Figure 3. Scatter plot of successive values, i.e. �Xi;Xi� 1� for i � 1; . . . ; nÿ 1, in the rainfall series. The

horizontal and vertical lines show the marginal threshold level, u � 300 suggested by univariate extreme

value methods.

Figure 4. Newlyn: offshore wave heights and surge levels. Both variables are measured in meters.

DEPENDENCE MEASURES 343



3. Measures of extremal dependence

3.1. The copula function

For any random vector, �X;Y�, the distribution function F�x; y� � Pr�X � x; Y � y�
comprises a complete description of dependence between X and Y. The in¯uence of

marginal aspects can also be removed by observing that, subject to continuity conditions,

there is a unique function C� ? ; ? � with domain a � �0; 1�6�0; 1� such that

F�x; y� � CfFX�x�;FY�y�g;

where FX and FY are the marginal distribution functions given by

FX�x� � F�x;?� and FY�y� � F�?; y�:

The function C is the copula; it contains complete information about the joint distribution of

X and Y apart from the marginal distributions. In this sense, C describes association between

X and Y in a form that is invariant to marginal transformation. Put differently, C is the joint

distribution function of X and Yafter transformation to variables U and V, with Uniform �0;1�
margins, via �U;V� � fFX�X�;FY�Y�g. For more details see Nelsen (1998) and Joe

(1997).

For standard distributions the copula is easily evaluated as in the following examples:

Independence. In this case F�x; y� � FX�x�FY�y�, so C�u; v� � uv on a.

Perfect dependence. In this case Y � Fÿ1
Y fFX�X�g with probability 1, so

F�x; y� � minfFX�x�;FY�y�g and C�u; v� � min�u; v� on a.

Bivariate logistic extreme value distribution. As we will see in Section 4.3, this family

is one member of the class of bivariate extreme value distributions, which arise as the class

of non-degenerate limit distributions for componentwise maxima. The family has

generalized extreme value distributions for FX and FY , and copula

C�u; v� � exp�ÿf�ÿ log u�1=a � �ÿ log v�1=aga� �3:1�

on a. The parameter a [ �0; 1� determines the strength of dependence: a � 1 gives

independence; decreasing a leads to increased dependence with perfect dependence

arising in the limit as a?0.

Gaussian dependence model. If �X;Y� have a bivariate Normal distribution with

correlation coef®cient r, then FX and FY are the distribution functions of Normal random

variables, and
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C�u; v� �
Z Fÿ1�u�

ÿ?

Z Fÿ1�v�

ÿ?

1

2p�1ÿ r2�1=2
exp ÿ 1

2�1ÿ r2� �s
2 ÿ 2rst� t2�

� �
ds dt

on a, where F� ? � is the univariate standard Normal distribution function.

These four families of distributions are used as examples throughout the paper. The

copulas for many other families of distributions are listed by Joe (1997) and Currie (1999).

3.2. Exploratory data analysis

For statistical applications it is often helpful to summarize dependence, both informally

and formally, from observed data. With independent observations �xi; yi�; i � 1; . . . ; n
from an unknown distribution F, it is natural to transform to Uniform marginals, leading to

realizations from the associated copula C. Since the marginals of F are unknown, estimates

F̂X and F̂Y must be used; for example, the marginal empirical distribution functions. Then

the pairs �ui; vi�; i � 1; . . . ; n, where

ui � F̂X�xi� and vi � F̂Y�yi�

are independent realizations with approximate distribution C. An informal picture of

extremal dependence may then be obtained by examining the large values of ui and vi.

Plots of �ui; vi� for each of the three data-sets discussed in Section 2 are shown in Figure

5. On these scales the conclusions drawn previously are broadly re-enforced: strong

extremal dependence for the temperature data, little evidence for extremal dependence in

the rainfall series, and weak but evident extremal dependence for the oceanographic data.

The apparent non-uniformity in the marginal behavior of the rainfall data is a consequence

of the large number of ties caused by observations of zero rainfall; the plot also suffers

from severe discretization of the data. For the wave-surge data the increased density of

points close to (1,1) now suggests much more clearly a tendency for the most extreme

levels to be associated. Furthermore, the reasonably uniform scatter elsewhere in a
suggests the variables are nearly independent for non-extreme values.

Figure 5. Data sets transformed to have uniform marginal distributions: (a) temperatures, (b) rainfalls, (c)

waves and surge levels.
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3.3. Summarizing dependence

For both interpretation and inference it is often useful to reduce the information contained

in the copula, C, either to a one-dimensional function, or even a single parameter. We

examine two elementary measures, w and �w, which provide measures of different aspects of

extremal dependence. We argue that both measures are needed in order to obtain a

summary that is informative for variables which may be either asymptotically independent

or asymptotically dependent.

3.3.1. Dependence measure w. One natural summary of extremal dependence is the

coef®cient w in equation (1.1). This is generalized to the case of non-identically

distributed pairs �X;Y� by transformation to Uniform margins �U;V� and setting

w � lim
u?1

Pr�V4ujU4u�:

It is more convenient, however, to obtain w as the limit of an alternative, asymptotically

equivalent, function. Observe that:

Pr�V4ujU4u� � Pr�U4u;V4u�
Pr�U4u�

� 1ÿ 2u� C�u; u�
1ÿ u

� 2ÿ 1ÿ C�u; u�
1ÿ u

*2ÿ log C�u; u�
log u

as u?1. Hence, de®ning

w�u� � 2ÿ log Pr�U5u;V5u�
log Pr�U5u� for 0 � u � 1; �3:2�

it follows that

w � lim
u?1

w�u�: �3:3�

More than just providing the limit w, the function w�u� can also be interpreted as a quantile-

dependent measure of dependence. In particular, the sign of w�u� determines whether the

variables are positively or negatively associated at the quantile level u, with bounds

2ÿ log�2uÿ 1�� log�u� � w�u� � 1;

where the lower bound is interpreted as ÿ? for u � 1
�

2, and 0 for u � 1.
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It is instructive to determine w�u� for each of the earlier models. For independent

variables w�u� � 0; for perfect dependence w�u� � 1; and for the bivariate logistic extreme

value distribution w�u� � 2ÿ 2a. In each of these three cases w�u� is constant in u, which

turns out to be the case for any distribution falling in the class of bivariate extreme value

distributions (see Section 4.3). This explains the advantage of the w�u� formulation:

assessment of the constancy of empirical estimates of w�u� provides a diagnostic check for

membership of the bivariate extreme value class.

More generally, w�u� is a non-trivial function of u. For example, in the case of the

Gaussian dependence model, w�u� is an integral expression that depends on u and which

requires numerical evaluation. It is plotted in Figure 6 for a range of values of the

correlation coef®cient, r. For all values of u, stronger dependence, as measured by w�u�, is

obtained by increasing r. For intermediate values of u, w�u� is reasonably linear with

distinctly different values for all r. However, as u?1, the effect of dependence is

diminished, with w�u�?0 for all r51. For r40 the convergence is very slow, and

ultimately abrupt; hence, w�u� is considerably greater than zero for u close to 1. This has

practical implications since estimates of this measure will be derived from empirical

observations for which u51. Thus, estimates of w�u� may appear constant and positive,

even for asymptotically independent variables.

3.3.2. Dependence measure �w. Recent research has highlighted the importance of

the class of asymptotically independent distributions in multivariate extreme value

modeling. By de®nition, w � 0 within this class, so the measure w is unable to provide

information on relative strength of dependence for such models. To overcome these

limitations we de®ne a second dependence measure. Denoting the joint survivor

Figure 6. The dependence measure w�u� for the Gaussian dependence model: the curves shown (bottom to

top) correspond to r � ÿ 0:9;ÿ 0:8; . . . ; 0:9. The upper and lower bounds on w�u� are shown as dashed lines.
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function Pr�X4x; Y4y� by �F�x; y�, we may write

�F�x; y� � 1ÿ FX�x� ÿ FY�y� � F�x; y�
� �CfFX�x�;FY�y�g; �3:4�

where

�C�u; v� � 1ÿ uÿ v� C�u; v�:

Now, by analogy with (3.2) and (3.3), we de®ne

�w�u� � 2 log Pr�U4u�
log Pr�U4u;V4u� ÿ 1 � 2 log�1ÿ u�

log �C�u; u� ÿ 1 for 0 � u � 1;

where ÿ 15�w�u� � 1 for all 0 � u � 1; the precise de®nition is chosen for scaling

convenience. To focus on extremal characteristics, analogous to (3.3), we also de®ne

�w � lim
u?1

�w�u�;

for which ÿ 15�w � 1.

For asymptotically dependent variables �w � 1: the examples of perfect dependence and

the bivariate logistic extreme value distribution are easily seen to satisfy this. The more

useful application is to asymptotically independent distributions, for which �w provides a

measure that increases with dependence strength. For example, in the case of independent

variables, �C�u; v� � �1ÿ u��1ÿ v� on a, so �w�u� � 0 identically for u [ �0; 1� and �w � 0.

For the Gaussian dependence model,

�C�u; v� �
Z ?

Fÿ 1�u�

Z ?

Fÿ 1�v�

1

2p�1ÿ r2�1=2
exp ÿ 1

2�1ÿ r2� �s
2 ÿ 2rst� t2�

� �
ds dt;

and it can be veri®ed that

�C�u; u�*crfÿ log�1ÿ u�gÿr=�1�r��1ÿ u�2=�1� r�
as u?1;

where cr � �1� r�3=2�1ÿ r�ÿ 1=2�4p�ÿ r=�1� r�
(Ledford and Tawn 1996; 2000). Thus,

�w � r , which provides a useful benchmark for interpreting the magnitude of �w in general

models.

In Figure 6 we found that the convergence of w�u�?w � 0 was very slow for the

Gaussian dependence structure. Hence, in Figure 7, we plot �w�u� for the Gaussian

dependence model to see if the limiting behavior is more apparent at sub-asymptotic

levels. Although there is a rapid change in behavior as u?1, it is clear that �w�u� is

approximately linear for u40:5 and bounded from 1. The plot also shows that estimation
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of �w for data from this distribution is likely to be biased; this is consistent with the ®ndings

of Ledford (1999). Furthermore, by comparison with Figure 6, it is much easier to identify

from �w�u� whether the variables are asymptotically independent than from w�u�.
In summary, w is on the scale �0; 1�, with the set �0; 1� corresponding to asymptotic

dependence, and the measure �w falls within the range � ÿ 1; 1�, with the set � ÿ 1; 1�
corresponding to asymptotic independence. Thus the complete pair �w; �w� is required as a

summary of extremal dependence: �w40; �w � 1� signi®es asymptotic dependence, in

which case the value of w determines a measure of strength of dependence within the class;

alternatively, �w � 0; �w51� signi®es asymptotic independence, in which case the value of
�w determines the strength of dependence within this class.

3.4. Data examples

Simple empirical estimates of the functions w�u� and �w�u� can be constructed on the basis

of observed data by using the empirical estimate of C�u; u�. Analyzing the behavior of

these as u?1 leads to an informal picture of extremal dependence. The con®dence

intervals for these estimates of w�u� and �w�u� are constructed assuming independence of

the observations, that each marginal distribution is estimated exactly by its empirical

distribution function, and that the sampling distribution of a proportion is well-

approximated by its asymptotic distribution. The construction of the con®dence interval

uses the delta method. For inference purposes assuming the data are independent appears

Figure 7. The dependence measure �w�u� for the Gaussian dependence model: the curves shown (bottom to

top) correspond to r � ÿ 0:9;ÿ 0:8; . . . ; 0:9. The upper and lower bounds on �w�u� are shown as dashed lines.
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to be a reasonable assumption for these data, even for the rainfall pairs since the temporal

dependence is weak. Ignoring dependence leads to under-estimation of the con®dence

interval width. As the uncertainty in the marginal distribution is ignored, the intervals will

be too narrow, although due to the approximate orthogonality of marginal and dependence

features this under-estimation also should be slight. Furthermore, since the estimate of

C�u; u� is not normally distributed for u near 0 or 1, care is taken not to draw too strong

conclusions from these intervals. For the three data-sets described previously,

corresponding plots of estimates and con®dence intervals are shown in Figures 8±10.

For the temperature data it appears that w�u�&0:5 for all u, although the pointwise

con®dence intervals cover the full range of possible values for w, so the conclusions are

only tentative. The value of �w � 1 also seems plausible as a limit of �w�u�. As the data are

componentwise annual maxima, it is expected that a bivariate extreme value distribution,

such as the logistic model, may be appropriate. In fact, the patterns of w�u� and �w�u� are

consistent with the bivariate logistic extreme value distribution with a&0:6.

For the successive values of the rainfall series there is some evidence of dependence

since w�u�40 for u51. The behavior of the graphs of Figure 9 for u50:5 is explained by

the large number of zeroes in the data. The series appears to be asymptotically independent

as w � 0 and �w51. However, as �w seems slightly greater than zero, the evidence supports

some dependence in the series at extreme levels.

The exploratory diagnostics employed here do not offer such clear conclusions about

the wave-surge data. For low values of u, w�u�50, indicating slight negative dependence,

but for large u it appears that w�u�&0:3, a feature consistent with an asymptotically

dependent distribution that is not itself a bivariate extreme value distribution. However, it

seems that 05�w51, which contradicts the conclusion of asymptotic dependence. Thus,

from such an informal analysis, it is dif®cult to decide between asymptotic dependence

and asymptotic independence for these data.

Figure 8. The dependence measures (a) w�u� and (b) �w�u� for the temperature data. The dotted and solid lines

show the estimate and 95% pointwise con®dence intervals respectively. The values w�u� � 0 and 1 and

�w�u� � ÿ 1 and 1 are shown as dashed lines for reference.
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4. Extremal dependence: theory and models

Having obtained natural measures of extremal dependence that are limiting values of

simple dependence functions, we now establish the connection between these measures

and standard models for bivariate extremes. In particular, we consider the roles of the

parameters w and �w in the context of exploratory and formal inference for extreme value

models. Essentially, there are two classes of models: models for componentwise block

maxima, in which the raw data are themselves extreme values; and threshold methods, in

which a complete series of data is available, and extreme value models are used to

characterize the series above high marginal thresholds only. We consider each class

separately in Sections 4.3 and 4.4 respectively.

Figure 9. The dependence measures (a) w�u� and (b) �w�u� for the rainfall data. The dotted and solid lines

show the estimate and 95% pointwise con®dence intervals respectively. The values w�u� � 0 and 1 and

�w�u� � ÿ 1 and 1 are shown as dashed lines for reference.

Figure 10. The dependence measures (a) w�u� and (b) �w�u� for the wave and surge level data. The dotted and

solid lines show the estimate and 95% pointwise con®dence intervals respectively. The values w�u� � 0 and 1

and �w�u� � ÿ 1 and 1 are shown as dashed lines for reference.
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As in earlier sections it is convenient to dis-entangle dependence and marginal aspects.

In practice data may again be transformed marginally to have standard distributions, using

empirical, parametric or semi-parametric methods, prior to a study of dependence. There

may be some gain in estimation ef®ciency by combining the marginal and dependence

estimation into one inferential step, but for presentation it is convenient to assume that data

have already been transformed to a standard form. Furthermore, since our dependence

measures are marginally invariant, there is no loss of generality in imposing a ®xed

marginal scale. In contrast to the earlier sections in which uniform margins were used, it is

now convenient to assume a standard FreÂchet marginal scale, so that X and Y each have

distribution function F�z� � exp�ÿ 1=z� for z40, leading to Pr�X4z� � Pr�Y4z�*zÿ 1

as z??.

4.1. Links with w and �w

With �X;Y� having FreÂchet marginal distributions it follows from Section 3.3.1 that

w � lim
z??

PrfY4z jX4zg:

There are also a variety of alternative summaries of asymptotic dependence; see de Haan

(1985), Tawn (1988) and Weintraub (1991). Since each is implicitly related to w however,

it follows that each has the same limitation in being identical across the class of

asymptotically independent distributions.

It is less well-known that �w also arises in connection with asymptotic models for �X;Y�.
In particular Ledford and Tawn (1996, 1997, 1998), de Haan and de Ronde (1998) and

Peng (1999) each demonstrate that, under broad conditions, the joint survivor function of

an arbitrary random pair �X;Y�, with unit FreÂchet marginal distributions, satis®es the

asymptotic condition

PrfX4z; Y4zg*l�z�fPr�X4z�g1=Z
for large z; �4:1�

where l�z� is a slowly varying function as z?? and Z, the coef®cient of tail dependence,

lies in the range �0;1�. It follows from (4.1) and (3.4) that

�C�u; u�*lf�1ÿ u�ÿ 1g�1ÿ u�1=Z as u?1:

Hence,

�w�u�* 2 log�1ÿ u�
floglf�1ÿ u�ÿ 1g � 1

Z log�1ÿ u�g ÿ 1?2Zÿ 1; as u?1;
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and so �w � 2Zÿ 1. Furthermore, if Z � 1 and l�z�?c as z??, with 05c � 1, then

�w � c; �w � 1�, and the variables are asymptotically dependent of degree c.

The work of Ledford and Tawn identi®ed the parameter Z as pivotal in characterizing

extremal dependence. By relating Z to �w we have shown in this paper that the dependence

parameter for asymptotically independent variables can also be motivated by the same

elementary considerations that were used to obtain w.

4.2. Parametric inference for w and �w

Section 3 described informal graphical methods for determining whether data are

asymptotically independent or asymptotically dependent. We now develop formal

assessment procedures for this, based on ideas in Ledford and Tawn (1996).

Let T � min�X; Y�. Then from the joint tail condition (4.1),

Pr�T4z� � PrfX4z; Y4zg*l�z�zÿ1=Z as z??: �4:2�

Hence, Z is the shape parameter of the univariate variable T, and standard univariate

extreme value techniques applied to the variable T lead to inferences on Z (or equivalently
�w � 2Zÿ 1) and hence on the asymptotic status of dependence in the pair �X;Y�. Possible

standard estimators to use for shape parameter estimation are threshold-based likelihood

estimators (Davison and Smith, 1990) and the semi-parametric estimators of Dekkers et al.

(1989). Since simulation studies indicate similar performance across such estimators, we

base our analyses on likelihood methods in the subsequent presentation.

It is also clear from equation (4.2) that the parameter w may be estimated as the scale

parameter of the univariate variable T, subject to ®xing Z � 1 and setting l�z� � w for

large z. However, with this choice, (4.2) is only correct to ®rst order, so the procedure is

inappropriate for asymptotically independent variables, since then w � 0 and it is the

second-order term which is dominant. Hence, both �w and w should be considered together,

with the estimate of w being valuable only when the estimate of �w is not signi®cantly less

than 1. Consequently, an appropriate way to test w � 0 against w40 is through a test of
�w51 against �w � 1. This can easily be performed using a generalized likelihood ratio test

based on tail model (4.2).

Inference for w and �w above, and for the parametric dependence models in the following

sections, is based on standard likelihood methods. Consequently, the standard errors

quoted are based on the asymptotic normality of maximum likelihood estimators.

However, the uncertainty this measures only re¯ects the assumptions made in constructing

the likelihood function. Here we assume that observations are independent and that each

marginal distribution is estimated exactly by its empirical distribution function. These

assumptions, discussed in Section 3.4, together with the assumption that the parametric

speci®cation of the model is correct, are each likely to lead to a slight under-estimation of

the true uncertainty of the estimates of dependence features.

The procedure for subsequent analysis now depends on whether the data are
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componentwise block maxima or a complete series: these are considered separately in

Sections 4.3 and 4.4.

4.3. Modeling componentwise block maxima

This methodology is appropriate when, for example, only the annual maxima of a process

recorded at, say, two locations are available. The Oxford and Worthing temperature data

are of precisely this form. Asymptotic models for such data are derived using arguments

analogous to the classical univariate result. Thus, if �X1; Y1�; �X2; Y2�; . . . ; �Xn; Yn� is an

independent and identically distributed series of random vectors with standard FreÂchet

margins, let

MX;n � maxfX1; . . . ;Xng and MY;n � maxfY1; . . . ; Yng;

and de®ne the vector of componentwise maximum by Mn � fMX;n;MY;ng. Then, as

n??, subject to weak regularity conditions, the limiting distribution of the normalized

vector nÿ1Mn has distribution function within the bivariate extreme value class. That is,

Pr�MX;n

�
n � x;MY;n

�
n � y� � fF�nx; ny�gn?G�x; y� as n??;

with

G�x; y� � expfÿV�x; y�g; �4:3�

where

V�x; y� �
Z 1

0

max
w

x
;
1ÿ w

y

� �
2dH�w� �4:4�

for some distribution function H on the interval �0; 1� satisfying the moment constraint

Z 1

0

wdH�w� � 1=2: �4:5�

Thus, either of the functions V or H determine dependence in this limiting representation.

If H�w� has a density function h�w� then

h
x

x� y

� �
� ÿ�x� y�3

2

q2V�x; y�
qxqy

;

so it is straightforward to move between V and H in the bivariate case. Coles and Tawn
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(1991) give the equivalent relationship in the multivariate case and when H has atoms of

mass on its boundaries.

Using the property that V must be homogeneous of order ÿ 1, it is easy to establish

that, except for the special case of independence, all bivariate extreme value

distributions are asymptotically dependent, and that therefore �w � 1 for the entire

family. Furthermore,

w � 2ÿ V�1; 1�;

or equivalently,

w � 2

Z 1

0

min�w; 1ÿ w�dH�w�;

so that w is a single parameter summary of either V or H. For example, the results stated

previously for the bivariate logistic extreme value distribution are a special case of this

result, with

Va�x; y� � �xÿ 1=a � yÿ 1=a�a; �4:6�
Ha�w� �

1

2
fw�1ÿ a�=a ÿ �1ÿ w��1ÿ a�=agfw1=a � �1ÿ w�1=agaÿ 1 � 1
h i

; �4:7�

where 05a51. Thus, Va�1; 1� � 2a and w � 2ÿ 2a. Similarly, when a � 1, corre-

sponding to independence, V1�x; y� � xÿ1 � yÿ1 and H1 consists of half-unit mass atoms

at f0g and f1g, i.e. H1�f0g� � H1�f1g� � 1=2 and w � 0.

The usual application of limit result (4.3) is to assume that it is the exact distribution

function of marginally transformed componentwise maxima over blocks of large, but

®nite, length n. Assuming this asymptotic argument is reasonable leads either to

independence, for which w � �w � 0, or asymptotic dependence, for which �w � 1 and w40,

with larger values of w indicating stronger dependence. Thus, within this family, and for

modeling this format of data, it is w rather than �w which serves as a meaningful dependence

measure. Since w�u� is constant for any member of this family, evidence of non-constancy

in w�u� is indicative of a lack of model ®t. Moreover, in cases where the estimate of �w is

signi®cantly less than 1, this also suggests that a bivariate extreme value distribution is not

a good model. This situation may seem unlikely, but arises when �X;Y� are asymptotically

independent and n, the block size, is not suf®ciently large enough to apply the asymptotic

arguments leading to (4.3).

Both parametric and nonparametric procedures are available for model estimation. An

added complication of nonparametric procedures is that they do not necessarily provide

estimators that are consistent with the asymptotic characterization of extreme value

models (4.3); see Pickands (1981) and CapeÂraaÁ et al. (1997). Parametric modeling is more

straightforward. This consists of selecting a parametric family for V (or, equivalently, H),

and likelihood-based inference on the model parameters. The assumption of a ®nite
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parameter space means that only a sub-family of the entire class of bivariate extreme value

distributions is achievable with a parametric model, and there is some art in obtaining

models that are tractable and ¯exible, while satisfying the functional constraints. One

commonly used family is the logistic model; this has V�x; y� given by expression (4.6) and

copula (3.1). As already observed, this family spans the space of w, implying some degree

of ¯exibility, but it does have the limitation of being exchangeable for all values of a.

Other parametric models for V or H can be found in Coles and Tawn (1991, 1994) or Joe

(1990, 1994).

As an example of this methodology we consider the Oxford and Worthing annual

maximum temperature series. A 75% threshold for T leads to the maximum likelihood

estimate Ẑ � 0:980 with a standard error of 0.448. Consequently, there is no evidence to

suggest �w 6� 1, though the power of this test is extremely low. This is generally the case

with componentwise block maxima modeling: the data are too sparse to obtain strong

evidence about model validity. In this example we tentatively proceed with a bivariate

extreme value model, assuming, in particular, that the logistic model is appropriate.

Supporting evidence for this assumption is that the points in Figure 5 are reasonably

symmetric around the line u � v, consistent with the exchangeability property of the

logistic model. The maximum likelihood estimate of a is â � 0:585 with a standard error

of 0.053. This conclusion is consistent with the earlier empirical analysis: from Section

3.4, w � 2ÿ 2a, and replacing a with its estimate leads to ŵ � 0:500, a value consistent

with the plot in Figure 8. Adopting the informal interpretation of w, this corresponds to a

reasonably strong degree of dependence, even within the asymptotically-dependent class.

4.4. Threshold methods

If an entire series of vector measurements is available, rather than just block maxima, then

improvements in ef®ciency and ¯exibility can be obtained by using more general point

process characterizations of extremal behavior. As above, let �X1; Y1�; �X2; Y2�; . . . be an

independent series of realizations of the random vector �X;Y� on IR2
� with standard FreÂchet

marginal distributions. The joint tail behavior can be characterized by specifying a

sequence of point processes on IR2
�:

Pn �
Xi

n
;
Yi

n

� �
: i � 1; . . . ; n

� �
:

As n??, Pn?P on IR2
�
�f0g, where P is a Poisson process. Furthermore, the intensity

function of this limiting process has a particular structure, most easily stated on coordinate

transformation to ``radial'' and ``angular'' components:

R � �X � Y��n and W � X
��X � Y�:
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In this coordinate system the intensity function of P is given by

��dr6dw� � dr

r2
62 dH�w�; �4:8�

where H is the dependence measure of the associated componentwise block maxima

vector (cf. equation (4.4)), and must therefore satisfy the functional constraint (4.5). Thus,

the intensity function � factorises into two components: rÿ 2 corresponding to the choice

of standard FreÂchet margins; and dH�w�, determining dependence at asymptotic levels of

the underlying variable �X;Y�. This result was derived by de Haan (1985) and used as the

basis of inference by Coles and Tawn (1991, 1994) and Joe et al. (1992).

The most important characteristic for model extrapolation is the decay rate of joint

tail probabilities. It follows immediately from (4.8) that if A � B1, where Bc
1 �

f�x; y� : x5x0; y5y0g for large x0 and y0, then

Prf�X; Y� [ tAg � Prf�X�t; Y
�

t� [Ag& 1

t
Prf�X; Y� [Ag �4:9�

for all t � 1. Consequently, from this limiting point process characterization, joint tail

probabilities decay at the same rate regardless of the form of limiting dependence, which

affects only the scale factor Prf�X; Y� [Ag.
Inference for the limiting Poisson process model may proceed in various ways under the

basic assumption that the limiting Poisson process is a valid approximation above high

enough thresholds. One possibility is to adopt a parametric family for H, such as the

logistic model (4.7). Then the associated Poisson process likelihood may be constructed

from which the parameters can be inferred. Alternative nonparametric procedures have

been proposed by Einmahl et al. (1997) and de Haan and de Ronde (1998). The basis of

such methods is to map nonparametric estimates of probabilities within a set A that

contains data, via equation (4.9), to obtain probability estimates for the set tA that may

contain no observed data.

In theory this procedure works for both asymptotically independent and dependent

variables, but there are practical dif®culties in the case of asymptotic independence. As we

have seen in Section 4.3, the corresponding dependence measure H is degenerate, with

atoms of mass on f0g and f1g. This leads to problems of inference, since each Pn will have

a behavior that is inadmissible for the limit process P. Moreover, even if the independence

limit is correctly identi®ed, probabilities of events are likely to be poorly estimated at sub-

asymptotic levels using equation (4.9). Both these dif®culties can be avoided by extending

the limiting point process representation to take account of the degree of dependence

within the class of asymptotically independent distributions. Thus, if Z is the coef®cient of

tail dependence corresponding to �X;Y�, following Ledford and Tawn (1997), we de®ne a

sequence of point processes on IR2
� by

~Pn �
Xi

nZ ;
Yi

nZ

� �
: i � 1; . . . ; n

� �
:

DEPENDENCE MEASURES 357



Then, on restriction to the interior of IR2
�, ~Pn? ~P as n??, where ~P is a Poisson process.

Using coordinate system (4.4) the intensity function of this limiting process is

~��dr6dw� � dr

r�1� Z�=Z 6d ~H�w�: �4:10�

Thus, we obtain a similar representation as in the case of asymptotic dependence, but with

a different normalization of the process and a consequent modi®cation to the rate at which

� decays with r. Furthermore, the associated angular measure ~H has different constraints

from those of H in the limit (4.8); see Ledford and Tawn (1997) for details.

An analogous property to (4.9) can also be derived for this model. In this case, for

A � B2, where

B2 � f�x; y� : x� y4r0;w0 � x=�x� y� � 1ÿ w0g; �4:11�

for large r0 and small w040, it follows from intensity (4.10) that

Prf�X; Y� [ tAg& 1

t1=Z
Prf�X; Y� [Ag �4:12�

for t � 1. Consequently, the decay rate of tail probabilities is determined by the coef®cient

of tail dependence, or equivalently by �w. For ®xed �w, the impact of other aspects to the

dependence structure is to determine the scale factor Prf�X;Y� [Ag. The extra generality

in the decay of joint tail probabilities in representation (4.12), relative to (4.9) is, however,

slightly offset by the additional restriction that the region A is bounded away from the axes

x � 0 and y � 0.

Apart from the additional issue of the estimation of Z, considerations for inference

remain the same as for the original Poisson process model. For parametric estimation,

representation (4.10) leads to a likelihood over regions for which the Poisson limit is

sustainable, with the advantage that Z can be estimated simultaneously with ~H, leading to

improved estimation ef®ciency for Z as inference is based on the complete data in the joint

tail region. Alternatively, using the procedure of Section 4.2 to estimate Z, for example, the

approximation (4.12) may be used to map nonparametric estimates of probabilities of large

events to extreme events, as described previously.

Each of the rainfall and wave-surge data-sets are of a format for which the point process

model is plausible. Strictly, inference for the rainfall data is complicated by the fact that

the data represent lagged pairs in the original series, which induces dependence across the

points; we will ignore this issue here. After conversion to FreÂchet margins, estimates of �w
based on the likelihood method of Section 4.2, and standard errors in parentheses, are 0.00

(0.044) and 0.77 (0.138) for the rainfall and wave-surge data respectively, each being

consistent with the empirical estimates obtained earlier. Both estimates were based on a

75% threshold, but these estimates were found to be stable over a wide range of threshold

choices. Consequently, it seems appropriate to model the wave-surge data using the

classical point process representation, whilst the rainfall data would be better handled
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using the modi®ed point process representation that incorporates asymptotic indepen-

dence.

Further model assessment requires an examination of the �R;W� pairs after

transformation to FreÂchet marginals, focusing, in particular, on the distribution of the W
values conditional on large values of R. Figure 11 shows kernel density estimates of

W jR4r, for a range of values of r, for the rainfall and wave-surge data-sets. All density

estimates are based on the same smoothing parameter and have been adjusted for end-

effects. For the rainfall data the conditional density is clearly degenerating to spikes of

mass at 0 and 1 as r increases. In contrast, for the wave-surge data, the distribution of W
values is relatively stable as r increases. This seems to con®rm our earlier assessment of

the asymptotic forms of dependence for these data-sets.

The detailed structure of the dependence can be further examined by estimating the

intensities of the appropriate limiting point process representation, i.e. intensities (4.8) and

(4.10) respectively. Figure 12 shows that for the wave-surge data the estimated parametric

logistic model, with â � 0:66 �0:013�, provides a reasonable description of the variation

of W for values exceeding the 0.9 quantile of the variable R by comparison with the kernel

density estimate for these data. For such a high threshold the common choice of smoothing

parameter used in Figure 11 is probably under-smoothing the kernel estimate, hence the

apparent over-estimation by the logistic model for W [ �0:2; 0:8�. Owing to the asymptotic

independence of the rainfall data, the detailed behavior of the W values can only be studied

for large R subject to the exclusion of W values close to the boundaries of �0; 1�. Figure 13

shows estimates of the density of W j �R4r; 0:1 � W � 0:9� for a range of threshold

choices of r. If the limiting Poisson process were a good approximation then the density

would be stable with respect to r. Although less stable than the density for the wave-surge

data, the distribution is more stable than the unrestricted conditional density. This kernel

density provides an estimate of d ~H�w��dw.

Finally, consider the issue of extrapolation. The methods described here can be used

Figure 11. The estimated conditional density of W jR4r: (a) for the rainfall data, (b) for the wave and surge

level data. The different estimates correspond to different values of r; the thin line through to the thick line

correspond to r being the 0:5; 0:6; . . . ; 0:9 quantile of the variable R respectively.
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Figure 12. The estimated limiting density dH�w�=dw for the wave and surge level data. The estimated

logistic density and pointwise 95% con®dence intervals (dotted and dashed curves respectively), and the solid

line is the kernel density estimate of the variable W jR4r, with r the 0:9 quantile of the variable R.

Figure 13. The estimated conditional density of W j �R4r; 0:15W50:9� for the rainfall data. The different

estimates correspond to different values of r; the thin line through to the thick line correspond to r being the

0:5; 0:6; . . . ; 0:9 quantile of the variable R j �0:15W50:9� respectively.
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only for estimation of joint tail probabilities where the failure region A is contained in a set

of the form B2, given by equation (4.11). We illustrate extrapolation only for the wave-

surge data as the rainfall data are effectively independent at high levels. In practice some

large combinations of waves and surges produce worse coastal ¯ooding than others, in a

way that depends on the characteristics of the ¯ood defence design. The probability of

such events depends heavily on the marginal distributions of the process, which makes the

general issue of extrapolation too complex for a simple illustrative example; see Coles and

Tawn (1994) and de Haan and de Ronde (1998) for worked examples. Instead, we presume

that the wave-surge data have already been transformed to variables �X;Y� with unit

FreÂchet marginal distributions, and that the region of interest is given by

Ev � f�x; y� [ IR2
� : x4v and y4vg:

Figure 14 illustrates such a region in the case v � 1000. Here, Ev 6� B2, where B2 is given

by (4.11), however, for all v, Ev can be approximated by a set E�v � B2 with

Pr�E�v�& Pr�Ev�. Then, from approximation (4.12), we have that Pr�Etu�&tÿ1=Z Pr�Eu�
for suitably large u and t � 1. De®ning p � Pr�Evp

� leads to

log vp � ÿ Z log p� log u� Z log Pr�Eu�: �4:13�

For two choices of u, each shown in Figure 14, we estimate Pr�Eu� empirically. Replacing

Pr�Eu� and Z in expression (4.13) by their estimates gives the estimates for log vp that are

shown in Figure 15. Pointwise 95% con®dence intervals show that the effect of threshold

choice on the extrapolation is very slight. The greater impact of Z is illustrated by showing

estimates based on both Z � 0:5 and Z � 1. The fact that the con®dence intervals contain

the Z � 1 values is a consequence of these data being consistent with asymptotic

dependence.

5. Discussion

Our aim in this paper has been to give an overview of the issues concerning the use of

multivariate extreme value techniques and to synthesize informal exploratory, and formal

modeling, procedures. We have developed the argument in the simplest case of bivariate,

independent and identically distributed variables, but the issues extend to more complex

modeling situations, for which the techniques presented here, appropriately generalized,

still apply. The distinction between asymptotic dependence and asymptotic independence

has been found to be crucial for both model development and data application. Thus, the

limitation of the classical models for multivariate extremes to the asymptotically

dependent case, for which �w � 2Zÿ 1 � 1, is seen to be a strong restriction. That this issue

is of considerable practical importance is supported by the empirical study of Bruun and

Tawn (1998).

We have said little about marginal estimation, which we presume to have been
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Figure 14. Plot of the wave and surge level data transformed to have unit FreÂchet marginal distributions. The

plot shows the shaded region Ev with v � 1000, and the dotted lines indicate two choices of joint threshold

levels: u � 10 and u � 70.

Figure 15. Plot showing the effect of �w on extrapolations of the joint tail. Here log vp is plotted against

ÿ log p where �F�vp; vp� � p and �F is the joint survivor function for wave and surge level variables

transformed to have FreÂchet marginals. The solid and dotted lines correspond to the lower and higher

threshold levels (shown in Figure 14) respectively. The bottom, middle and top lines for each line type

correspond in order to Z � 0:5; Ẑ and 1. The vertical lines indicate pointwise 95% con®dence intervals for

estimates of log vp for the lower joint threshold choice only.
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undertaken prior to the assessment of dependence. In practice, if marginal and dependence

components are estimated simultaneously, there may be a transfer of information between

model components. The effect on the estimation of dependence parameters is often slight

due to the near-orthogonality of marginal and dependence parameters. However, there

may be substantial improvements in marginal parameter estimation as information also

transfers between margins; see Shi et al. (1992), Einmahl et al. (1997) and BaraÄo and Tawn

(1999).

Additional complications also arise in practice. For example, multivariate data, such as

the lagged rainfall pairs, are often time-dependent. In such circumstances, and

notwithstanding the extra inferential dif®culties, the various measures of extremal

dependence introduced can play an important role in modeling (Ledford and Tawn, 2000).

For example, provided the multivariate data have only weak long-range dependence and

that they are asymptotically independent at all lags, then the extremal behavior of the

series is asymptotically equivalent to that of an independent multivariate series. Therefore,

testing for asymptotic independence in this context is similar to testing for clustering

conditions similar to the Leadbetter et al. (1983) D0�un� condition.

In situations where no asymptotic clustering is identi®ed, it is the sub-asymptotic

temporal behavior of the series that is important. To study this, the measure �w between

lagged variables becomes relevant; see Bortot and Tawn (1998) for the study of

1-dimensional asymptotically independent Markov chains. For processes with asymptotic

clustering the level of dependence is appropriately measured by a (multivariate) extremal

index; see Leadbetter et al. (1983) and Nandagopalan (1994). In this case, for

1-dimensional Markov chains, results in Smith et al. (1997) and Yun (1998) suggest

that w is highly in¯uential in determining the extremal index value.

Hence, in summary, the two diagnostic measures w and �w provide informative and

complementary information about the form of extremal dependence in multivariate series.

The parameter w has a very simple relationship with multivariate extreme value models,

but being model-free, provides a robust assessment of extremal dependence. Its limitations

are apparent for asymptotically independent data, for which �w provides a more appropriate,

also model-free, measure of extremal dependence.
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