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S

We present properties of a dependence measure that arises in the study of extreme
values in multivariate and spatial problems. For multivariate problems the dependence
measure characterises dependence at the bivariate level, for all pairs and all higher orders
up to and including the dimension of the variable. Necessary and sufficient conditions are
given for subsets of dependence measures to be self-consistent, that is to guarantee the
existence of a distribution with such a subset of values for the dependence measure. For
pairwise dependence, these conditions are given in terms of positive semidefinite matrices
and non-differentiable, positive definite functions. We construct new nonparametric esti-
mators for the dependence measure which, unlike all naive nonparametric estimators,
impose these self-consistency properties. As the new estimators provide an improvement
on the naive methods, both in terms of the inferential and interpretability properties, their
use in exploratory extreme value analyses should aid the identification of appropriate
dependence models. The methods are illustrated through an analysis of simulated multi-
variate data, which shows that a lack of self-consistency is frequently a problem with the
existing estimators, and by a spatial analysis of daily rainfall extremes in south-west
England, which finds a smooth decay in extremal dependence with distance.

Some key words: Dependence measure; Extreme value; Max-stable process; Multivariate extreme-value
distribution

1. I

Techniques for modelling and estimating the dependence structure of multivariate and
spatial processes are well established when the variables or processes are Gaussian. For
example, for Gaussian vector variables the dependence is characterised by a positive
semidefinite covariance matrix. Similarly, for stationary d-dimensional spatial processes
dependence is described by a correlation function, r(h), of pairwise spatial separation
hµRd, which must be a positive definite function (Chilès & Delfiner, 1999, p. 60). Beyond
the Gaussian family very broad but complex forms of dependence structure are possible,
which makes model building difficult in problems of three or more variables. Consequently,
in multivariate and spatial problems attention has often focused on obtaining dependence
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measures that capture the main characteristics of the dependence structure; see for example
Cox & Wermuth (1996, Ch. 2), Joe (1997), Hutchinson & Lai (1991, Ch. 5) and Ekholm
et al. (1995, 2000).
We focus on a particularly rich family of multivariate distributions and spatial processes

that arise in the study of extreme values. We investigate the properties of a natural depen-
dence measure for this family. First consider the dependence measure in the multivariate
case, the spatial setting being considered in § 3. Let X= (X1 , . . . , Xm ) be an m-dimensional
vector variable. To simplify the presentation, throughout the paper we take all the univari-
ate marginal distributions of X to be unit Fréchet, so that pr (X

i
<z)=exp (−1/z), for z>0

and i=1, . . . , m. There is no loss of generality in this assumption as our interest is only
in the dependence structure of the variables, that is the copula, and in practice the variables
can be marginally standardised before dependence is considered. In § 4 we discuss this
further and § 5 contains such an example.
To study the extremal dependence of the variable X it is standard to consider the joint

distribution of the componentwise maximum of n independent replicates of the variable
(de Haan & Resnick, 1977; Tawn, 1990; Coles & Tawn, 1994). Under weak conditions,
see Resnick (1987, Ch. 5) for details and Schlather (2001a) for a family of counterexamples
in a similar context, for all AkM

m
={1, . . . , m} there exists a real number h

A
, with

1∏h
A
∏|A | , such that the normalised maximum of all the variables indexed by the set A

converges to a Fréchet-distributed variable with parameter h
A
; that is

lim
n�2
pr AmaxiµA max

j=1,...,n
X(j)
i

/n<zB= limn�2 qpr A maxj=1,...,n
X(j)
1

/n<zBrhA=exp (−hA/z),
(1)

for all z>0, where X(j)
i
is the jth replicate of variable X

i
. Here h

A
measures the extremal

dependence between the variables indexed by set A and, following the unpublished
University of Surrey technical report on ‘Max-stable processes and spatial extremes’ by
R. L. Smith, see Coles & Tawn (1996), we term h

A
the extremal coefficient of these variables.

The simple interpretation of h
A
as the effective number of independent variables in the set

A from which the maximum is drawn has led to its use as a dependence measure in a
range of practical applications (Buishand, 1984; Tawn, 1988, 1990).
A collection of extremal coefficients that characterise dependence at bivariate level and

all higher orders up to and including all m variables is determined by the distribution of
X. To be specific, the set of all statistically relevant extremal coefficients for X is
{h
A

: AµC
m
}, where C

m
=2M

m
c{B} is the ensemble of all nonempty subsets of M

m
and

h
{i}
=1, for all i=1, . . . , m.We simplify the notation using h

i
=h
{i}

, h
ij
=h
{i,j}

, h
i
=h
ii
, and

so on, where no confusion can arise.
To illustrate the type of property that the collection {h

A
: AµC

m
} must satisfy, and the

connections between the extremal coefficients and similar known Gaussian conditions,
first consider pairwise dependence measures and examine the conditions these must satisfy
for Gaussian and extreme-value dependence problems. If Z= (Z1 , . . . , Zm ) follows a multi-
variate normal distribution, with r

ij
being the (i, j )th element of the correlation matrix S,

then a necessary and sufficient condition for a set of r
ij
values to be self-consistent is that

all the eigenvalues of S be nonnegative. This condition can easily be tested for numerically,
but is analytically simple only in the trivariate case, where the conditions simplify to
−1∏r12∏1, −1∏r13∏1, and

max{b
L
,−1}∏r23∏min{bU , 1},
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where

b
L
=r12r13− (1−r2

12
)D(1−r2

13
)D, b

U
=r12r13+ (1−r2

12
)D(1−r2

13
)D.

The same issues arise in different ways for the extremal coefficients. Although a general
tight solution to this problem in the extreme-value case is not tractable, some partial
conditions may be given (Schlather & Tawn, 2002). In the trivariate case the pairwise
extremal coefficients are self-consistent provided 1∏h12∏2, 1∏h13∏2 and

1+|h12−h13 |∏h23∏min{2, h12+h13−1}. (2)

For non-Gaussian dependence structures, higher-order dependence generally is not
determined by pairwise dependence. Here, we will explore the associations between depen-
dence of different orders for extreme values. This topic has been considered generally; for
example, the Fréchet bounds impose structure on joint distributions given the lower-order
structure of the distribution; see Joe (1997) for recent developments. In the extreme-value
context only Tiago de Oliveira (1962/63) has studied this feature, showing that pairwise
independence for all pairs implies independence for all higher-order dependencies.
Benefits from obtaining this detailed understanding of dependence are as follows: it

enables the incorporation of a self-consistency property into the estimation of the set of
extremal coefficients so that the existence of a distribution corresponding to the estimated
set of extremal coefficients is guaranteed; the contradictions in interpretation are avoided
that arise when estimators of dependence are not self-consistent; and they provide insight
for subsequent model building. We shall illustrate the use of the former in multivariate
problems in proposing a joint estimation scheme for a set of extremal coefficients which
improves on independent estimation of each, and the use of the latter in the context of
building a spatial model for extremes. Furthermore, ensuring self-consistency of the esti-
mates for the extremal coefficients is desirable when obtaining inferences on the extremal
behaviour of max

iµA
X
i
if various subsets A of M

m
are considered simultaneously.

In § 2 we review properties for h
A
in the multivariate case; we illustrate these with

theoretical examples, discuss numerical issues and make comparisons with the correlation
coefficients of Gaussian distributions. In § 3 the concept of the extremal coefficient is
extended to the extremal coefficient function, a pairwise measure of spatial dependence in
extremes, and properties and examples are given. In § 4 an inference scheme for the
extremal coefficient is developed and this is illustrated through a simulation study. Finally,
in § 5 the methods are applied to daily rainfall extremes from a network of sites in the
south-west of England for which we have a small number of sites of continuous time series
of daily aggregated rainfalls, and many sites with only annual maximum daily rainfalls.

2. M 

2·1. Multivariate extreme-value distributions

The defining representation (1) of h
A
arises as a special property of the complete class

of limiting distributions for componentwise maxima of independent and identically distri-
buted variables X(1), . . . , X(n) with the same distribution as X. Provided that weak
conditions in Resnick (1987, Ch. 5) hold, then

lim
n�2
pr A maxj=1,...,n

X(j)
i

/n<z
i
; i=1, . . . , mB=G

m
(z1 , . . . , zm ),

where the limit G
m
is a member of the class of multivariate extreme-value distributions
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with Fréchet margins. The complete class is characterised by the function V, where

V (z1 , . . . , zm )=−logG
m
(z1 , . . . , zm )= P

S
m

max
iµM
m
Awiz
i
B dH

m
(w1 , . . . , wm ). (3)

Here S
m
is the (m−1)-dimensional unit simplex and H

m
is a measure which has all its

marginal expectations equal to 1; compare Pickands (1981). Combining representations
(1) and (3) gives

h
A
= P
S
m

max
iµA

w
i
dH
m
(w1 , . . . , wm ) (AµC

m
). (4)

Thus it is clear that the ensemble of the h
A
, for AµC

m
, satisfies a range of properties

including strong relationships between the values of h
A
, for different A, that are imposed

through the integral representation (4) by the range of possible structures for H
m
.

Furthermore, if X follows a multivariate extreme-value distribution then, for all AµC
m
,

h
A
is an exact dependence measure and does not rely on asymptotic arguments.

2·2. Properties of extremal coeYcients

The theoretical properties of the collection of extremal coefficients to be used as depen-
dence measures need to be established so that estimates of the dependence measure can
be constructed so as to possess these properties. In this section we present a summary of
relevant marginal and joint properties satisfied by a collection of extremal coefficients.
Whatever continuous marginal distributions X= (X1 , . . . , Xm ) has, the first equality in

equation (1) holds provided the normalisation by n is replaced by an appropriate location
and scale form such that the limit is nondegenerate. It follows that the extremal coefficient
is invariant to strictly increasing transformations of the marginal distributions. This is an
important feature of a dependence measure, despite not being satisfied by the correlation
coefficient.
From equation (1), it is seen that h

A
is invariant to the labelling of the variables in A.

Also, from the convexity of representation (4), we have that 1∏h
A
∏|A | for any AµC

m
with these boundary values corresponding to the variables in A being completely depen-
dent or independent respectively.
Let G(1)

m
and G(2)

m
be two extreme-value distributions with unit Fréchet margins that

have the same set of extremal coefficients. If Y (i) follows G(i)
m
for i=1, 2 then

pr{Y (1)
i
<z; iµA}=pr{Y (2)

i
<z; iµA}

for any AµC
m
and zµR. However, the set of extremal coefficients does not characterise

G
m
completely. To illustrate this fact we present a range of distributions for which there

exist parameter values so that h
12
=h for any hµ[1, 2].

Example 1. The distribution of the asymmetric logistic (Tawn, 1990) is given by

V (z1 , . . . , zm )= ∑
cµC
m

q∑
iµc

(j
c,i

/z
i
)1/r
cr1/rc , (5)

where r
c
�1 for all cµC

m
. For i=1, . . . , m we have j

c,i
=0 if iNc, j

c,i
�0 if iµc, and

W

cµC
m

j
c,i
=1. Then, for AµC

m
,

h
A
= ∑
cµC
m

A ∑
iµc]A

jr
cc,iB1/rc .
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This model is dimension-specific, in that h
A
is determined by parameters that describe a

higher order of structure than among the variables indexed by A. For m=2, j1,1=j2,2=
0 and j12,1=j12,2=1 we obtain the logistic dependence model

V (y, z)= (y−1/a+z−1/a)a (0<a=r−1
12
∏1)

and pairwise extremal coefficient h12=2a .

Example 2. The distribution of the asymmetric negative logistic (Joe, 1990) is given by

V (z1 , . . . , zm )= ∑
m

k=1

1

z
k
− ∑
cµC
m
:|c|�2

(−1)|c| q∑
iµc

(j
c,i

/z
i
)rr1/r ,

where r∏0 for all cµC
m
. For i=1, . . . , m we have j

c,i
=0 if i1c, j

c,i
�0 if iµc, and

W

cµC
m

(−1)|c|j
c,i
∏1. Then, for AµC

m
,

h
A
=|A |− ∑

cµA:|c|�2
(−1)|c|A∑

iµc
jr
c,iB1/r .

Unlike for the asymmetric logistic model, the parameters that determine h
A
only relate to

dependence of order |A | and lower. For m=2 we have

V (y, z)=y−1+z−1−{(j12,1/y)r+ (j12,2/z)r}1/r, h12=2− (jr
12,1
+jr
12,2

)1/r,

where j12,1 and j12,2 are in [0, 1] and r∏0.

Example 3. A family of distributions that is completely determined by the set of all
pairwise extremal coefficients h

ik
can be obtained as a multivariate version of a spatial

process developed in Schlather (2002); see also § 3·4. The distribution arises as the limit
distribution of componentwise maxima of a heteroscedastic multivariate series of variables.
Let Z(j)= (Z(j)

1
, . . . , Z(j)

m
) be the jth independent copy of the standard Gaussian random

vector with correlation matrix (j
ik
), and let t(1), t(2), . . . be a sequence of identically distri-

buted volatility variables with heavy-tailed distribution F
t
: 1−F

t
(x)~cx−1. If c= (2p)D

and X(j)=t(j)Z(j) then it follows that h
ik
=1+2−D(1−j

ik
)D, at least if the t(i) are indepen-

dent. Consequently, any set of pairwise extremal coefficients is self-consistent provided
the matrix with (i, k)th element 1−2 (h

ik
−1)2 is positive definite.

Example 4. A special case of the asymmetric logistic distribution arises as a limit by
letting j

c,i
=t
c
, for all iµc, and r

c
�2, for all cµC

m
, to give

V (z1 , . . . , zm )= ∑
cµC
m

t
c
max
iµc

z−1
i

.

This corresponds to H
m
being a discrete measure. Here W

c+i
t
c
=1 for all iµM

m
, and, for

AµC
m
,

h
A
= ∑
cµC
m
:c]ANB

t
c
.

The class of distributions given in Example 4 is able to model any set of extremal
coefficients for any multivariate extreme-value distribution with unit Fréchet margins, a
property made precise by Theorem 1.

T 1. Assume that the distribution of the random variable Y= (Y1 , . . . , Ym ) is a
member of the class of multivariate extreme-value distributions with unit Fréchet margins.
Suppose also that the set of extremal coeYcients of Y is {h

A
: AµC

m
}. T hen there exist
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2m−1 independent, unit Fréchet-distributed random variables T
c

and constants 0∏t
c

for cµC
m
, where W

c,c+i
t
c
=1, for i=1, . . . , m, such that the random variables

U={U1 , . . . , Um} given by

U
i
=max
c,c+i
t
c
T
c

(6)

have the same set of the extremal coeYcients, of any order, as Y. Furthermore

h
A
= ∑
cµC
m
,c]ANB

t
c

(AµC
m
),

and the t
c
are uniquely given by

t
c
= ∑
AµC
m
,AlM

m
cc

(−1)|A]c|+1h
A

(cµC
m
). (7)

Schlather & Tawn (2002) give a generalisation and a proof of Theorem 1. It can be
easily seen that the 2m−1 independent variables used in representation (6) correspond to
the minimum number that are required so that the extremal coefficients of U and Y are
identical for all possible dependence structures of Y.
In the estimation of extremal coefficients, the problem of finding whether or not a set

of extremal coefficients is consistent is solved from a theoretical point of view: if all t
c
in

expression (7) are in [0, 1], then the set is self-consistent. The difficulty with these con-
ditions is that the number of conditions to be checked equals 2m−1 for m variables; that
is O(22m ) computational operations have to be performed. The equivalent calculation for
the multivariate Gaussian case involves O(m3 ) calculations to check the required inequalit-
ies on the eigenvalues of the correlation matrix. The practical applicability of inequalities
obtained from Theorem 1, in its full generality, is therefore rather limited.
In general, bounds on a specific extremal coefficient given a self-consistent subset of

extremal coefficients can be obtained by linear programs, where the extremal coefficient
of interest is the target function and the bounds are derived from the constraint that t

c
�0

in expression (7). Such a linear program can be solved numerically only for relatively
small m since the number of auxiliary variables involved is O(2m ). Schlather & Tawn
(2002) show that in some special cases explicit conditions on the extremal coefficients can
be given to ensure that the set is, or can be expanded to, a set of extremal coefficients
that satisfies property (7). For example, if the extremal coefficients h

A
for AµC

m
c{M
m
}

are given and the set is self-consistent, then h
M
m

is bounded by the sharp bounds

max q ∑
AµC
m
c{M
m
}

Alc

(−1)|Acc|h
Ar∏hMm∏min q ∑

AµC
m
c{M
m
}

Alc

(−1)|Acc|+1h
Ar ,

where the maximum and minimum are both over the set cµC
m
such that |M

m
cc |mod 2=

1 and 0 respectively. To clarify notation and to provide an understanding of these bounds
consider the case of m=3, in which case the bounds are

max{h12 , h13 , h23 , h12+h13+h23−3}∏h123∏h12+h13+h23−1−max{h12 , h13 , h23}.

(8)

The term max{h12 , h13 , h23} is a sharp lower bound if there is strong dependence, whereas
h12+h13+h23−3 is a sharp lower bound if the random variables are nearly independent.
In practice the pairwise dependence measures are the most useful, and a range of results
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exists for these including conditions (2), which are a consequence of Theorem 1, and the
following new conditions given by Theorem 2.

T 2. A necessary condition for a set of pairwise extremal coeYcients h
ij

to be
self -consistent is that the matrix (2−h

ij
)
i,j=1,...,m

be positive semidefinite. T he positive
definiteness of the matrix {1−2(h

ij
−1)2}

i,j=1,...,m
is a suYcient condition.

The necessary condition is shown in the Appendix, and the sufficient condition is given
by Example 3 above. These self-consistency constraints will be used in § 4 to improve the
estimation of the extremal coefficients.

3. S 

3·1. Extremal coeYcient function

Let X(x) be a stationary random field for xµRd with unit Fréchet margins. Let X(j) (x)
be independent replicates of the random field X(x) for j=1, . . . , n. To study the extremal
dependence of the process X(.) we focus on the componentwise maximum of the n
replicates. Under weak conditions (de Haan, 1984), there exists a real-valued function h( . )
such that the asymptotic distribution of the normalised maximum at a pair of locations
separated by h is Fréchet-distributed with scale parameter h(h); that is, for z>0,

lim
n�2
pr C maxj=1,...,n

max{X(j) (h), X(j) (o)}/n∏zD=exp{−h(h)/z}

for all hµRd, where o denotes the origin. We term h( . ) the extremal coefficient function.
We focus on this function as it provides sufficient information about extremal dependence
for many problems even though it measures the pairwise structure only.

3·2. Max-stable processes

By definition a max-stable process Y in Rd with unit Fréchet margins is a random field
that has all its higher-order marginal distributions belonging to the class of multivariate
extreme-value distributions with unit Fréchet margins. An important class is defined by

Y (x)= max
j=1,2,...

f
j
g(s
j
, x),

where f and s can be interpreted as the magnitude and type of a storm respectively, and
g as determining the shape of the event over the region, so that f

j
g(s
j
, x) is the size of the

jth storm at location x. The sizes and the types of the storms are all assumed to be
independent. Technically, {(f

j
, s
j
) : j=1, 2, . . .} are the points of a Poisson process P on

the space (0,2 )×S, for some parameter space S of the types of storm, with the intensity
of P given by f−2 dfn(ds), and g is a nonnegative function which is measurable in the first
argument and upper semicontinuous in the second; see de Haan (1984) and Giné et al.
(1990). For Y (x) to have unit Fréchet margins we require that

P
S

g(s, x)n(ds)=1

for all xµRd. It follows that, for any semicontinuous function y,

pr{Y (x)∏y(x) for all xµRd}=exp q− P
S
max
xµRd

g(s, x)

y(x)
n(ds)r .
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If Y (.) is stationary then, for all z>0 and hµRd,

pr{Y (h)∏z, Y (o)∏z}=exp{−h(h)/z},

where

h(h)= P
S
max{g(s, o), g(s, h)}n(ds). (9)

Clearly, the right-hand side of relationship (9) restricts the functions h( . ) can take. For
example, if g is an indicator function then 2−h( . ) is a geometric covariance function
(Matheron, 1987) and, conversely, any geometric covariance function for sets with unit
Lebesgue measure is a model for 2−h( . ).

3·3. Properties of the extremal coeYcient function

From the connections with the extremal coefficient of two variables, a number of proper-
ties of the extremal coefficient function are immediate: invariance to marginal distribution;
symmetry about the origin; h(o)=1; 1∏h(h)∏2 for hµRd with the lower and upper
bounds corresponding to complete dependence and independence at separation h respect-
ively; if Y is a max-stable process the extremal coefficient function is an exact dependence
measure; and any finite convex combination of extremal coefficient functions is an extremal
coefficient function. Additional properties of the extremal coefficient function are presented
in Theorem 3, whose proof is given in the Appendix.

T 3. L et h(h), for hµRd, be an extremal coeYcient function belonging to a
stationary max-stable process in Rd. T hen the following assertions hold.
(i ) T he function 2−h(h) is positive semidefinite.
(ii ) Function h( . ) is not diVerentiable at the origin unless h(h)=1 for all hµRd.
(iii ) If the dimension of the random field is greater than or equal to two and if the random

field is isotropic, then h( . ) has at most a jump at the origin and is continuous elsewhere.

Theorem 3 shows that the dependence structure of a stationary random field can be
characterised by a positive definite function, even if the random field does not have a
variance or expectation. Only a subset of all positive definite functions are valid extremal
coefficient functions; for example the Gaussian correlation model exp(−dhd2 ) is not
allowed since it is differentiable at the origin. This feature is shared with other classes of
distribution; see Matheron (1987) for restrictions on random fields with multivariate log-
normal marginal distributions, for instance. If the assumptions of Theorem 3(iii) are not
satisfied then h( . ) is not necessarily continuous anywhere; for example h(h)=2−I(hµQ)
is a valid extremal coefficient function in one dimension, where I(hµQ) is the indicator
of the rationals.

3·4. Examples

To illustrate the properties derived in § 3·3 for the extremal coefficient function we
consider two max-stable models. The previously mentioned technical report by R. L.
Smith, see Coles (1993), gives a range of models with deterministic shape functions of
which probably the most useful is the Gaussian storm shape model, illustrated in Coles
& Tawn (1996). In two-dimensional space, the model is formulated as follows: storm types
are determined by the positions of their centres sµR2, with n(ds) being Lebesgue measure,
and the storm intensity at location x is given by g(s, x)=Q2 (x−s, S2 ) where Q2 is the
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density function of a zero-mean bivariate normal vector with covariance matrix S2 . Smith’s
report shows that the joint distribution G

h
of {Y (o), Y (h)} satisfies

− logG
h
(y, z)=y−1W A12 bh+b−1h log z

yB+z−1W A12 bh+b−1h log y

zB , (10)

where b
h
= (hTS−1

2
h)D and W is the standard normal distribution function. The extremal

coefficient function is therefore h(h)=2W(b
h
/2). The bivariate distribution (10) and also

the higher-order joint distributions for this process correspond to multivariate distri-
butions derived by Hüsler & Reiss (1989).
Models with stochastic shape functions are proposed by Schlather (2002). The extremal

Gaussian model Y is defined as

Y (x)=max
t
j
µP

t
j
max{0, Z(j) (x)},

where P is the Poisson process on the positive real axis with intensity l(t)= (2p)Dt−2 for
t>0, and the Z(j) (x) are independent stationary Gaussian random fields in Rd with stan-
dard marginals and correlation function r(h), for hµRd.
In this context t

j
represents the size of the storm and max{0, Z(j) (x)} is the shape of the

jth storm. Thus the shape is stochastic, but with a common latent structure of dependence.
For this process it is shown that the bivariate distribution for two locations a distance h
apart is

pr{Y (o)∏y, Y (h)∏z}=exp q−(z−1+y−1 )a
h A y

y+zB r ,
where

a
h
(j)=

1

2
+C14− 1

2
{r(h)+1}j(1−j)DD .

Hence, the extremal coefficient equals

h(h)=1+2−D{1−r(h)}D (hµRd ). (11)

This class is completely characterised by h( . ) or r( . ) as (11) defines a 1–1 relationship.
Although h( . ) can take values in [1, 2], for practically relevant, stationary and isotropic,
random fields of dimension 2 or higher, there are restrictions on h( . ); for example,
lim
dhd�2

h(h)∏1+2−D, h( . )∏1·838 in R2, and h( . )∏1·781 in R3. That is, independence
cannot be obtained for stationary and isotropic extremal Gaussian processes. The restric-
tions follow from the properties of isotropic positive definite functions; see Matérn (1986,
p. 16) and Schoenberg (1938).

4. E

4·1. Introduction

We study flexible nonparametric estimators which are ideal for use in exploratory
studies. A number of such naive estimators for the extremal coefficient are easily con-
structed, but none of these yields self-consistent sets of coefficients in general. In the
multivariate case, we present different strategies for achieving self-consistent estimators,
for which numerical solutions can be given in relatively small dimensions. For the spatial
case we aim to provide diagnostics only, so self-consistency of estimators is less important.
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Whatever the marginal distributions of the data, the values are first transformed to
Fréchet values. We assume that the data are observations on independent and identically
distributed variables so we can use the empirical probability integral transformation separ-
ately for each margin; that is only the ranks of the marginal values are used. We presume
this transformation has been made to all Fréchet marginal data, even when the data are
generated from a Fréchet distribution explicitly. For data which are nonidentically distrib-
uted in its marginal structure over observations, but have a dependence structure which
is invariant over observations, some modelling assumptions are required to construct an
appropriate transformation to Fréchet marginal distributions. A natural starting point is
to use covariate models for the marginal tail behaviour; see Smith (1989) and Hall &
Tajvidi (2000a).

4·2. Naive estimators

Assume that we have observations X(1), . . . , X(n) which are independent m-variate
random vectors with unit Fréchet margins and are in the domain of max-attraction of a
multivariate extreme-value distribution. It follows that the univariate variable max

iµA
X
i

is in the domain of attraction of the extreme-value distribution function exp(−h
A
/x) for

x>0. Following standard univariate threshold methods, we assume that the distribution
of max

iµA
X
i
is identical to exp (−h

A
/x) for x>0 above some high threshold level, z, and

we estimate the h
A
using a censored likelihood approach; see Smith (1989) and Nadarajah

et al. (1998). We refer to the threshold by the marginal probability t of not exceeding z,
that is t=exp (−1/z). Then the loglikelihood for h

A
, for AµC

m
, is given by

l
A
(h
A
)=card q j : maxiµA (X(j)

i
X9 i )>zr log hA−hA ∑n

j=1
Cmax qz, maxiµA (X(j)

i
X9 i )rD−1 ,

where X9 i=n−1 Wn
j=1

1/X(j)
i
and the corresponding maximum likelihood estimator is

denoted by h@
A,t
. The Fréchet variables are scaled by X9 i to ensure that h

@
i
=1 when t=0.

For t=0, h@
A,t
reduces to a variant of the Hall & Tajvidi (2000b) estimator that has been

introduced to estimate the V function of a multivariate extreme-value distribution. In the
following we denote h@

A,0
by h@
A,HT . As h

@
A,HT is not restricted to [1, |A |], we also consider

the estimator h@
A,b , which truncates h

@
A,HT to [1, |A |].

4·3. Self -consistent estimators

Two different strategies for building self-consistent estimators are proposed, namely
sequential correction of naive estimators and direct estimation of the set of extremal
coefficients under consideration of the inequalities in Theorem 1. The choice of approach
depends on the size of the problem, with the sequential-correction method being much
the faster algorithm but requiring an ordering of the extremal coefficients in which the
values are corrected and which in general is arbitrary.
For sequential correction, we correct coefficients in the order of increasing values of

|A | . For equal values of |A | the correction is made in a randomly selected order unless
some coefficients are estimated with more certainty than others, in which case the better
estimated coefficients are corrected first. The ensemble of all consistent sets of extremal
coefficients is convex, and the admissible set of values for a specific coefficient, given a
consistent subset of {h

A
: AµC

m
}, is an interval to which an estimate is truncated. We

denote by h@
A,s the sequentially-corrected Hall & Tajvidi (2000b) estimator.

The direct approach is based on joint estimation of the set of extremal coefficients
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subject to the estimates being constrained to be self-consistent. We construct a joint
loglikelihood function l of {h

A
: AµC

m
} by falsely assuming independence between the

observations of max
iµA

X
i
for all different A to give the pseudo-loglikelihood function

l= ∑
AµC
m
, |A|�2

l
A
(h
A
). (12)

It is easily shown that the maximum pseudolikelihood estimator is consistent; see Liang
& Self (1996). We maximise the pseudolikelihood subject to the parameters {h

A
: AµC

m
}

satisfying the condition that t
c
�0 in expression (7). We denote the resulting estimator of

h
A
by h@
A,m
.

4·4. Simulation study: Multivariate case

We investigate the logistic distribution and restrict ourselves to the trivariate case for
simplicity. To reduce further complexity we choose a pairwise symmetric case, that is

j1=j1,1=j2,2=j3,3 , j2=j12,1=j12,2= . . .=j23,3 , j3=j123,1=j123,2=j123,3
in (5), where j1+2j2+j3=1. Let r2 and r3 be the exponents corresponding to j2 and
j3 , respectively. Then

h
ik
=2j1+ (2+21/r

2
)j2+21/r

3
j
3
, h
123
=3j1+21/r

2
3j2+31/r

3
j3 .

The sequence of correction for h@
A,s that we use is h12 , h23 , h13 , h123 ; hence h

@
A,s is identical

to h@
A,b for A={1, 2}, {2, 3}. Numerical maximisation of l in (12) is performed with the

simulated annealing algorithm implemented in R (Ihaka & Gentleman, 1996). In order
to compare the performance of the estimators, we choose as a measure

a
A
=h−1
A

[E{(h@
A
−h
A
)2}]D.

The number of replicates n on which a single estimation is based is taken to be 6, 10, 20,
40, 100 and 1000, and the estimation of a

A
is based on 500 simulations for each parameter

specification.
Figure 1 presents the simulation results when the parameter vector (j1 , j2 , j3 , r2 , r3 )
equals (0·2, 0·3, 0·2, 2, 2) and (0, 0, 1, 1, 10

3
), so that (h

ik
, h
123
) equals (1·71, 2·21) and

(1·23,1·39), respectively. Figures 1(a)–(f ) show that improvement of h@HT is obtained by
marginal correction, h@b , and a further improvement is obtained by sequential correction,
h@s . Depending on the true parameter and the extremal coefficient being estimated, the
performance of the pseudolikelihood estimator is comparable to or better than h@HT . All
h@s and h

@
m
estimates are self-consistent, whereas the proportion of self-consistent estimates

of h@HT and h
@
b is low for relatively small n, with h

@
b being marginally the better of the two;

see Figs 1(c) and (f ).

4·5. Empirical extremal coeYcient function

Analysing and modelling spatial extremes raises additional difficulties, as the data are
both high-dimensional and sparse. ‘High-dimensional’ means ‘of order 50’, which is far
from what can be treated in multivariate extreme-value statistics. On the other hand, in
classical geostatistics, several hundred observations are necessary to estimate reliably the
dependence structure of a Gaussian random field, even when stationarity and isotropy in
one form or the other are assumed. In contrast we have many replications in time for
each site, so the estimates of dependence for any pair of sites should have relatively small
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Fig. 1: Simulation study. Quality, a, of the estimators as a function of the number n of independent random
vectors on which h@

A
is based; (j1 , j2 , j3 , r2 , r3 )= (0·2, 0·3, 0·2, 2, 2) in (a)–(c) corresponding to (h

ik
, h
123
)=

(1·707, 2·219) and (j1 , j2 , j3 , r2 , r3 )= (0, 0, 1, 1, 10
3
) in (d)–(f ) corresponding to (h

ik
, h
123
)= (1·231, 1·390); (c)

and (f ) show percentage of self-consistent estimates plotted against n.

variability by comparison to problems in classical geostatistics. Here we study the esti-
mation of the pairwise dependence structure of stationary and isotropic max-stable
random fields, that is the extremal coefficient function h(h).
Recall that, by Theorem 3, h(h)−1 is a conditionally negative definite function; that is,
for any stationary max-stable process, h(h)−1 is a valid variogram model for a second-
order stationary random field. Consequently, for constructing an estimator of the extremal
coefficient function we use a similar approach to the variogram analysis in geostatistics;
see Chilès & Delfiner (1999). We introduce the extremal coefficient cloud C

h
as an inter-

mediate step to our estimator, the empirical extremal coefficient function h@ (h), of h(h).
Assume that we have independent and identically distributed replicated data z(j) (x

i
) from

a stationary and isotropic max-stable random field at locations x1 , . . . , xm and instances
jµT
i
, where T

i
is the index set of the observed data for site x

i
. The pairwise extremal

coefficients h
ik
can be estimated by any naive estimator h@

ik
, see § 4·2, using all the instances

where data are available simultaneously for both locations, x
i
and x

k
. The plot of h@

ik
against the distance dx

i
−x
k
d for all i and k allows for a first check on the consistency of

the data. We call the ensemble of the pairs (dx
i
−x
k
d, h@
ik
) the extremal coefficient cloud

C
h
. The empirical extremal coefficient function h@ (h) is the local average of the C

h
cloud,
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which is then truncated to the interval [1, 2]; that is

h@ (h)=1l h@*(h)m2,

where

h@*(h)=
W

(i,k)µS
h

|T
i
]T
k
|Dh@
ik

W

(i,k)µS
h

|T
i
]T
k
|D

,

in which S
h
={(i, k) : dx

i
−x
k
dµ[h−e, h+e]; |T

i
]T
k
|>1}. In contrast to standard geo-

statistical analyses the binning for the empirical extremal coefficient function is weighted
because the h@

ik
estimates have unequal variances as a result of missing values causing

different values in the number |T
i
]T
k
| of overlapping data at the two sites.

5. E    

5·1. Introduction

The volume of rainfall and its spatial spread determine the degree of flooding at sites.
Modelling of both the spatial variation in the marginal distribution of rainfall extremes
and the spatial dependence structure of extreme rainfall events over a catchment is required
to provide this information (Coles & Tawn, 1996). We use a slightly extended version of
the rainfall data studied by Coles & Tawn (1996), and reanalyse the spatial extremal
dependence in the data to provide diagnostic information about the characteristics of
extreme events and for use in future model building. Our data are daily aggregates,
recorded from a start time of 9:00 each day at sites over a 40 km×40 km region in south-
west England. We have two forms of data: 11 sites have 19 years of continuous data and
54 additional sites have annual maximum data with some sites having up to 100 years of
data and many sites having periods of missing data relative to other sites; see Fig. 2. The
number of concurrent years of annual maximum data at pairs of sites ranges between 0
and 85, with a median of 12 years and an upper quartile of 20 years. Let XB (j)

i
denote the

rainfall at site i on day j, and let YB (j)
i
denote the annual maximum rainfall at site i in year j.

Fig. 2: Rainfall data. (a) Locations of rain gauge sites and (b) availability of annual maxima, shown by
horizontal lines, and daily data, shown by crosses. In (a) the bold italic numbers correspond to sites with

daily data.
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As we are focusing on the dependence structure we first transform the data at each site
to have a unit Fréchet marginal distribution. We let

X(j)
i
=−1/logF

XB
i

(XB (j)
i

), Y (j)
i
=−1/logF

YB
i

(YB (j)
i

),

where F
XB
i

and F
YB
i

are the empirical distribution functions of XB
j
and YB

i
, respectively, which

are estimated under the assumption of stationarity. It is assumed that the transformed
annual maxima data are multivariate extreme-value distributed and that the transformed
daily data are in the domain of attraction of a multivariate extreme-value distribution, in
each case with Fréchet marginal distributions.

5·2. Preliminary analysis

First consider an exploratory analysis of the daily rainfall data. Figure 3(a) shows that
the cloud of extremal coefficients for the daily data has outliers. Here the cloud is estimated
by the methods given in § 4·5, using estimator h@

t
with t=0·99, which corresponds to 3 to

4 extreme events per year. Investigation showed that the outlying h@
ik,t
values arise when

i or k corresponds to site number 18, 20 or 21. When exploring the cause of this inconsist-
ency, we identified that a time-shift of a day occurred for these sites on the first day of
some of the years of data. We have subsequently discovered that this type of timing error
is an occasional problem with daily rainfall data because of a confusion over how to
register the daily rainfall as a result of the aggregation period running from 9:00 on one
day to 9:00 on the next day. This feature had not been identified before for these data,
but immediately illustrates the value of the diagnostic procedures we have developed. The
data were subsequently edited and the remaining analysis is based on the modified data;
see Fig. 3(b). The modified estimates suggest that there is a simpler structure of extremal
dependence than that found by Coles & Tawn (1996), with our interpretation of the
slightly weaker dependence, between sites 18, 20 and 21 and the other sites, representing
additional evidence of the poorer data quality control for the three sites.
For the annual maxima data, h@HT has been used to estimate the C

h
cloud. We did not

find any evidence of covariate relationships for altitude or its gradient. We conclude that

Fig. 3: Rainfall data. Extremal coefficient cloud for the daily data (a) before, (b) after correction
of the timing errors
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the preliminary analysis has showed that stationarity and isotropy are reasonable assump-
tions for the extremes of the rainfall data.

5·3. Empirical extremal coeYcient function

We use h@HT and h
@
t
to estimate the cloud C

h
for annual maxima and daily data respect-

ively, and denote the corresponding weighted spatial binned estimators by h@HT (h) and h@
t
(h).

Comparison between h@HT (h) in Fig. 4 and the h@
t
values in Fig. 3(b) shows good agreement.

However, further investigation reveals that the cloud values in Fig. 3(b) depend heavily
on the chosen t-value: for t=0·97, 0·99 and 0·995 the asymptotes for distances h�40 km
are approximately 1·55, 1·65 and 1·75 respectively. Coles & Tawn (1996) also note weaker
dependence at higher thresholds, and regard this as an indicator of the tendency for the
most extreme events to be more localised; see also Ancona-Navarrete & Tawn (2002).
Nevertheless, both Figs 3(b) and 4 show strong extremal dependence, which decreases
with distance, for distances less than 10 km, and a near constant level of dependence for
all other separations of sites. As the region is relatively small by comparison to the spatial
scale of meteorological systems, the fact that no two sites in the region are independent
is not surprising.
The variability of the estimates obtained for both the daily data and the annual maxima

has to be assessed. To this end we perform a Monte Carlo study using models that both
satisfy the restrictions on h(h), identified in Theorem 3, and capture the shape of h@ (h).
First the extremal Gaussian process with extremal coefficient function

h(h)=1+2−D−2−D exp (−h/s) (h�0) (13)

was used, see Fig. 4, where the scale parameter s had been estimated to be 5·3, by a
weighted least squares method. Model (13) is valid, since the function r given by equality
(11) has a nonnegative Fourier inverse.
We present estimates based on the analysis of the annual maxima only. We simulate

from the extremal Gaussian process assuming independence of the data for different years,

Fig. 4: Rainfall data. Extremal coefficient function
h@HT (h) for the annual maxima (black), exponential
model h(h) (dark grey) and 95% confidence bounds
( light grey); the points build the coefficient cloud of
h@HT . Points with values of h

@
HT larger than 2 are omitted.
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and generating the annual maxima for the same years and the same arrangement of the
missing values as given in Fig. 2(b), using the algorithm of Schlather (2001b, 2002). The
resulting approximate 95% confidence interval, for each bin of the empirical extremal
coefficient function separately, is shown in Fig. 4. The confidence-interval envelope shows
that there is significant variation in the level of dependence within the region. The envelope
contains h@ (h) for all h away from 0, illustrating that the model is a good fit, though a
possible nugget effect at h=0 in h@ (h) is identified, indicating local variations in the extreme
rainfalls or inaccuracy of the measuring apparatus at storm events. Similar overall findings
were obtained using data simulated from Smith’s Gaussian extreme-value process with
S2=diag(64, 64), indicating that these results are not really dependent on the form of the
underlying max-stable process.
To summarise, local averaging of a naive estimator that is based on annual maxima

data is informative. Despite the additional information in the daily data, we recommend
care in exploiting these data given the apparent threshold sensitivity of the corresponding
estimates. However, unreported results suggest that the threshold can be selected to give
estimates that are similar to those based on the annual maxima but have smaller variances,
so further investigation of these methods seems to be required. For the rainfall data we
have found a simple and physically realistic pattern of spatial dependence in the extreme
events which is much more easily modelled than the representation found by Coles &
Tawn (1996).
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A

Proofs

Proof of T heorem 2. Theorem 1 yields suitable t
c
, for cµC

m
, so that

2−h
ij
=h
i
+h
j
−h
ij
= ∑
ckC
m
,cl{i,j}

t
c

for any iµM
m
and jµM

m
. For cµC

m
, let J

c
={(i, j )µM

m
×M

m
: iN j, {i, j}k c}. Then, for any

a
i
µC and its conjugate complex number a: i ,

∑
m

i,j=1
a
i
(h
i
+h
j
−h
ij
)a:j=∑

m

i=1
|a
i
|2+ ∑
cµC
m
,cl{i}

t
c
+ ∑
(i,j)µJ

Mm

a
i
a:j ∑
cµC
m
,cl{i,j}

t
c

= ∑
m

i=1
t
{i}
|a
i
|2+ ∑
cµC
m
,|c|�2

t
c
∑
iµc
|a
i
|2+ ∑
cµC
m
,|c|�2

t
c
∑
(i,j)µJ

c

a
i
a:j

= ∑
m

i=1
t
{i}
|a
i
|2+ ∑
cµC
m
,|c|�2

t
c K ∑
iµc

a
i K2�0.

Proof of T heorem 3. The assertions (i) and (iii) follow directly from Theorem 2 and the represen-
tation theorem for isotropic positive definite functions of Gneiting & Sasvári (1999), respect-
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ively. In order to show part (ii) let f( . )=h( . )−1. The second inequality of (8) yields that
f(x−y)∏f(x)+f(y) for any x, yµRd. Replacing y by −x we get f(2x)∏2f(x) and by iteration
2−nf(x)∏f(2−nx). Since h(o)=1 we have f(o)=0, and the differential quotient satisfies

f(2−nx)−f(o)

2−ndxd
�
f(x)

dxd
>0 (n�2)

if f(x)N0. On the other hand, the symmetry of f implies that the derivative must be zero at the
origin if it exists.
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