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Abstract

The estimation of extreme conditional quantiles is an important issue in different scientific
disciplines. Up to now, the extreme value literature focused mainly on estimation procedures
based on i.i.d. samples. On the other hand, quantile regression based procedures work well
for estimation within the data range - i.e. the estimation of nonextreme quantiles - but break
down when main interest is in extrapolation. Our contribution is a two-step procedure for
estimating extreme conditional quantiles. In a first step nonextreme conditional quantiles
are estimated nonparametrically using a local version of the Koenker and Bassett (1978)
regression quantile methodology. Next, these nonparametric quantile estimates are used as
analogues of univariate order statistics in well known extreme quantile estimators. The per-
formance of the method is evaluated for both heavy tailed distributions and distributions
with a finite right endpoint using a small sample simulation study. A bootstrap procedure
is developed to guide in the selection of an optimal local bandwidth. Finally the procedure
is illustrated in three cases.
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1 Introduction

In this paper we study the estimation of conditional quantiles with emphasis on the range be-
yond the data. This problem manifests itself in many areas e.g. an insurance company facing
a fire insurance portfolio is typically interested in the claim size that will be exceeded once in,
say, 10000 cases given additional factors such as sum insured and type of building. The ex-
treme value literature on the estimation of extreme quantiles focuses mainly on the univariate
case see for instance Weissman (1978), Pickands (1975), Dekkers et al. (1989), Dekkers and de
Haan (1989), Beirlant and Matthys (2001a, 2001b). On the other hand, the literature in case
of covariates is very sparse. Recent contributions are the work of Chernozhukov (1998, 2001),
Gijbels and Peng (2000), Charnes et al. (1995). We apply the regression quantile methodology
of Koenker and Bassett (Koenker and Bassett, 1978) in a nonparametric fashion using a two
step procedure. In a first step we locally approximate the conditional quantile function using
a polynomial yielding the regression analogues of univariate order statistics. Next, these non-
parametric regression quantiles are used in a fashion analogous to the use of order statistics
in the i.i.d. case for extrapolating beyond the data. This extrapolation is based on recent ex-
treme value techniques see e.g. Beirlant et al. (1999) and Beirlant and Matthys (2001a, 2001b).
This two-stage procedure generalizes the method based on local maxima proposed in Gijbels
and Peng (2000). Chernozhukov (1998, 2001) gave a theoretical study of modern extreme value
methods based on extreme regression quantiles in order to extrapolate outside the sample range.
Further, these papers by Chernozhukov assume an additive error structure. In the present pa-
per a fully nonparametric approach is pursued, using recent extreme value methods on local
polynomial quantile regression estimates. Recently, Hall and Tajvidi (2000) and Davison and
Ramesh (2000) proposed nonparametric estimates of some tail characteristics by means of ex-
treme value modelling based on the generalized extreme value distribution and the generalized
Pareto distribution, combined with local curve fitting for the corresponding parameter functions.

In section 2 the nonparametric estimation of regression quantiles on the basis of local polynomial
approximations to the true conditional quantile function is discussed. Further it is shown how
univariate extreme value methods can be used in the extrapolation step i.e. the estimation of
extreme conditional quantiles. The performance of this two step method is evaluated in section
3 with a small sample simulation and this for both heavy tailed and right bounded distributions.
Next, in section 4, we discuss a bootstrap procedure to guide in the selection of an optimal local
bandwidth. In a final section the procedure is illustrated with three practical examples.

2 Methodology

Consider a random variable Y whose distribution depends on the covariate x. Without loss of
generality we restrict ourselves to the single covariate case. We denote the conditional distribu-
tion of Y given x by FY |x and the associated quantile function by Q(θ;x). More precisely

Q(θ;x) = inf{y : FY |x(y) ≥ θ} 0 < θ < 1.

Interest lies in estimating Q(θ;x) with θ close to 1 or sometimes Q(x) := limθ↑1Q(θ;x) (finite
right endpoint case). We assume no knowledge about FY |x or Q and follow a nonparametric
approach to estimating the latter. The estimation problem is considered in its full generality
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without any particular structure on the model (e.g. linear additive/multiplicative models).

Suppose a dataset (Y1, x1), . . . , (Yn, xn) of independent observations according to FY |x is given
and we want to use these to estimate Q(θ;x∗) for a fixed x∗. Since Q is unknown we approximate
it locally by a polynomial of degree p centered around x∗ in the following way

Q(θ;x) ≈
p∑

j=0

βj(x− x∗)j

for x sufficiently close to x∗, where βj = βj(θ) = 1
j!

djQ(θ;x)
dxj

∣∣∣
x=x∗

, j = 0, . . . , p. In particular

note that β0 = Q(θ;x∗). Consider a window of size 2h centered at x∗ in which we apply the
above polynomial approximation to Q(θ;x). Within this window we estimate the coefficients of
this approximation as follows:

min
β∈IRp+1

n∑
i=1

I[x∗−h,x∗+h](xi)fθ(Yi −
p∑

j=0

βj(xi − x∗)j) (1)

with fθ(x) = θx+ + (1 − θ)x−, x+ = max(0, x), x− = max(0,−x) and IA(x) = 1 if x ∈ A, 0
otherwise. This optimization problem is a local version of the Koenker-Bassett approach to es-
timating regression quantiles (Koenker and Bassett, 1978). The maximum estimator for Q(x∗)
proposed by Gijbels and Peng (2000) can be obtained as a special case of (1) by setting θ = 1
and p = 0. Noting that the first component of the solution to (1) estimates Q(θ;x∗), we denote
this component by Q̂(θ;x∗).

Before considering further the regression case let us first look at the i.i.d. case in order to mo-
tivate our approach.

Consider Y1, . . . , Yn independent and identically distributed random variables according to dis-
tribution function FY and associated quantile function Q(θ). Denote the ascending order sta-
tistics corresponding to Y1, . . . , Yn by Y1,n ≤ . . . ≤ Yn,n. Further assume that FY is in the
domain of attraction of the Generalized Extreme Value distribution i.e. there exist sequences of
constants (an > 0) and (bn) such that for some γ ∈ IR

lim
n→∞P

(
Yn,n − bn
an

≤ y
)

= exp
(
− (1 + γy)−

1
γ

)
1 + γy > 0. (2)

The parameter γ, called the extreme value index, gives important information about the tail
of the underlying distribution function FY , where tails become heavier with increasing γ. Con-
sequently, γ will play an important role when estimating Q(θ) for θ close to 1. The literature
on estimating γ on the basis of an i.i.d. sample is very elaborate, see for instance Hill (1975),
Pickands (1975), Dekkers et al. (1989), Beirlant et al. (1999), Feuerverger and Hall (1999).

In case γ > 0, the following approximate representation holds for log-spacings of successive order
statistics (Beirlant et al., 1999)

j (log Yn−j+1,n − log Yn−j,n)
D≈
(
γ + bn,k

(
j

k + 1

)−ρ
)
Fj j = 1, . . . , k (3)
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with bn,k ∈ IR, ρ < 0 and Fj , j = 1, . . . , k, independent standard exponential random variables,
from which γ can be estimated jointly with bn,k and ρ using the maximum likelihood method.
Based on this, Beirlant and Matthys (2001a) proposed the following estimator for extreme
quantiles

Q̂
(1)
k (θ) = Yn−k,n

(
k + 1

(n+ 1)(1 − θ)
)γ̂

(1)
k

exp


b̂n,k

1 −
(

(n+1)θ
k+1

)−ρ̂k

−ρ̂k


 (4)

with γ̂(1)
k , b̂n,k and ρ̂k denoting the maximum likelihood estimators for respectively γ, bn,k and

ρ under (3) using k log-spacings of order statistics, k ∈ {3, . . . , n− 1}.

For the more general case where γ can be positive or negative Beirlant and Matthys (2001b)
derived the following approximate model for log-ratios of spacings

j log
Yn−j+1,n − Yn−k,n

Yn−j,n − Yn−k,n

D≈ γ

1 −
(

j
k+1

)γ Fj j = 1, . . . , k − 1 (5)

with γ ∈ IR, Fj , j = 1, . . . , k, independent standard exponential random variables and γ is
estimated using the maximum likelihood method. Model (5) can now be used as a basis for
estimating extreme quantiles, see Beirlant and Matthys (2001b):

Q̂
(2)
k+1(θ) = Yn−k,n + ân,k+1

(
k+1

(n+1)(1−θ)

)γ̂
(2)
k+1 − 1

γ̂
(2)
k+1

(6)

where

ân,k+1 =
1
k

k∑
j=1

j(Yn−j+1,n − Yn−j,n)
(
j

k + 1

)γ̂
(2)
k+1

(7)

and γ̂(2)
k+1 denotes the maximum likelihood estimator for γ under (5) based on the k + 1 upper

order statistics.

Remarks

• By imposing a second order condition on the tail of FY a model more complicated than (5)
can be derived for log-ratios of spacings (Beirlant and Matthys, 2001b). Even though the
more complicated model leads to a smaller bias for the estimators, it gives a substantially
larger variance and thus a larger mean squared error. Therefore, in our work we only
consider the reduced model (5).

• All the above estimators involve the choice of k, the number of upper order statistics used
in the estimation. We will return to this issue when discussing the estimation of extreme
conditional quantiles.

• In the special case where γ < 0 the endpoint limθ↑1Q(θ) is finite and can be estimated by
setting θ equal to 1 in (6).
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We now return to the case of estimating the conditional quantiles Q(θ, x∗) for θ close to 1. The
following two-step procedure is proposed for this estimation problem:

1. Compute Q̂(θ;x∗) for θ = 1
n∗+1 , . . . ,

n∗
n∗+1 with n∗ =

∑n
i=1 I[x∗−h,x∗+h](xi). To ensure

monotonicity, the constraints Q̂( i
n∗+1 ;x∗) ≥ Q̂( i−1

n∗+1 ;x∗), i = 2, . . . , n∗, were imposed.

2. Estimate γ and extreme conditional quantiles based on (3) and (4), or (5) and (6), us-
ing Q̂( i

n∗+1 ;x∗), i = 1, . . . , n∗, taking over the role of univariate order statistics. These

estimates will be denoted by γ̂(1,RQ)
k and Q̂(1,RQ)

k (θ), respectively γ̂(2,RQ)
k+1 and Q̂(2,RQ)

k+1 (θ).

Remarks

• Note that in (1) the estimator Q̂(θ;x∗) remains at Q̂( n∗
n∗+1 ;x∗) for n∗

n∗+1 < θ < 1. This does
not yield sensible estimators beyond the data range. This is illustrated in Figure 1 using
a small sample simulation from the Burr(β, τ, λ) distribution with distribution function
given by

FY (y) = 1 −
(

β

β + yτ

)λ

y > 0; β, λ, τ > 0

for which γ = 1/(λτ) and ρ = −1/λ. The dependence on the covariate x was obtained
by setting τ(x) = exp(1 − x); further we took β = λ = 1 so γ(x) = exp(−1 + x). The
values for the covariate x were drawn from the U(−2, 2) distribution. In Figure 1 we show
Q(0.9999;x) (broken line) and the quartiles of Q̂(0.9999;x) (solid lines) computed over 500
simulated datasets of size n = 500 using p = 2 and h = 0.5. Clearly, a one-step procedure
based on local quantile regression underestimates these extreme conditional quantiles. Step
2 in the above proposed procedure is a way of overcoming this shortcoming.

• Monotonicity of Q̂(θ;x∗) can also be obtained using local versions of restricted regression
quantiles; see He (1997) and Zhao (2000). We experimented with this using as common
slope estimator both the 20% and 50% regression trimmed means but these were found
not to perform well.

3 Simulation design

The methodology described in section 2 was studied extensively through simulation. The dis-
tributions from which we simulated are:

• the Burr(1, exp(1 − x), 1) distribution introduced above,

• the GPD(σ, γ) distribution for which the distribution function is given by

FY (y) = 1 −
(
1 +
γy

σ

)− 1
γ

γ ∈ IR, σ > 0

with support y > 0 if γ ≥ 0 and 0 < y < −σ/γ if γ < 0. In this study we take σ = 1 and
γ(x) = − exp(x), so the conditional endpoint is given by exp(−x).
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Figure 1: Burr(1, exp(1 − x), 1) simulation: Q(0.9999;x) (broken line) and the quartiles of
Q̂(0.9999;x) (solid lines) computed over 500 simulated datasets of size n = 500.

For both distributions 500 datasets of size n = 500 were generated. The values for the covari-
ate x were drawn from the U(−2, 2) distribution. We considered the estimation problem at
x∗ = −1, x∗ = 0 and x∗ = 1. In case γ ≥ 0 the main interest is in estimating the 1 − 1

10n∗
conditional quantile, Q(1− 1

10n∗ ;x∗), for γ < 0 we attempt to estimate the conditional endpoint
limθ↑1Q(θ;x∗). Results are reported for local quadratic approximations to Q(θ;x), i.e. p = 2,
using bandwidths h = 0.25, h = 0.5 and h = 0.75.

Figures 2, 3 and 4 show the results for the Burr(1, exp(1 − x), 1) simulation. In Figure 2 the
quartiles (computed over the 500 simulated datasets) of Q̂(θ;x∗) are shown as a function of θ for
θ = 1

n∗+1 , . . . ,
n∗

n∗+1 at (a) x∗ = −1, (b) x∗ = 0, (c) x∗ = 1 using bandwidths (1) h = 0.25, (2)
h = 0.5, (3) h = 0.75. As h increases the interquartile range decreases as the estimation is based
on a larger number of observations. On the other hand, increasing h leads to a larger bias. The
quartiles of the maximum likelihood estimates for γ using model (3) and regression quantiles are
shown as a function of k, k = 5, . . . , n∗ − 1, in Figure 3 for (a) x∗ = −1, (b) x∗ = 0, (c) x∗ = 1
and (1) h = 0.25, (2) h = 0.5, (3) h = 0.75. Finally, in Figure 4 we give the quartiles of the
1− 1

10n∗ conditional quantile estimates, Q̂(1,RQ)
k (1− 1

10n∗ ), as a function of k, k = 5, . . . , n∗ − 1,
at (a) x∗ = −1, (b) x∗ = 0, (c) x∗ = 1 and (1) h = 0.25, (2) h = 0.5, (3) h = 0.75. Note that ac-
curate estimation is harder as the tail of the underlying conditional distribution becomes heavier.

The corresponding results for the GPD(1,− exp(x)) simulation are shown in Figures 5, 6 and
7. Here, using p = 2 yields only for h = 0.25 sensible estimates for γ(1) and limθ↑1Q(θ; 1). The
poor performance at bandwidths h = 0.5 and h = 0.75 is caused by the bias in the upper regres-
sion quantiles, see Figure 8. Applying a local cubic approximation gives good estimates for all 3
bandwidths considered. From this it can be concluded that the framework of local polynomial
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quantile regression offers extra flexibility which is needed in the given regression context.

Overall we conclude that the choice of the bandwidth is quite important. A bootstrap algorithm
to choose this parameter adaptively is given in the next section.

4 Selection of the bandwidth h

When applying nonparametric techniques, a common issue is the selection of the bandwidth pa-
rameter h. On the one hand, h should be taken sufficiently large in order to have a substantial
number of observations in the interval [x∗ − h, x∗ + h]. On the other hand, h should not be
too large since a large h value will increase the bias due to the fact that the local polynomial
approximation to Q(θ;x) is getting worse. An asymptotic mean squared error (AMSE) crite-
rion could be constructed to guide in the selection of a local optimal h value. Of course, this
requires knowledge of the expressions for the asymptotic variance and bias of Q̂(θ;x∗). Further,
these expressions will depend on the unknown model parameters, making a plug-in of estimates
necessary.

In this paper, the bootstrap estimate of MSE(Q̂(θ;x∗)) defined as

ˆMSE(Q̂(θ;x∗)) = E(Q̂∗(θ;x∗) − Q̂(θ;x∗)|F̂ )2 (8)

with Q̂∗(θ;x∗) the bootstrap estimate of Q(θ;x∗) and F̂ the empirical distribution function, will
be used to guide the selection of the bandwidth parameter h, see also Hall (1990) and Efron
and Tibshirani (1993). Given bootstrap samples (Y ∗

1,b, x
∗
1,b), . . . , (Y

∗
n,b, x

∗
n,b), b = 1, . . . , B, drawn

with replacement from (Y1, x1), . . . , (Yn, xn), (8) can be estimated by

ˆ̂MSE(Q̂(θ;x∗)) =
1
B

B∑
b=1

(Q̂∗
b(θ;x

∗) − Q̂(θ;x∗))2

where Q̂∗
b(θ;x

∗) denotes the estimate of Q(θ;x∗) from bootstrap sample b. The optimal h value
obtained by the bootstrap is then defined as

ĥ∗opt = arg min ˆ̂MSE(Q̂(θ;x∗)).

In Figure 9 the bootstrap procedure is illustrated on the basis of a small sample simulation
from the GPD(1,− exp(x)) distribution introduced above. The values for the covariate x were
drawn from the U(−2, 2) distribution. We considered the selection of an optimal local h for the
estimation of Q(0.999; 1) using p = 2. The results are based on 100 samples of size n = 500. The
bootstrap estimates of MSE(Q̂(0.999; 1)) at a particular h value are based on B = 500 bootstrap
samples. In Figure 9 (a) the histogram of the 100 values of ĥ∗opt for estimating Q(0.999; 1) are
shown. Figure 9 (b) shows the boxplots of the 100 realisations of Q̂(0.999; 1) obtained with the
bootstrap procedure and for some fixed h-values.

Next to the above described bootstrap procedure, used to guide in the selection of an optimal
local h value, we also tried a cross validation procedure developed to obtain a data driven global h
value i.e. a h that performs well over the whole covariate range. Similarly to the cross-validation
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Figure 2: Burr(1, exp(1 − x), 1) simulation: Q(θ;x∗) (black line) and quartiles of Q̂(θ;x∗) (grey
lines) as a function of θ for θ = 1

n∗+1 , . . . ,
n∗

n∗+1 at (a) x∗ = −1, (b) x∗ = 0, (c) x∗ = 1 using (1)
h = 0.25, (2) h = 0.5, (3) h = 0.75.
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Figure 3: Burr(1, exp(1−x), 1) simulation: quartiles of γ̂(1,RQ)
k as a function of k, k = 5, . . . , n∗−

1, at (a) x∗ = −1, (b) x∗ = 0, (c) x∗ = 1 using (1) h = 0.25, (2) h = 0.5, (3) h = 0.75.
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Figure 4: Burr(1, exp(1 − x), 1) simulation: quartiles of Q̂(1,RQ)
k (1 − 1

10n∗ ) as a function of k,
k = 5, . . . , n∗ − 1, at (a) x∗ = −1, (b) x∗ = 0, (c) x∗ = 1 using (1) h = 0.25, (2) h = 0.5, (3)
h = 0.75.
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Figure 5: GPD(1,− exp(x)) simulation: Q(θ;x∗) (black line) and quartiles of Q̂(θ;x∗) (grey
lines) as a function of θ for θ = 1

n∗+1 , . . . ,
n∗

n∗+1 at (a) x∗ = −1, (b) x∗ = 0, (c) x∗ = 1 using (1)
h = 0.25, (2) h = 0.5, (3) h = 0.75.
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Figure 6: GPD(1,− exp(x)) simulation: quartiles of γ̂(2,RQ)
k+1 as a function of k, k = 15, . . . , n∗−1,

at (a) x∗ = −1, (b) x∗ = 0, (c) x∗ = 1 using (1) h = 0.25, (2) h = 0.5, (3) h = 0.75.
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Figure 7: GPD(1,− exp(x)) simulation: quartiles of Q̂(2,RQ)
k (1) as a function of k, k =

15, . . . , n∗ − 1, at (a) x∗ = −1, (b) x∗ = 0, (c) x∗ = 1 using (1) h = 0.25, (2) h = 0.5, (3)
h = 0.75.
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Figure 8: GPD(1,− exp(x)) simulation: Q(θ;x∗) (black line) and quartiles of Q̂(θ;x∗) (grey
lines) as a function of θ for θ = 1

n∗+1 , . . . ,
n∗

n∗+1 at x∗ = 1 using (a) h = 0.5 and (b) h = 0.75.

Figure 9: GPD(1,− exp(x)) simulation: (a) histogram of ĥ∗opt-values for the estimation of
Q(0.999; 1) and (b) boxplots of Q̂(0.999, 1) resulting from using ĥ∗opt and some fixed h-values
(the horizontal line represents the true value of Q(0.999; 1)).
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procedure proposed by Aerts and Claeskens (1997) in the context of local polynomial maximum
likelihood estimation, the optimal h obtained by cross-validation is here defined as

ĥCV = arg min
n∑

i=1

fθ(Yi − β̂0,(i)) (9)

where β̂0,(i) is the local estimator for Q(θ, xi) based on the sample without the i-th observation.
Based on the results obtained from a small sample simulation study, this procedure did not
prove to be useful for practical purposes and hence will not be further considered in this paper.

5 Case studies

In this section we illustrate the proposed two step procedure using three case studies.

5.1 Condroz data

Our first example comes from the pedochemical context. The database contains measurements
on the variables Calcium (Ca) content and pH level for soil samples taken in different cities
in the Condroz (a geographical region in the southern part of Belgium). These data were
already analyzed in Goegebeur et al. (2002) with emphasis on the development of an automatic
procedure for highlighting suspicious points. Here we concentrate on the related problem of
estimating extreme quantiles of the conditional distribution of the variable Ca given pH level.
In Figure 10 (a) we show the scatterplot of Ca content versus pH level for one of the cities. Next
to the global upwards trend of the point cloud, extreme Ca measurements tend to occur more
often for the larger pH levels. Figure 10 (b) shows the bootstrap estimate of MSE(Q̂(0.9; 6)) for
p = 1 as a function of h. This estimated bootstrap MSE attains its mimum at h = 0.44. Next
we applied the exponential regression model (3) to Q̂(θ; pH) for θ = 1

n∗+1 , . . . ,
n∗

n∗+1 and this on

a grid of pH values. The median of γ̂(1,RQ)
k , k = 1, . . . , n∗ − 1, is given as a function of pH in

Figure 10 (c). Finally, in Figure 10 (d) we show the median of Q̂(1,RQ)
k (0.9995), k = 1, . . . , n∗−1,

as a function of pH on the Ca versus pH scatterplot.

5.2 Coca Cola data

Our second example comes from the financial context. Figure 11 (a) shows the daily volumes of
Coca Cola quotes, adjusted for dividends and splits, between January 1, 1980 and December 31,
2000. The data are taken from the web site http://table.finance.yahoo.com/k?s=ko&g=d. We
applied the local estimation procedure discussed above with p = 1 and h = 560. This value for
h minimizes the bootstrap estimate of the mean squared error of Q̂(0.9;x∗), where x∗ is taken
as day 1000 of the dataset (December 13, 1983), cf Figure 11 (b). In Figure 11 (c) we show the
median (over k) of the γ̂(1,RQ)

k as a function of time. Note that, except for the small downwards
trend during the last years, the gamma estimate is quite stable over time. Finally, Figure 11 (d)
shows the median (over k) of the estimated 5 year return level Q̂(1,RQ)

k (1− 1
1250 ) as a function of

time. Exactly 2 observations are above this estimated five year return level which corresponds
approximately to what can be expected over a period of 20 years.
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Figure 10: Condroz data: (a) Ca versus pH scatterplot, (b) ˆ̂
MSE(Q̂(0.9; 6)) versus h for p = 1,

(c) med{γ̂(1,RQ)
k ; k = 5, . . . , n∗ − 1} as a function of pH and (d) scatterplot of Ca versus pH

with med{Q̂(1,RQ)
k (0.9995); k = 5, . . . , n∗ − 1} superimposed.
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Figure 11: Coca Cola data: (a) Volume versus time scatterplot, (b) ˆ̂MSE(Q̂(θ;x∗)) as a function
of h, (c) med{γ̂(1,RQ)

k ; k = 5, . . . , n∗ − 1} as a function of time and (d) scatterplot of Volume
versus time and med{Q̂(1,RQ)

k (1− 1
1250 ); k = 5, . . . , n∗ − 1} (5 year return level) as a function of

time.
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5.3 Electric utility data

Endpoint or boundary estimation is often encountered when studying the relation between
input (e.g. labor, capital) and output (e.g. goods produced) of firms in a productivity analysis.
Clearly, given a certain amount of input, the possible output is bounded above. This upper
bound is the so-called efficiency curve. We use a data set on 123 American electric utility
companies to illustrate this aspect of the methodology given above. This data set was also
used in Gijbels and Peng (2000). Figure 12 (a) shows the Output versus log(Cost) scatterplot.
Because of the sparseness of the observations with log(Cost) < 1 we restricted the analysis to

the observations with 1 ≤ log(Cost) ≤ 6. In Figure 12 (b) we show ˆ̂MSE(Q̂(0.9; 3)) as a function
of h. Application of the bootstrap procedure at different log(Cost)-values indicated the need for
a covariate dependent bandwidth parameter. The γ estimates at k = n∗ − 1 shown in Figure
12 (c) were obtained by using h = 0.5 if log(Cost) < 3.5 and h = 1 otherwise. This choice
was clearly indicated by the bootstrap algorithm. To avoid difficulties in the estimation of the
conditional endpoints, the γ estimates were bounded away from 0. However, as can be seen in
the plot, this constraint is active only at a small number of log(Cost)-values. Finally, in Figure
12 (d) we give the Output versus log(Cost) scatterplot with the estimated conditional endpoint
superimposed.

6 Conclusion

We have proposed a flexible nonparametric method for estimating extreme quantiles in a regres-
sion setting. In this two-stage procedure we combine the merits of local polynomial quantile
regression (first step) and recent extreme value methods (second step) in order to obtain a gen-
eral and effective technique in comparison with earlier attempts from the literature. In future
work we intend to complete this study with inferential tools based on the given quantile esti-
mates. To this end asymptotic results based on the work of Chernozhukov (1998, 2001) could
be pursued.
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