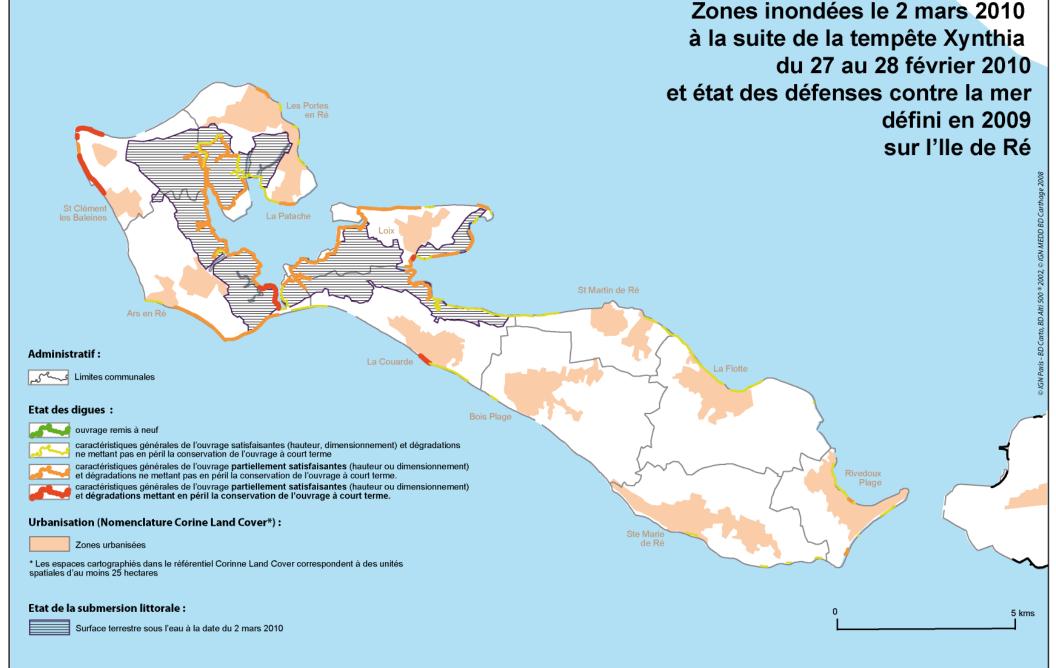


Conditional simulations of max-stable processes

C. Dombry[†], F. Éyi-Minko[†], M. Ribatet[‡]

[†] Laboratoire de Mathématiques et Application, Université de Poitiers [‡] Institut de Mathématiques et de Modélisation, Université Montpellier 2



Réalisation carte: Observatoire Régional de l'Environnement, mars 2010, numérisation de la zone inondée d'après une carte du SERTIT 2010 Source : d'après SIG Digues, Direction Départementale de l'Equipement de Charente-Maritime, 2009 -D'après le SERTIT, extraction d'une image SPOT 4 acquise le 2 mars 2010, SERTIT 2010

Motivation

- ☐ Geostatistics of extremes: many developments since 2002.
- □ But conditional simulations of max-stable processes were not available until 2011.
- □ Wang and Stoev (2011) give a first answer for max-linear processes, i.e.,

$$Z(x) = \max_{j=1,...,p} a_{x,j} X_j$$
, $X_j \stackrel{\text{iid}}{\sim} \text{unit Fréchet.}$

☐ But discrete spectral measure might be too restrictive for concrete applications.

Motivation

- ☐ Geostatistics of extremes: many developments since 2002.
- □ But conditional simulations of max-stable processes were not available until 2011.
- □ Wang and Stoev (2011) give a first answer for max-linear processes, i.e.,

$$Z(x) = \max_{j=1,...,p} a_{x,j} X_j$$
, $X_j \stackrel{\text{iid}}{\sim} \text{unit Fréchet.}$

□ But discrete spectral measure might be too restrictive for concrete applications.

Can we get a procedure for max-stable processes with continuous spectral measure?

Setup

 \square Given a study region $\mathscr{X} \subset \mathbb{R}^d$, we want to sample from

$$Z(\cdot) \mid \{Z(x_1) = z_1, \dots, Z(x_k) = z_k\},\$$

for some $z_1, ..., z_k > 0$ and k conditioning locations $x_1, ..., x_k \in \mathcal{X}$.

 Recall that any max-stable process with unit Fréchet margins has the following spectral characterization

$$Z(\cdot) = \max_{i \ge 1} \zeta_i Y_i(\cdot),$$

where

- $Y_i(\cdot)$ are independent copies of a non negative stochastic process such that $\mathbb{E}[Y(x)] = 1$ for all $x \in \mathcal{X}$;
- $\{\zeta_i\}_{i\geq 1}$ are the points of a Poisson process on $(0,\infty)$ with intensity $d\Lambda(\zeta) = \zeta^{-2}d\zeta$.

Outline

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

1. Conditional distributions

Decomposition of Φ Sub-extremal functions Random partitions Sampling scheme

2. MCMC sampler

Examples

3. Simulation Study

4. Applications

1. Conditional distributions of max-stable processes

Decomposition of Φ

1. Conditional distributions

Decomposition of

Sub-extremal functions

Random partitions

Sampling scheme

Examples

- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

$$Z(x) = \max_{i \ge 1} \zeta_i Y_i(x) = \max_{\varphi \in \Phi} \varphi(x), \qquad x \in \mathcal{X},$$

where Φ is a point process whose atoms are $\varphi_i(\cdot) = \zeta_i Y_i(\cdot)$.

□ Consider the two following Poisson point processes

$$\Phi^- = \{ \varphi \in \Phi : \varphi(x_i) < z_i, \text{ for all } i \in \{1, ..., k\} \}$$
, (sub-extremal functions)

$$\Phi^+ = \{ \varphi \in \Phi \colon \varphi(x_i) = z_i, \text{ for some } i \in \{1, ..., k\} \}$$
 (extremal functions)

$$\Box \quad \text{Clearly } \Phi = \Phi^- \cup \Phi^+.$$

Decomposition of Φ

1. Conditional distributions

Decomposition of

 $\triangleright \Phi$

Sub-extremal functions

Random partitions

Sampling scheme

Examples

- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

$$Z(x) = \max_{i \ge 1} \zeta_i Y_i(x) = \max_{\varphi \in \Phi} \varphi(x), \qquad x \in \mathcal{X},$$

where Φ is a point process whose atoms are $\varphi_i(\cdot) = \zeta_i Y_i(\cdot)$.

☐ Consider the two following Poisson point processes

$$\Phi^- = \{ \varphi \in \Phi : \varphi(x_i) < z_i, \text{ for all } i \in \{1, ..., k\} \}$$
, (sub-extremal functions)

$$\Phi^+ = \{ \varphi \in \Phi : \varphi(x_i) = z_i, \text{ for some } i \in \{1, ..., k\} \}$$
 (extremal functions)

 $\Box \quad \text{Clearly } \Phi = \Phi^- \cup \Phi^+.$

Key point #1: Conditionally on $Z(\mathbf{x}) = \mathbf{z}$, Φ^- and Φ^+ are independent.

1. Conditional distributions

Decomposition of Φ Sub-extremal

> functions

Random partitions

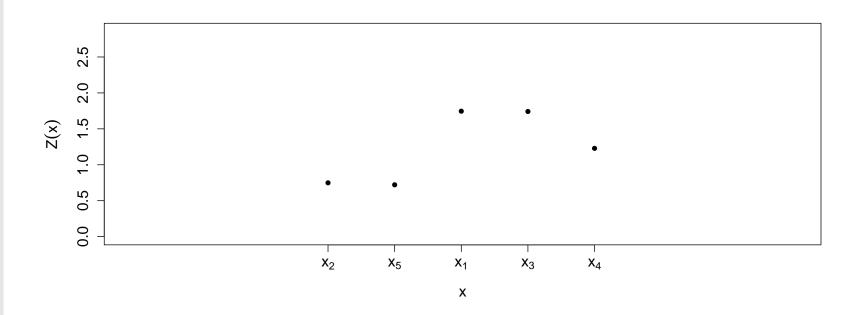
Sampling scheme

Examples

2. MCMC sampler

3. Simulation Study

4. Applications



1. Conditional distributions

 $\begin{array}{c} \text{Decomposition of } \Phi \\ \text{Sub-extremal} \end{array}$

> functions

Random partitions

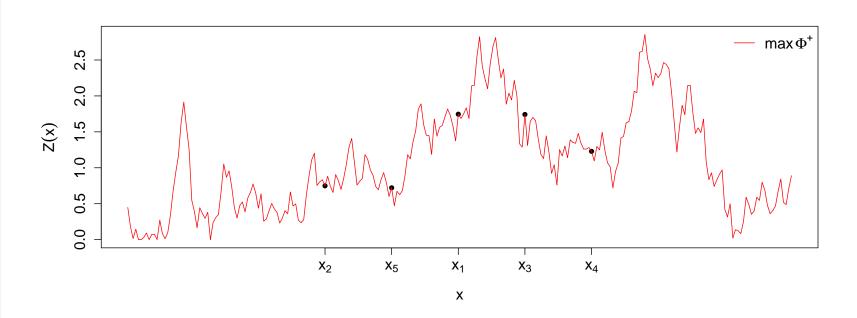
Sampling scheme

Examples

2. MCMC sampler

3. Simulation Study

4. Applications



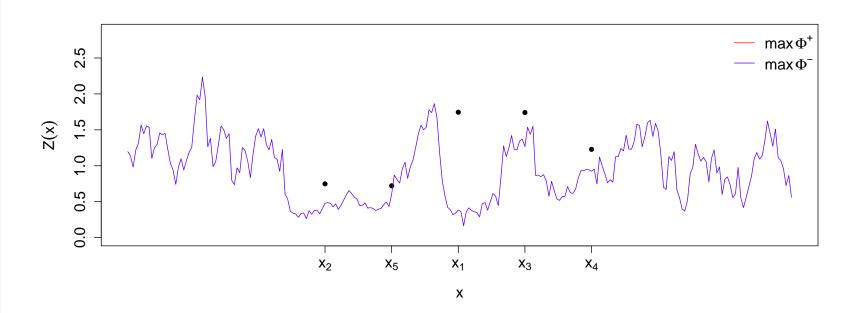
1. Conditional distributions

 $\begin{array}{c} \text{Decomposition of } \Phi \\ \text{Sub-extremal} \end{array}$

Functions
Random partitions
Sampling scheme

Examples Examples

- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications



1. Conditional distributions

 $\begin{array}{c} Decomposition \ of \ \Phi \\ Sub-extremal \end{array}$

> functions

Random partitions

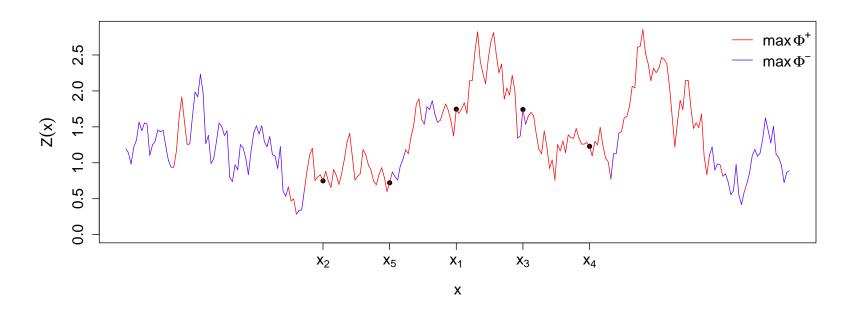
Sampling scheme

Examples

2. MCMC sampler

3. Simulation Study

4. Applications



1. Conditional distributions

Decomposition of Φ Sub-extremal

> functions

Random partitions

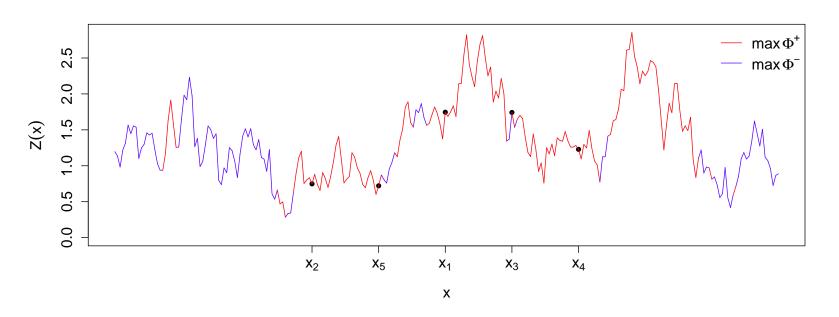
Sampling scheme

Examples

2. MCMC sampler

3. Simulation Study

4. Applications



- The atoms of Φ^+ are only of interest if we restrict our attention to the conditioning points **x**;
- \square But most often one would like to get realizations at $\mathbf{s} \neq \mathbf{x}$.

The atoms of Φ^- are needed since it is likely that $\max \Phi^-(\mathbf{s}) > \max \Phi^+(\mathbf{s})!$

Conditional intensity function

1. Conditional distributions

Decomposition of Φ

Sub-extremal functions

Random partitions

Sampling scheme

Examples

- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

$$Z(\mathbf{x}) = \max_{i \ge 1} \zeta_i Y_i(\mathbf{x}) = \max_{i \ge 1} \varphi_i(\mathbf{x})$$

 \Box The Poisson point process $\{\varphi_i(\mathbf{x})\}_{i\geq 1}$ has intensity measure

$$\Lambda_{\mathbf{x}}(A) = \int_0^\infty \Pr\{\zeta Y(\mathbf{x}) \in A\} \zeta^{-2} d\zeta, \quad \text{Borel set } A \subset \mathbb{R}^k.$$

□ We assume that Φ is regular, i.e., $\Lambda_{\mathbf{x}}(d\mathbf{z}) = \lambda_{\mathbf{x}}(\mathbf{z})d\mathbf{z}$, for all $\mathbf{x} \in \mathcal{X}^k$.

Conditional intensity function

1. Conditional distributions

Decomposition of Φ

Sub-extremal functions

Random partitions

Sampling scheme

Examples

- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

$$Z(\mathbf{x}) = \max_{i \ge 1} \zeta_i Y_i(\mathbf{x}) = \max_{i \ge 1} \varphi_i(\mathbf{x})$$

 \Box The Poisson point process $\{\varphi_i(\mathbf{x})\}_{i\geq 1}$ has intensity measure

$$\Lambda_{\mathbf{x}}(A) = \int_0^\infty \Pr\{\zeta Y(\mathbf{x}) \in A\} \zeta^{-2} d\zeta, \quad \text{Borel set } A \subset \mathbb{R}^k.$$

We assume that Φ is regular, i.e., $\Lambda_{\mathbf{x}}(d\mathbf{z}) = \lambda_{\mathbf{x}}(\mathbf{z})d\mathbf{z}$, for all $\mathbf{x} \in \mathcal{X}^k$.

Key point #2: The conditional intensity function

$$\lambda_{\mathbf{x}_1|\mathbf{x}_2,\mathbf{z}_2}(\mathbf{u}) = \frac{\lambda_{(\mathbf{x}_1,\mathbf{x}_2)}(\mathbf{u},\mathbf{z}_2)}{\lambda_{\mathbf{x}_2}(\mathbf{z}_2)}, \qquad \mathbf{x} = (\mathbf{x}_1,\mathbf{x}_2), \ \mathbf{z} = (\mathbf{z}_1,\mathbf{z}_2),$$

is the distribution of $Z(\mathbf{x})$ —if we integrate w.r.t. all possible partitions of \mathbf{x} . But not that of $Z(\cdot)!!!$

1. Conditional distributions

Decomposition of Φ

Sub-extremal functions

Random

> partitions

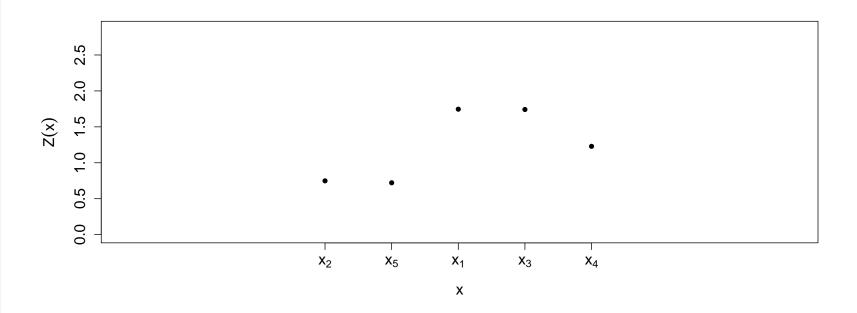
 $Sampling\, scheme$

Examples

2. MCMC sampler

3. Simulation Study

4. Applications



1. Conditional distributions

 $\begin{array}{l} \text{Decomposition of } \Phi \\ \text{Sub-extremal} \end{array}$

functions Random

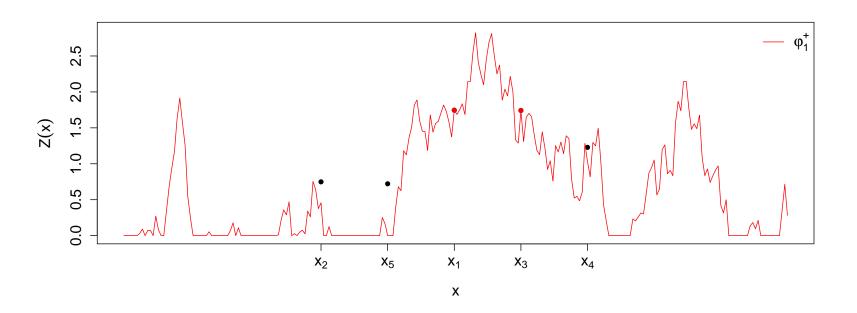
> partitions

Sampling scheme Examples

2. MCMC sampler

3. Simulation Study

4. Applications



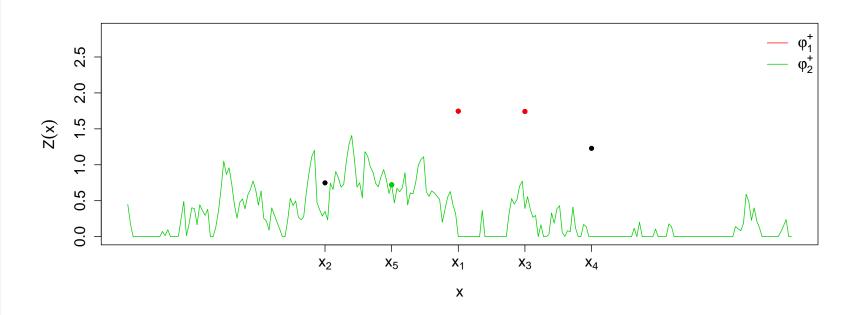
1. Conditional distributions

Decomposition of Φ
Sub-extremal
functions
Random
→ partitions
Sampling scheme

2. MCMC sampler

Examples

- 3. Simulation Study
- 4. Applications

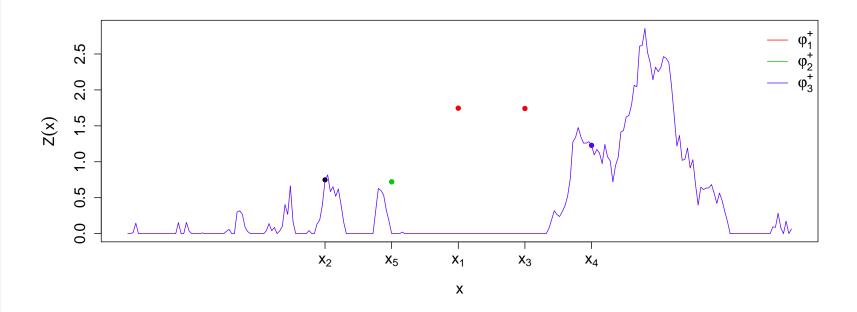


1. Conditional distributions

Decomposition of Φ
Sub-extremal
functions
Random
partitions

Sampling scheme Examples

- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications



1. Conditional distributions

Decomposition of Φ Sub-extremal

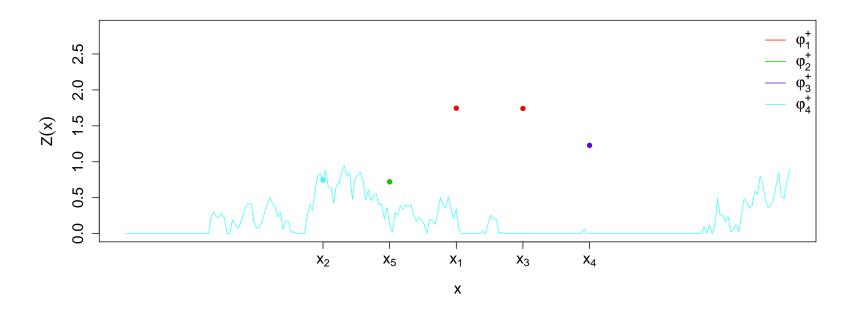
functions

Random partitions

Sampling scheme

Examples Examples

- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications



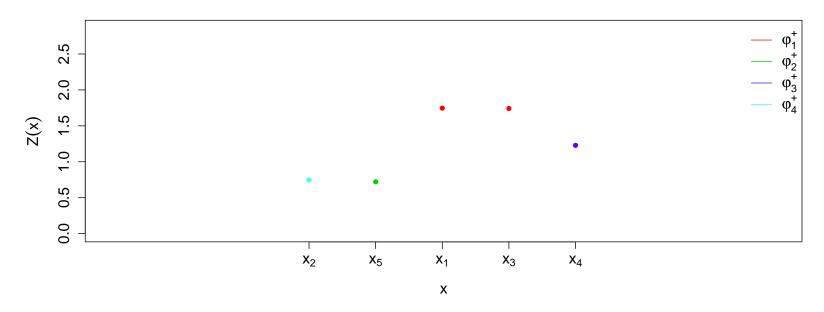
1. Conditional distributions

Decomposition of Φ
Sub-extremal
functions
Random
partitions
Sampling scheme

2. MCMC sampler

Examples

- 3. Simulation Study
- 4. Applications



Here the set $\{x_1, ..., x_5\}$ is partitioned into $(\{x_1, x_3\}, \{x_2\}, \{x_4\}, \{x_5\})$

1. Conditional distributions

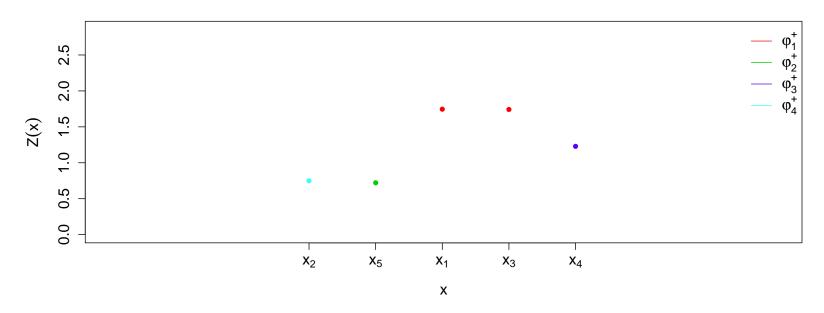
Decomposition of Φ
Sub-extremal
functions
Random
partitions

Sampling scheme Examples

2. MCMC sampler

3. Simulation Study

4. Applications



Here the set $\{x_1, ..., x_5\}$ is partitioned into $(\{x_1, x_3\}, \{x_2\}, \{x_4\}, \{x_5\})$

- The hitting bounds $\{z_i\}_{i=1,...,k}$ might be reached by several extremal functions, i.e., $\Phi^+ = \{\varphi_1^+, ..., \varphi_k^+\} = \{\varphi_1^+, ..., \varphi_\ell^+\}$ a.s., $1 \le \ell \le k$.
- □ So we need to take into account all possible ways these hitting bounds are reached: the hitting scenarios

A brief recap

1. Conditional distributions

Decomposition of Φ Sub-extremal functions

Random partitions

- Sampling scheme Examples
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

- The Poisson point process Φ^+ , whose atoms are the extremal functions φ_i^+ , is defined through a random partition of the set $\{x_1, \ldots, x_k\}$.
- ☐ The extremal functions have a distribution fully characterized by the conditional intensity;
- \Box Given $Z(\mathbf{x}) = \mathbf{z}$, Φ^- and Φ^+ are independent.
- ☐ This suggests a three step sampling scheme:

A brief recap

1. Conditional distributions

Decomposition of Φ Sub-extremal functions

Random partitions

- Sampling scheme Examples
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

- The Poisson point process Φ^+ , whose atoms are the extremal functions φ_i^+ , is defined through a random partition of the set $\{x_1, \ldots, x_k\}$.
- ☐ The extremal functions have a distribution fully characterized by the conditional intensity;
- \Box Given $Z(\mathbf{x}) = \mathbf{z}$, Φ^- and Φ^+ are independent.
- □ This suggests a three step sampling scheme:
 - **Step 1** Draw a random partition τ , i.e., a hitting scenario;
 - **Step 2** Given τ of size ℓ , draw the extremal functions $\varphi_1^+, \ldots, \varphi_\ell^+$ independently;
 - **Step 3** Independently from Steps 1 & 2, draw the sub-extremal functions φ_i^- , $i \ge 1$.

Step 1: The random partitions

1. Conditional distributions

Decomposition of Φ Sub-extremal functions Random partitions

Sampling scheme

Examples

- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

- \square Let \mathscr{P}_k the set of all possible partitions of the set $\{x_1, \ldots, x_k\}$.
- \square Draw a random partition $\tau \in \mathscr{P}_k$ with distribution

$$\pi_{\mathbf{X}}(\mathbf{z}, \tau) = \frac{1}{C(\mathbf{x}, \mathbf{z})} \prod_{j=1}^{|\tau|} \lambda_{\mathbf{X}_{\tau_{j}}}(\mathbf{z}_{\tau_{j}}) \int_{\{\mathbf{u} < \mathbf{z}_{\tau_{j}^{c}}\}} \lambda_{\mathbf{X}_{\tau_{j}^{c}} | \mathbf{X}_{\tau_{j}}, \mathbf{z}_{\tau_{j}}}(\mathbf{u}) d\mathbf{u},$$

$$\text{density that some bounds are reached,} \text{probability to lie below the remaining bounds, i.e.,}$$

$$\text{i.e., the } \mathbf{z}_{\tau_{j}}$$

$$\text{below the } \mathbf{z}_{\tau_{j}^{c}}$$

where the normalization constant $C(\mathbf{x}, \mathbf{z})$ is given by

$$C(\mathbf{x}, \mathbf{z}) = \sum_{\theta \in \mathscr{P}_k} \prod_{j=1}^{|\theta|} \lambda_{\mathbf{x}_{\theta_j}}(\mathbf{z}_{\theta_j}) \int_{\{\mathbf{u} < \mathbf{z}_{\theta_j^c}\}} \lambda_{\mathbf{x}_{\theta_j^c} | \mathbf{x}_{\theta_j}, \mathbf{z}_{\theta_j}}(\mathbf{u}) d\mathbf{u},$$

and $|\tau|$ is the "size" of the partition τ .

Step 2: The extremal functions

1. Conditional distributions

Decomposition of Φ Sub-extremal functions Random partitions

Sampling scheme Examples

- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

Given $\tau = (\tau_1, ..., \tau_\ell)$, draw ℓ independent random vectors $\varphi_1^+(\mathbf{s}), ..., \varphi_\ell^+(\mathbf{s})$ from the distribution

$$\Pr\left[\varphi_{j}^{+}(\mathbf{s}) \in d\mathbf{v}_{j}\right] = \frac{1}{C_{j}} \left\{ \int 1_{\{\mathbf{u} < \mathbf{z}_{\tau_{j}^{c}}\}} \underbrace{\lambda_{(\mathbf{s}, \mathbf{x}_{\tau_{j}^{c}}) | \mathbf{x}_{\tau_{j}}, \mathbf{z}_{\tau_{j}}}(\mathbf{v}_{j}, \mathbf{u})}_{\text{density of an atom } \varphi \in \Phi} \right\} d\mathbf{v}_{j},$$

$$\underbrace{\operatorname{density of an atom } \varphi \in \Phi}_{\text{given that } \varphi(\mathbf{x}_{\tau_{j}}) = \mathbf{z}_{\tau_{j}}}$$

where $1_{\{\cdot\}}$ is the indicator function and

$$C_j = \int 1_{\{\mathbf{u} < \mathbf{z}_{\tau_j^c}\}} \lambda_{(\mathbf{s}, \mathbf{x}_{\tau_j^c}) | \mathbf{x}_{\tau_j}, \mathbf{z}_{\tau_j}} (\mathbf{v}_j, \mathbf{u}) d\mathbf{u} d\mathbf{v}_j.$$

□ Define the random vector

$$Z^+(\mathbf{s}) = \max_{j=1,\dots,\ell} \varphi_j^+(\mathbf{s}), \quad \mathbf{s} \in \mathcal{X}^m.$$

Step 3: The sub-extremal functions

1. Conditional distributions

Decomposition of Φ Sub-extremal functions Random partitions

- Sampling scheme Examples
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

- □ Independently draw $\{\zeta_i\}_{i\geq 1}$ a Poisson point process on $(0,\infty)$ with intensity $\zeta^{-2} d\zeta$ and $\{Y_i(\cdot)\}_{i\geq 1}$ independent copies of $Y(\cdot)$
- □ Define the random vector

$$Z^{-}(\mathbf{s}) = \max_{i \ge 1} \zeta_i Y_i(\mathbf{s}) 1_{\{\zeta_i Y_i(\mathbf{x}) < \mathbf{z}\}}, \quad \mathbf{s} \in \mathcal{X}^m.$$

Step 3: The sub-extremal functions

1. Conditional distributions

Decomposition of Φ Sub-extremal functions Random partitions

- Sampling scheme Examples
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

- □ Independently draw $\{\zeta_i\}_{i\geq 1}$ a Poisson point process on $(0,\infty)$ with intensity $\zeta^{-2} d\zeta$ and $\{Y_i(\cdot)\}_{i\geq 1}$ independent copies of $Y(\cdot)$
- □ Define the random vector

$$Z^{-}(\mathbf{s}) = \max_{i \ge 1} \zeta_i Y_i(\mathbf{s}) 1_{\{\zeta_i Y_i(\mathbf{x}) < \mathbf{z}\}}, \quad \mathbf{s} \in \mathcal{X}^m.$$

Then provided Φ is regular, the random vector

$$\tilde{Z}(\mathbf{s}) = \max\{Z^+(\mathbf{s}), Z^-(\mathbf{s})\}$$

follows the conditional distribution of $Z(\mathbf{s})$ given $Z(\mathbf{x}) = \mathbf{z}$.

As an aside

1. Conditional distributions

Decomposition of Φ Sub-extremal functions

Random partitions

Sampling scheme

Examples

- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

☐ The conditional cumulative distribution function is

$$\Pr\{Z(\mathbf{s}) \leq \mathbf{a} \mid Z(\mathbf{x}) = \mathbf{z}\} = \underbrace{\left\{\sum_{\tau \in \mathscr{P}_k} \pi_{\mathbf{x}}(\mathbf{z}, \tau) \prod_{j=1}^{|\tau|} F_{\tau, j}(\mathbf{a})\right\}}_{\text{Steps 1 \& 2}} \underbrace{\frac{\Pr[Z(\mathbf{s}) \leq \mathbf{a}, Z(\mathbf{x}) \leq \mathbf{z}]}{\Pr[Z(\mathbf{x}) \leq \mathbf{z}]}}_{\text{Step 3}},$$

where

$$F_{\tau,j}(\mathbf{a}) = \frac{\int_{\{\mathbf{y} < \mathbf{z}_{\tau_j^c}, \mathbf{u} < \mathbf{a}\}} \lambda_{(\mathbf{s}, \mathbf{x}_{\tau_j^c}) | \mathbf{x}_{\tau_j}, \mathbf{z}_{\tau_j}}(\mathbf{u}, \mathbf{y}) d\mathbf{y} d\mathbf{u}}{\int_{\{\mathbf{y} < \mathbf{z}_{\tau_j^c}\}} \lambda_{\mathbf{t}_{\tau_j^c} | \mathbf{x}_{\tau_j}, \mathbf{z}_{\tau_j}}(\mathbf{y}) d\mathbf{y}}.$$

As an aside

1. Conditional distributions

Decomposition of Φ Sub-extremal functions Random partitions

- Sampling scheme Examples
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

☐ The conditional cumulative distribution function is

$$\Pr\{Z(\mathbf{s}) \leq \mathbf{a} \mid Z(\mathbf{x}) = \mathbf{z}\} = \underbrace{\left\{\sum_{\tau \in \mathscr{P}_k} \pi_{\mathbf{x}}(\mathbf{z}, \tau) \prod_{j=1}^{|\tau|} F_{\tau, j}(\mathbf{a})\right\}}_{\text{Steps 1 \& 2}} \underbrace{\frac{\Pr[Z(\mathbf{s}) \leq \mathbf{a}, Z(\mathbf{x}) \leq \mathbf{z}]}{\Pr[Z(\mathbf{x}) \leq \mathbf{z}]}}_{\text{Step 3}},$$

where

$$F_{\tau,j}(\mathbf{a}) = \frac{\int_{\{\mathbf{y} < \mathbf{z}_{\tau_j^c}, \mathbf{u} < \mathbf{a}\}} \lambda_{(\mathbf{s}, \mathbf{x}_{\tau_j^c}) | \mathbf{x}_{\tau_j}, \mathbf{z}_{\tau_j}}(\mathbf{u}, \mathbf{y}) d\mathbf{y} d\mathbf{u}}{\int_{\{\mathbf{y} < \mathbf{z}_{\tau_j^c}\}} \lambda_{\mathbf{t}_{\tau_j^c} | \mathbf{x}_{\tau_j}, \mathbf{z}_{\tau_j}}(\mathbf{y}) d\mathbf{y}}.$$

Remark. It is "clear" that $Z(\cdot) \mid \{Z(\mathbf{x}) = \mathbf{z}\}\$ is not max-stable.

Brown–Resnick processes

1. Conditional distributions

Decomposition of Φ Sub-extremal functions Random partitions Sampling scheme

- **>** Examples
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

Proposition 1. If Z is a Brown–Resnick process, i.e.,

$$Z(x) = \max_{i \ge 1} \zeta_i \exp\{\varepsilon_i(x) - \gamma(x)\}, \qquad x \in \mathcal{X},$$

then the intensity function is

$$\lambda_{\mathbf{x}}(\mathbf{z}) = C_{\mathbf{x}} \exp\left(-\frac{1}{2} \log \mathbf{z}^T Q_{\mathbf{x}} \log \mathbf{z} + L_{\mathbf{x}} \log \mathbf{z}\right) \prod_{i=1}^k \mathbf{z}_i^{-1}, \qquad \mathbf{z} \in (0, \infty)^k,$$

and the conditional intensity function is

$$\lambda_{\mathbf{S}|\mathbf{x},\mathbf{z}}(\mathbf{u}) = (2\pi)^{-m/2} |\Sigma_{\mathbf{S}|\mathbf{x}}|^{-1/2} \exp\left\{-\frac{1}{2}(\log \mathbf{u} - \mu_{\mathbf{S}|\mathbf{x},\mathbf{z}})^T \Sigma_{\mathbf{S}|\mathbf{x}}^{-1}(\log \mathbf{u} - \mu_{\mathbf{S}|\mathbf{x},\mathbf{z}})\right\} \prod_{i=1}^{m} \mathbf{u}_i^{-1},$$

i.e., the extremal functions are log-Normal processes.

Schlather processes

1. Conditional distributions

Decomposition of Φ Sub-extremal functions Random partitions Sampling scheme

- **>** Examples
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

Proposition 2. If Z is a Schlather process, i.e.,

$$Z(x) = \sqrt{2\pi} \max_{i \ge 1} \zeta_i \max\{0, \varepsilon_i(x)\}, \qquad x \in \mathcal{X},$$

then the intensity function is

$$\lambda_{\mathbf{x}}(\mathbf{z}) = \pi^{-(k-1)/2} |\Sigma_{\mathbf{x}}|^{-1/2} a_{\mathbf{x}}(\mathbf{z})^{-(k+1)/2} \Gamma\left(\frac{k+1}{2}\right), \qquad \mathbf{z} \in \mathbb{R}^k$$

where $a_{\mathbf{x}}(\mathbf{z}) = \mathbf{z}^T \Sigma_{\mathbf{x}}^{-1} \mathbf{z}$, and the conditional intensity function is

$$\lambda_{\mathbf{S}|\mathbf{x},\mathbf{z}}(\mathbf{u}) = \pi^{-m/2} (k+1)^{-m/2} |\tilde{\Sigma}|^{-1/2} \left\{ 1 + \frac{(\mathbf{u} - \mu)^T \tilde{\Sigma}^{-1} (\mathbf{u} - \mu)}{k+1} \right\}^{-(m+k+1)/2} \frac{\Gamma(\frac{m+k+1}{2})}{\Gamma(\frac{k+1}{2})},$$

i.e., the extremal functions are Student processes.

1. Conditional distributions

➤ 2. MCMC sampler

Computational burden Full conditional distributions If the full conditional distributions are nice,

•••

...the state space \mathcal{P}_k isn't! (really?)

3. Simulation Study

4. Applications

2. Markov chain Monte–Carlo sampler (for Step 1)

Do you recognize these numbers?

Conditional distributions	1	1	
	52	203	
2. MCMC sampler Computational	115975	678570	
burden Full conditional	1382958545	10480142147	8
distributions If the full conditional distributions are nice,	•••		
 the state space			

 \mathscr{P}_k isn't! (really?)

3. Simulation Study

4. Applications

Do you recognize these numbers?

1. Conditional
distributions

2. MCMC sampler

Computational burden Full conditional distributions If the full conditional distributions are nice,

•••

...the state space \mathcal{P}_k isn't! (really?)

3. Simulation Study

4. Applications

1	1	2	5	15
52	203	877	4140	21147
115975	678570	4213597	27644437	190899322
1382958545	10480142147	82864869804	682076806159	5832742205057

These are the first 20 Bell numbers.

Remark. Recall that Bell(k) is the number of partitions of a set with k elements. Hence with our notations we have

hitting scenarios = Card (\mathscr{P}_k) = Bell(k).

Computational burden

- 1. Conditional distributions
- 2. MCMC sampler

Computational
burden
Full conditional
distributions
If the full conditional
distributions are nice,

- ...
- ...the state space \mathcal{P}_k isn't! (really?)
- 3. Simulation Study
- 4. Applications

In Step 1, we need to sample from a discrete distribution whose state space is \mathcal{P}_k , i.e., all possible hitting scenarios.

Hence we cannot compute $C(\mathbf{x}, \mathbf{z})$ in

$$\pi_{\mathbf{x}}(\mathbf{z}, \tau) = \frac{1}{C(\mathbf{x}, \mathbf{z})} \prod_{j=1}^{|\tau|} \lambda_{\mathbf{x}_{\tau_j}}(\mathbf{z}_{\tau_j}) \int_{\{\mathbf{u} < \mathbf{z}_{\tau_j^c}\}} \lambda_{\mathbf{x}_{\tau_j^c} | \mathbf{x}_{\tau_j}, \mathbf{z}_{\tau_j}}(\mathbf{u}) d\mathbf{u}.$$

Computational burden

1. Conditional distributions

2. MCMC sampler

Computational
burden
Full conditional
distributions
If the full conditional
distributions are nice,

•••

- ...the state space \mathcal{P}_k isn't! (really?)
- 3. Simulation Study
- 4. Applications

In Step 1, we need to sample from a discrete distribution whose state space is \mathcal{P}_k , i.e., all possible hitting scenarios.

Hence we cannot compute $C(\mathbf{x}, \mathbf{z})$ in

$$\pi_{\mathbf{X}}(\mathbf{z}, \tau) = \frac{1}{C(\mathbf{x}, \mathbf{z})} \prod_{j=1}^{|\tau|} \lambda_{\mathbf{x}_{\tau_j}}(\mathbf{z}_{\tau_j}) \int_{\{\mathbf{u} < \mathbf{z}_{\tau_j^c}\}} \lambda_{\mathbf{x}_{\tau_j^c} | \mathbf{x}_{\tau_j}, \mathbf{z}_{\tau_j}}(\mathbf{u}) d\mathbf{u}.$$

Use of MCMC samplers to sample from the target $\pi_{\mathbf{x}}(\mathbf{z},\cdot)$.

Remark. We will use a Gibbs sampler since the full conditional distributions are especially convenient.

Full conditional distributions

1. Conditional distributions

2. MCMC sampler

Computational burden Full conditional **▶** distributions

If the full conditional distributions are nice,

- ... the state space \mathcal{P}_k isn't! (really?)
- 3. Simulation Study
- 4. Applications

- For $\tau \in \mathscr{P}_k$ of size ℓ , let τ_{-i} be the restriction of τ to the set $\{x_1,\ldots,x_k\}\setminus\{x_i\}, \text{ e.g., } \tau=(\{x_1,x_2\},\{x_3\}), \tau_{-2}=(\{x_1\},\{x_3\}).$
- We aim at sampling from $\Pr[\theta \in \cdot \mid \theta_{-j} = \tau_{-j}], \theta \sim \pi_{\mathbf{x}}(\mathbf{z}, \cdot).$
- The number of possible states for θ is

$$b^{+} = \begin{cases} \ell & \text{if } \{x_{j}\} \text{ is a partitioning set of } \tau, \\ \ell + 1 & \text{otherwise,} \end{cases}$$

since $\{x_i\}$ is reallocated to any partitioning set or to a new one—if possible.

Example 1. For $\tau = (\{x_1, x_2\}, \{x_3\})$ we have $\ell = 2$ and

	Restri	ction
	$\tau_{-2}^* = \tau_{-2}$	$\tau_{-3}^* = \tau_{-3}$
	$(\{x_1, x_2\}, \{x_3\})$	$(\{x_1, x_2\}, \{x_3\})$
Possible states	$(\{x_1\}, \{x_2, x_3\})$	$(\{x_1, x_2, x_3\})$
	$(\{x_1\}, \{x_2\}, \{x_3\})$	

If the full conditional distributions are nice, ...

1. Conditional distributions

2. MCMC sampler

Computational burden
Full conditional distributions
If the full conditional distributions are

ince, ...

- ... the state space \mathcal{P}_k isn't! (really?)
- 3. Simulation Study
- 4. Applications

 \Box For all $\tau^* \in \mathscr{P}_k$ such that $\tau^*_{-j} = \tau_{-j}$,

$$\Pr[\theta = \tau^* \mid \theta_{-j} = \tau_{-j}] = \frac{\pi_{\mathbf{x}}(\mathbf{z}, \tau^*)}{\sum_{\tilde{\tau} \in \mathscr{P}_k} \pi_{\mathbf{x}}(\mathbf{z}, \tilde{\tau}) 1_{\{\tilde{\tau}_{-j} = \tau_{-j}\}}} \propto \frac{\prod_{j=1}^{|\tau^*|} w_{\tau^*, j}}{\prod_{j=1}^{|\tau|} w_{\tau, j}},$$

where
$$w_{\tau,j} = \lambda_{\mathbf{x}_{\tau_j}}(\mathbf{z}_{\tau_j}) \int_{\{\mathbf{u} < \mathbf{z}_{\tau_j^c}\}} \lambda_{\mathbf{x}_{\tau_j^c} | \mathbf{x}_{\tau_j}, \mathbf{z}_{\tau_j}}(\mathbf{u}) d\mathbf{u}$$
.

In particular at most 4 weights $w_{\cdot,\cdot}$ need to be evaluated and the Gibbs sampler is especially convenient!

Remark. The most CPU demanding part is the computation of

$$\int_{\{\mathbf{u}<\mathbf{z}_{\tau_{j}^{c}}\}} \lambda_{\mathbf{x}_{\tau_{j}^{c}}|\mathbf{x}_{\tau_{j}},\mathbf{z}_{\tau_{j}}}(\mathbf{u}) d\mathbf{u}.$$

This is done following the lines of Genz (1992), i.e.,

Quasi M.–C. + Sep. of Var. + Var. ordering + Antithetic

...the state space \mathcal{P}_k isn't! (really?)

1. Conditional distributions

2. MCMC sampler

Computational burden Full conditional distributions If the full conditional distributions are nice,

• • •

 \triangleright ... the state space \triangleright \mathscr{P}_k isn't! (really?)

3. Simulation Study

4. Applications

But how do I implement a Gibbs sampler whose states are partitions of a set???

...the state space \mathcal{P}_k isn't! (really?)

1. Conditional distributions

2. MCMC sampler

Computational burden Full conditional distributions If the full conditional distributions are nice,

•••

... the state space \mathcal{P}_k isn't! (really?)

3. Simulation Study

4. Applications

But how do I implement a Gibbs sampler whose states are partitions of a set???

Lemma 1. There is a one-one mapping between \mathcal{P}_k and

$$\mathscr{P}_k^* = \left\{ (a_1, \dots, a_k), \, \forall i \in \{2, \dots, k\} \colon a_1 \le a_i \le \max_{1 \le j < i} a_j + 1, \, a_i \in \mathbb{Z} \right\},$$

where $a_1 = 1$ by convention.

Example 2. $(\{x_1, x_2\}, \{x_3\})$ is identified to (1, 1, 2) while $(\{x_1, x_3\}, \{x_2\})$ is identified to (1, 2, 1).

...the state space \mathcal{P}_k isn't! (really?)

1. Conditional distributions

2. MCMC sampler

Computational burden Full conditional distributions If the full conditional distributions are nice,

... the state space \mathcal{P}_{L} isn't! (really?)

3. Simulation Study

4. Applications

But how do I implement a Gibbs sampler whose states are partitions of a set???

Lemma 1. There is a one-one mapping between \mathcal{P}_k and

$$\mathscr{P}_k^* = \left\{ (a_1, \dots, a_k), \, \forall \, i \in \{2, \dots, k\} \colon a_1 \le a_i \le \max_{1 \le j < i} a_j + 1, \, a_i \in \mathbb{Z} \right\},$$

where $a_1 = 1$ by convention.

Example 2. $(\{x_1, x_2\}, \{x_3\})$ is identified to (1, 1, 2) while $(\{x_1, x_3\}, \{x_2\})$ is identified to (1, 2, 1).

Remark. When updating $\tau \in \mathscr{P}_k^*$, the updated partition doesn't necessarily lie in \mathscr{P}_k^* ; but corresponds to a unique element of \mathscr{P}_k . For instance, $(1,1,2) \mapsto (1,3,2) \leftrightarrow (1,2,3)$.

1. Conditional distributions

2. MCMC sampler

3. Simulation ➤ Study

What we expect

Test cases

Test case: Schlather

What we get

Spatial dependence

CPU times

4. Applications

3. Simulation Study

What we expect

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study
- What we expect
 Test cases
 Test case: Schlather
 What we get
- Spatial dependence CPU times
- 4. Applications

- □ Less variability in regions close to some conditioning points;
- ☐ The coverage is OK, i.e., pointwise confidence intervals have the nominal coverage;
- □ "Unconditional like behavior" in regions far away from any conditioning point.

Test case: Brown–Resnick

1. Conditional distributions

2. MCMC sampler

3. Simulation Study

What we expect

> Test cases

Test case: Schlather

What we get

Spatial dependence

CPU times

4. Applications

Table 1: Spatial dependence structures of Brown–Resnick processes with (semi) variogram $\gamma(h) = (h/\lambda)^{\kappa}$. The variogram parameters are set to ensure that the extremal coefficient function satisfies $\theta(115) = 1.7$.

Sample path properties								
	γ_1 : Very wiggly γ_2 : Wiggly γ_3 : Smootl							
λ	25	54	69					
κ	0.5	$1 \cdot 0$	1.5					

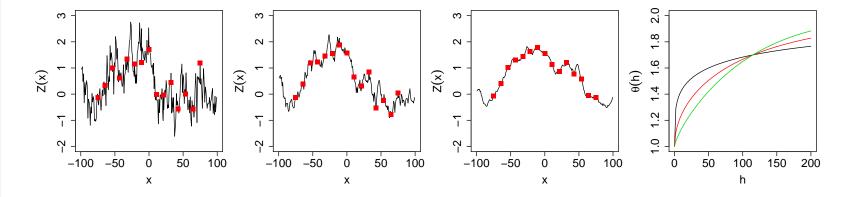


Figure 1: Three realizations of a Brown–Resnick process with standard Gumbel margins and (semi) variograms γ_1 , γ_2 and γ_3 . The squares correspond to the 15 conditioning values that will be used in the simulation study. The right panel shows the associated extremal coefficient functions.

Test case: Schlather

1. Conditional distributions

2. MCMC sampler

3. Simulation Study

What we expect

Test cases

Test case:

> Schlather

What we get Spatial dependence

CPU times

Table 2: Spatial dependence structures of Schlather processes with correlation function $\rho(h) = \exp\{-(h/\lambda)^{\kappa}\}$. The correlation function parameters are set to ensure that the extremal coefficient function satisfies $\theta(100) = 1.5$.

Sample path properties								
	ρ_1 : Very wiggly ρ_2 : Wiggly ρ_3 : Smooth							
λ	208	144	128					
κ	0.5	$1 \cdot 0$	1.5					

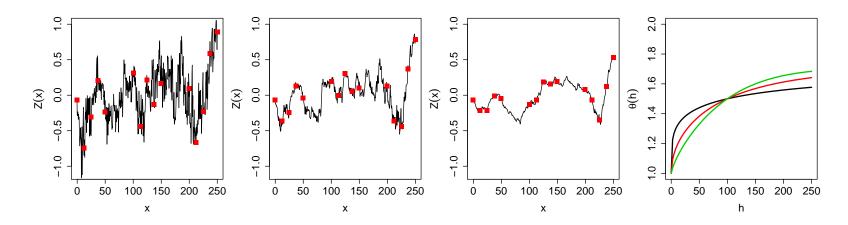


Figure 2: Three realizations of a Schlather process with standard Gumbel margins and correlation functions ρ_1 , ρ_2 and ρ_3 . The squares correspond to the 15 conditioning values that will be used in the simulation study. The right panel shows the associated extremal coefficient functions.

What we get: Brown–Resnick

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study

What we expect Test cases

Test case: Schlather

➤ What we get

Spatial dependence

CPU times

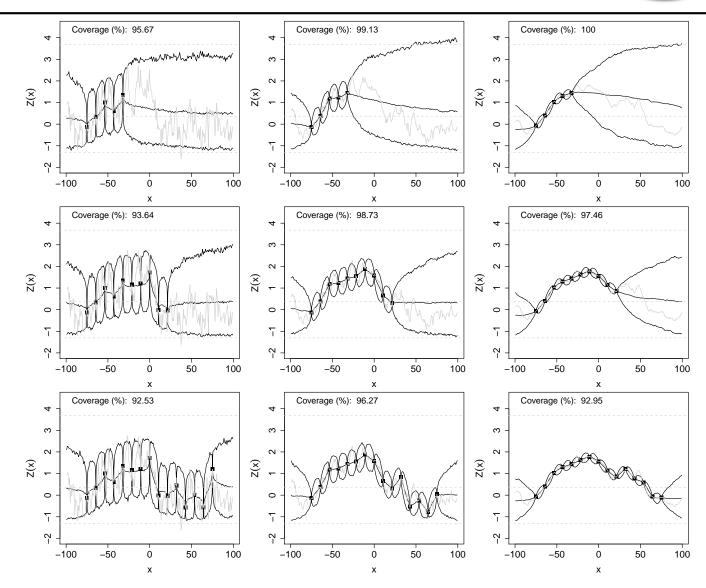


Figure 3: Pointwise sample quantiles (0.025, 0.5, 0.975) estimated from 1000 conditional simulations of Brown–Resnick processes.

What we get: Schlather

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study

What we expect Test cases

Test case: Schlather

➤ What we get

Spatial dependence

CPU times

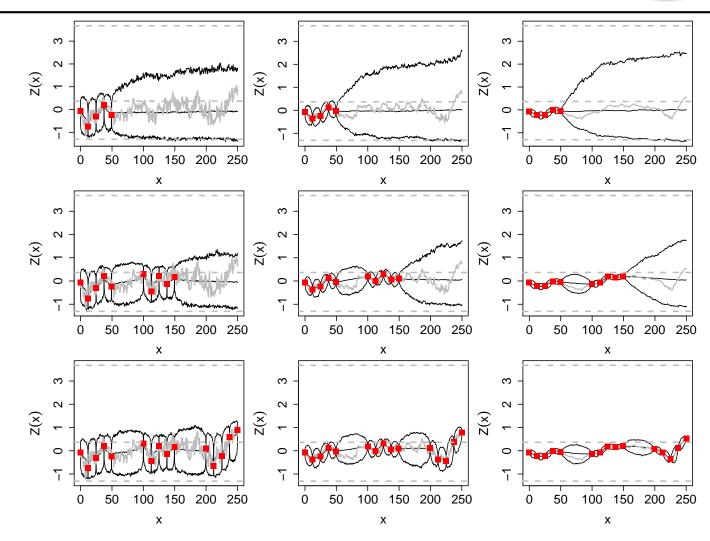


Figure 4: Pointwise sample quantiles (0.025, 0.5, 0.975) estimated from 1000 conditional simulations of Schlather processes.

One last point;-)

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study

What we expect Test cases

Test case: Schlather

What we get

Spatial

dependence

CPU times

4. Applications

- □ Is the spatial dependence correct?
- \Box Want to compare the theoretical extremal coefficient function $\theta(\cdot)$ to the pairwise extremal coefficient estimates.

But recall, $Z(\cdot) \mid \{Z(\mathbf{x}) = \mathbf{z}\}\$ is not max-stable and the extremal coefficient function does not exist!!!

One last point;-)

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study

What we expect Test cases

Test case: Schlather

What we get

Spatial

- **b** dependence
- CPU times
- 4. Applications

- □ Is the spatial dependence correct?
- \Box Want to compare the theoretical extremal coefficient function $\theta(\cdot)$ to the pairwise extremal coefficient estimates.
- But recall, $Z(\cdot) \mid \{Z(\mathbf{x}) = \mathbf{z}\}$ is not max-stable and the extremal coefficient function does not exist!!!

Since

$$f(x) = \int f(x \mid y) f(y) dy,$$

and to recover the max-stability property, we

- 1. generate 1000 independent conditional events;
- 2. and for each such conditional event, one conditional realization—hence having 1000 independent conditional realizations at the end.

Checking the spatial dependence structure

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study

What we expect

Test cases

Test case: Schlather

What we get

Spatial

b dependence

CPU times

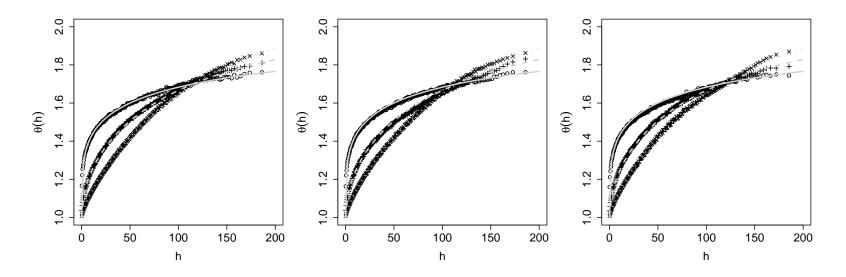


Figure 5: Comparison of the extremal coefficient estimates (using a binned F-madogram with 250 bins) and the theoretical extremal coefficient function for a varying number of conditioning locations and different (semi) variograms. From left to right, k = 5, 10, 15. The 'o', '+' and 'x' symbols correspond respectively to γ_1 , γ_2 and γ_3 . The solid, dashed and dotted grey lines correspond to the theoretical extremal coefficient functions for γ_1 , γ_2 and γ_3 .

Checking the spatial dependence structure

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study

What we expect

Test cases

Test case: Schlather

What we get

Spatial

b dependence

CPU times

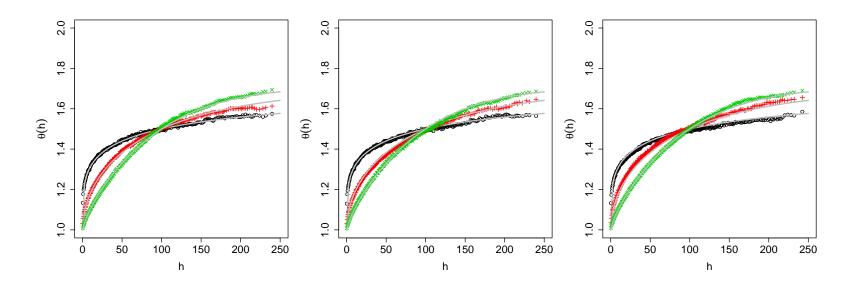


Figure 6: Comparison of the extremal coefficient estimates (using a binned F-madogram with 250 bins) and the theoretical extremal coefficient function for a varying number of conditioning locations and different correlation functions. From left to right, k = 5, 10, 15. The 'o', '+' and 'x' symbols correspond respectively to ρ_1 , ρ_2 and ρ_3 .

CPU times

Table 3: Timings[†] for conditional simulations of max-stable processes on a 50×50 grid defined on the square $[0,100 \times 2^{1/2}]^2$ for a varying number k of conditioning locations uniformly distributed over the region. The times, in seconds, are mean values over 100 conditional simulations; standard deviations are reported in brackets.

	Brown–Resnick: $\gamma(h) = (h/25)^{0.5}$					Schlather: $\rho(h) = \exp\{-(h/208)^{0.50}\}$				
	Step 1	Step 2	Step 3	Overall		Step 1	Step 2	Step 3	Overall	
<i>k</i> = 5	0.21 (0.01)	49 (11)	1.4 (0.1)	50 (11)		1.4 (0.02)	1.9 (0.7)	0.9 (0.3)	4.2 (0.8)	
k = 10	8 (2)	76 (18)	1.4 (0.1)	85 (19)		12 (4)	2.4 (0.8)	1.0 (0.3)	15 (4)	
k = 25	95 (38)	117 (30)	1.4 (0.1)	214 (61)		86 (42)	4 (1)	1.0 (0.3)	90 (43)	
k = 50	583 (313)	348 (391)	1.5 (0.1)	931 (535)		367 (222)	62 (113)	1.0 (0.3)	430 (262)	

[†]Conditional simulations with k = 5 do not use a Gibbs sampler.

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study
- > 4. Applications

Precipitation

Temperature

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications
- Precipitation
 Temperature

☐ We re-analyze the data of Davison et al. (2012), i.e., summer precipitation around Zurich.

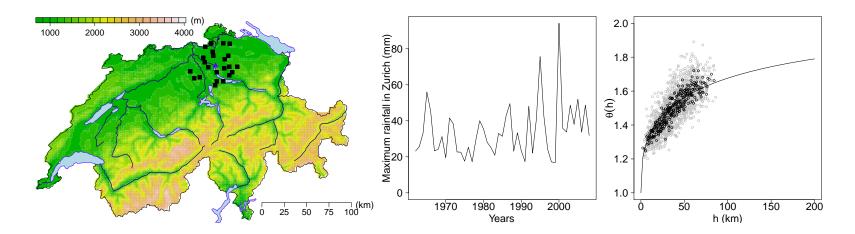


Figure 7: Left: Map of Switzerland showing the stations of the 24 rainfall gauges used for the analysis, with an insert showing the altitude. The station marked with a blue square corresponds to Zurich. Middle: Summer maximum daily rainfall values for 1962–2008 at Zurich. Right: Comparison between the pairwise extremal coefficient estimates for the 51 original weather stations and the extremal coefficient function derived from a fitted Brown–Resnick processes having (semi) variogram $\gamma(h) = (h/\lambda)^{\kappa}$. The grey points are pairwise estimates; the black ones are binned estimates and the red curve is the fitted extremal coefficient function.

Model

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications
- Precipitation
 Temperature

☐ We fit a Brown–Resnick process by maximizing the pairwise likelihood with the following trend surfaces

$$\eta(x) = \beta_{0,\eta} + \beta_{1,\eta} \operatorname{lon}(x) + \beta_{2,\eta} \operatorname{lat}(x),$$

$$\sigma(x) = \beta_{0,\sigma} + \beta_{1,\sigma} \operatorname{lon}(x) + \beta_{2,\sigma} \operatorname{lat}(x),$$

$$\xi(x) = \beta_{0,\xi},$$

where $\eta(x)$, $\sigma(x)$, $\xi(x)$ are the location, scale and shape parameters of the generalized extreme value distribution and lon(x), lat(x) the longitude and latitude of the stations at which the data are observed.

Model + Simulation settings

1. Conditional distributions

2. MCMC sampler

3. Simulation Study

4. Applications

Precipitation
Temperature

□ We fit a Brown–Resnick process by maximizing the pairwise likelihood with the following trend surfaces

$$\eta(x) = \beta_{0,\eta} + \beta_{1,\eta} \operatorname{lon}(x) + \beta_{2,\eta} \operatorname{lat}(x),$$

$$\sigma(x) = \beta_{0,\sigma} + \beta_{1,\sigma} \operatorname{lon}(x) + \beta_{2,\sigma} \operatorname{lat}(x),$$

$$\xi(x) = \beta_{0,\xi},$$

where $\eta(x)$, $\sigma(x)$, $\xi(x)$ are the location, scale and shape parameters of the generalized extreme value distribution and lon(x), lat(x) the longitude and latitude of the stations at which the data are observed.

- □ Take as conditional event the values observed during year 2000.
- □ Simulate a Markov chain of length 15000 from $\pi_{\mathbf{x}}(\mathbf{z}, \cdot)$ to estimate the distribution of the partition size.
- And perform a bunch of conditional simulations from our fitted model to get a nice map!

Distribution of the partition size

1. Conditional distributions

2. MCMC sampler

3. Simulation Study

4. Applications

Precipitation
Temperature

Table 4: Empirical distribution of the partition size for the rainfall data estimated from a simulated Markov chain of length 15000.

Partition size	1	2	3	4	5	6	7–24
Empirical probabilities (%)	66.2	28.0	4.8	0.5	0.2	0.2	<0.05

- □ Around 65% of the time, the maxima at the 24 locations are a consequence of a single extremal function, i.e., only one storm, and around 30% of the time of two extremal functions.
- □ Focusing only on partitions of size 2, around 65% of the time at least one of the four up-north locations are impacted by a first extremal function while the remaining 20 stations are always influenced by a second extremal function.

Conditional map

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications
- Precipitation
 Temperature

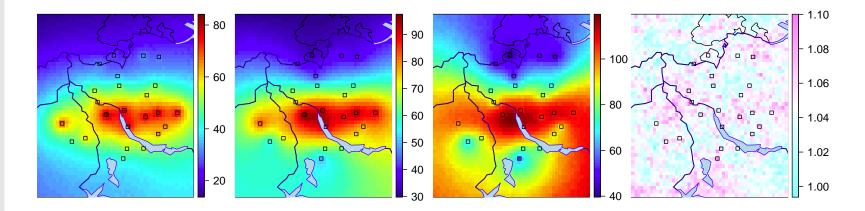


Figure 8: From left to right, maps on a 50×50 grid of the pointwise 0.025, 0.5 and 0.975 sample quantiles for rainfall (mm) obtained from 10000 conditional simulations of Brown–Resnick processes having semi variogram $\gamma(h) = (h/38)^{0.69}$. The rightmost panel plots the ratio of the width of the pointwise confidence intervals with and without taking estimation uncertainties into account. The squares show the conditional locations.

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

Precipitation

> Temperature

☐ We re-analyze the data of Davison and Gholamrezaee (2012), i.e., annual maxima temperature in Switzerland.

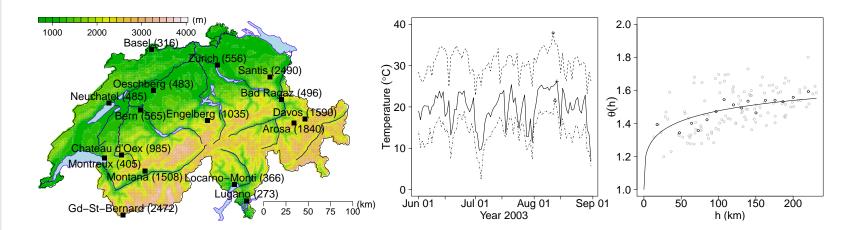


Figure 9: Left: Topographical map of Switzerland showing the sites and altitudes in metres above sea level of 16 weather stations for which annual maxima temperature data are available. Middle: Times series of the daily maxima temperatures at the 16 weather stations for year 2003. The 'o', '+' and 'x' symbols indicate the annual maxima that occurred the 11th, 12th and 13th of August respectively. Right: Comparison between the fitted extremal coefficient function from a Schlather process (solid red line) and the pairwise extremal coefficient estimates (gray circles). The black circles denote binned estimates with 16 bins.

Model

1. Conditional distributions

2. MCMC sampler

3. Simulation Study

4. Applications

Precipitation

> Temperature

We fit a Schlather process by maximizing the pairwise likelihood with the following trend surfaces

$$\eta(x) = \beta_{0,\eta} + \beta_{1,\eta} \operatorname{alt}(x),$$

$$\sigma(x) = \beta_{0,\sigma},$$

$$\xi(x) = \beta_{0,\xi} + \beta_{1,\xi} \operatorname{alt}(x),$$

where $\eta(x)$, $\sigma(x)$, $\xi(x)$ are the location, scale and shape parameters of the generalized extreme value distribution and alt(x) the altitude of the stations at which the data are observed.

Model + Simulation settings

1. Conditional distributions

2. MCMC sampler

3. Simulation Study

4. Applications

Precipitation

> Temperature

☐ We fit a Schlather process by maximizing the pairwise likelihood with the following trend surfaces

$$\eta(x) = \beta_{0,\eta} + \beta_{1,\eta} \operatorname{alt}(x),$$

$$\sigma(x) = \beta_{0,\sigma},$$

$$\xi(x) = \beta_{0,\xi} + \beta_{1,\xi} \operatorname{alt}(x),$$

where $\eta(x)$, $\sigma(x)$, $\xi(x)$ are the location, scale and shape parameters of the generalized extreme value distribution and alt(x) the altitude of the stations at which the data are observed.

- □ Take as conditional event the values observed during the 2003 European heatwave.
- □ Simulate a Markov chain of length 10000 from $\pi_{\mathbf{x}}(\mathbf{z},\cdot)$ to estimate the distribution of the partition size.
- ☐ And perform a bunch of conditional simulations from our fitted model to get a nice map!

Distribution of the partition size

1. Conditional distributions

2. MCMC sampler

3. Simulation Study

4. Applications

Precipitation

> Temperature

Table 5: Empirical distribution of the partition size for the temperature data estimated from a simulated Markov chain of length 10000.

Partition size	1	2	3	4	5–16
Empirical probabilities (%)	2.47	21.55	64.63	10.74	0.61

- ☐ Around 90% of the time, the conditional simulations are a consequence of at most 3 extremal functions;
- □ Inspecting the data, we found that the annual maxima in 2003 occured between the 11th and 13rd of August

Temperature anomalies

- 1. Conditional distributions
- 2. MCMC sampler
- 3. Simulation Study
- 4. Applications

Precipitation

> Temperature

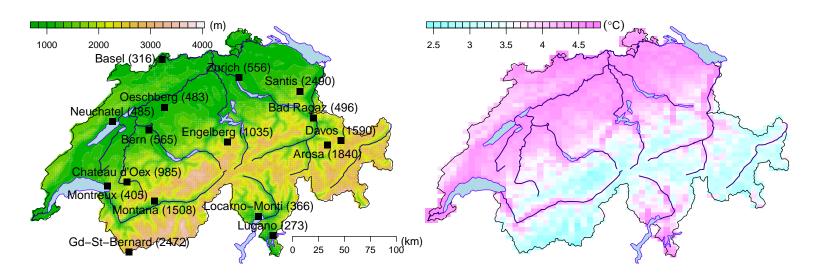


Figure 10: Left: Topographical map of Switzerland showing the sites and altitudes in metres above sea level of 16 weather stations for which annual maxima temperature data are available. Right: Map of temperature anomalies (°C), i.e., the difference between the pointwise medians obtained from 10000 conditional simulations and unconditional medians estimated from the fitted Schlather process.

- ☐ As expected the largest deviations occur in the plateau region of Switzerland
- □ The differences range between 2.5° C and 4.75° C

Global warming mitigation: the academic way...

"Your bright ideas don't seem as bright as they used to."

THANK YOU!

Dombry, C. Éyi-Minko, F. and Ribatet, M. Conditional simulation of max-stable processes. To appear in Biometrika.

(http://arxiv.org/abs/1208.5376)