Tests d'adéquation et choix de modèles pour les événements récurrents en fiabilité

Meryam KRIT

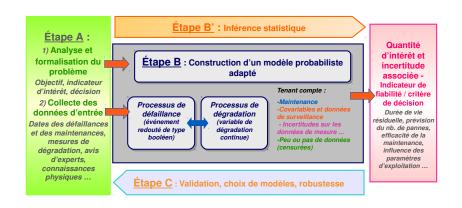
Directeur de thèse : Olivier Gaudoin
Co-directeur de thèse : Laurent Doyen
Encadrant EDF : Emmanuel Remy

Thèse CIFRE Octobre 2011 - Octobre 2014

EDF R&D MRI - Laboratoire Jean Kuntzmann - Grenoble

20 Novembre 2012

Contexte et motivation industrielle



Objectifs et structure de la thèse

L'objectif de la thèse est de développer des méthodes de validation et choix de modèles appropriés aux matériels EDF :

- Valider les hypothèses d'un modèle probabiliste sur la base de données disponibles.
- Tester l'adéquation d'un modèle aux données de retour d'expérience.
- Comparer des modèles entre eux.
- Sélectionner "le meilleur modèle" dans un ensemble de modèles disponibles par des critères statistiques.
- Effectuer un développement logiciel en support aux développements théoriques.

Systèmes étudiés

REX de défaillances de composants non réparables :

REX de défaillances d'un matériel réparable :

Tests d'adéquation pour des systèmes non réparables

 X_1, \ldots, X_n durées de vie de composants non réparables.

Test d'adéquation

Test statistique de H_0 : " $X_1,...,X_n$ sont i.i.d. de loi dans \mathcal{F} " contre H_1 : " $X_1,...,X_n$ ne sont pas i.i.d. de loi dans \mathcal{F} ", où \mathcal{F} est une famille de lois de durées de vie

Lois usuelles en fiabilité : exponentielle et Weibull

Principes

- Souvent, on mesure la proximité, sous H_0 , entre une quantité empirique et une quantité théorique.
- L'hypothèse nulle est rejetée quand l'écart est trop grand.
- Il faut trouver une statistique de test dont la loi sous H_0 ne dépend pas des paramètres de la loi testée.

Tests d'adéquation pour la loi de Weibull

Tests based on the Test based on empirical distribution probability plots: function: • R² EJG KS • \(\bar{Z}^2 \) CM • SPP • AD Tests based on the normalized spacings: MSF TS • LOS

Tests d'adéquation pour la loi de Weibull

Tests based on the empirical distribution function: • KS • CM • AD

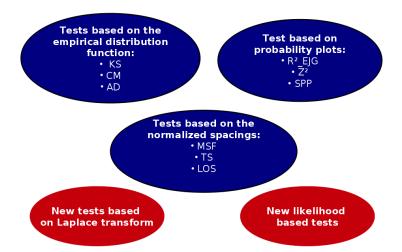
Test based on probability plots: • R² EJG • Z² • SPP

Tests based on the normalized spacings:

MSFTSLOS

New tests based on Laplace transform

Tests d'adéquation pour la loi de Weibull



Notations et résultats préliminaires

• La loi de Weibull $\mathcal{W}(\eta,\beta)$ a pour fonction de répartition :

$$F(x; \eta, \beta) = 1 - \exp\left(-\left(\frac{x}{\eta}\right)^{\beta}\right), x \ge 0, \ \eta > 0, \ \beta > 0$$

• $\forall i, Y_i = \ln X_i$ a la loi des valeurs extrêmes $\mathcal{EV}_1(\ln \eta, 1/\beta)$ de fonction de répartition

$$F_Y(y) = 1 - \exp\left(-\exp(\beta(y - \ln \eta))\right)$$

• $\forall i$, soit $\hat{Y}_i = \ln\left(\frac{X_i}{\hat{\eta}_n}\right)^{\beta_n}$, où $\hat{\eta}_n$ et $\hat{\beta}_n$ sont les EMV de η and β . La loi de $(\hat{Y}_1,\ldots,\hat{Y}_n)$ ne dépend pas de η and β

Tests basés sur la transformée de Laplace

La transformée de Laplace de la loi $\mathcal{EV}_1(0,1)$ est

$$\psi(t) = \mathbb{E}[\exp(-tY)] = \Gamma(1-t)$$

On compare cette transformée de Laplace théorique à la transformée de Laplace empirique de $\hat{Y}_1, \dots, \hat{Y}_n$, $\hat{\psi}_n(t) = \frac{1}{n} \sum_{j=1}^n \exp(-t \hat{Y}_j)$

$$b(n)\int_{-\infty}^{+1} \left[\hat{\psi}_n(t) - \Gamma(1-t)\right]^2 w_a(t) dt$$

Discrétisation et choix de poids.

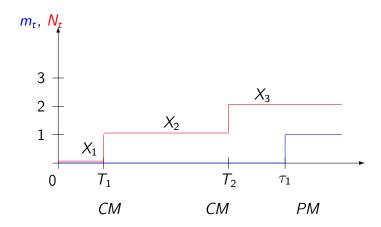
Exemple de statistique de test :

$$LT_{a,m}^{(1)} = \frac{1}{n^2} \sum_{k=-m}^{m-1} \left[\frac{1}{n} \sum_{j=1}^{n} \exp(-\hat{Y}_j k/m) - \Gamma(1 - k/m) \right]^2 \exp(ak/m - \exp(ak/m))$$

Tests basés sur la vraisemblance

- Inclure la loi de Weibull dans une famille de lois de Weibull généralisées
- Faire un test paramétrique sur le troisième paramètre.
- Se ramener à une loi à un seul paramètre via la transformation $Y_i = \ln(X_i/\eta)^{\beta}$, de loi $\mathcal{EV}_1(0,1)$.
- La loi des $\hat{Y}_i = \ln(X_i/\hat{\eta}_n)^{\hat{\beta}_n}$ ne dépend pas de η and β , où $\hat{\eta}_n$ et $\hat{\beta}_n$ sont les EMV de η and β .
- Idem avec estimateurs des moindres carrés et des moments : \widetilde{Y}_i , \check{Y}_i .
- Statistiques de test :
 - Wald $W = I(\theta_0)(\hat{\theta} \theta_0)^2$
 - Score : $S = U^2(\theta_0)/I(\theta_0)$
 - Rapport de vraisemblance : $LR = -2 \ln \left[\frac{L(\theta_0)}{L(\hat{\theta})} \right]$ où $I(\theta)$ est l'information de Fisher et $U(\theta)$ est le score.

Tests d'adéquation pour des systèmes réparables



Modèles de maintenance imparfaite

Un modèle d'âge virtuel suppose qu'après la kème maintenance, le système se comporte comme un système neuf ayant fonctionné sans défaillance pendant une durée A_k :

$$P(X_{k+1} > x | X_1, ..., X_k, A_k) = P(Y > A_k + x | Y > A_k, A_k)$$

où Y est une variable aléatoire independante de A_k et de même loi que X_1 .

Le modèle est défini par son intensité de défaillance :

$$\lambda_t = \lambda (A_{N_{t-}} + t - T_{N_{t-}})$$

L'âge virtuel à t est $A_{N_{t-}} + t - T_{N_{t-}}$.

Modèles d'âge virtuel

 A_i est l'âge virtuel après la *i*ème maintenance.

- ABAO : $A_i = T_i$
- AGAN : $A_i = 0$
- ARA1 : $A_i = A_{i-1} + (1-\rho)X_i = (1-\rho)T_i$

où ho est l'efficacité de la maintenance :

- $\rho = 0$: ABAO
- $ho = 1: \mathsf{AGAN}$
- ullet 0 < ho < 1 : maintenance imparfaite
- $\rho < 0$: maintenance nuisible

Principe : Tester l'adéquation à un modèle d'âge virtuel en conditionnant par une statistique exhaustive.

Modèles étudiés et leurs statistiques exhaustives

CM ABAO-PM ARA1 λ log-linéaire

$$\lambda_t = \lambda(t - q\tau_{m_t}), \ \lambda(t) = \exp(a + bt), b > 0$$

$$S = \left(N_t, \sum_{T_i \leq t} T_i, \sum_{m=2}^{m_t} \tau_{m-1} (N_{\tau_m} - N_{\tau_{m-1}})\right)$$

CM ABAO-PM GRA1 λ en puissance

$$\lambda_t = \lambda(rac{t}{ au_{m_t}^q}), \; \lambda(t) = abt^{b-1}, a, b > 0$$

$$S = \left(N_t, \sum_{T_i \leq t} \ln(T_i), \sum_{m=2}^{m_t} (N_{\tau_m} - N_{\tau_{m-1}}) \ln(\tau_{m-1}) + (N_t - N_{\tau_{m_t}}) \ln(\tau_{m_t})\right)$$

- Simulation de $T|S = s_{obs}$ à l'aide de l'échantillonnage de Gibbs.
- Transformation en échantillon uniforme à l'aide de l'intensité cumulée.
- Utilisation de tests d'adéquation classiques à la loi uniforme (Laplace, Kolmogorov-Smirnov, Anderson-Darling, ...)

Perspectives

- Généraliser les nouveaux tests d'adéquation à la loi de Weibull aux échantillons censurés.
- Développer des tests d'adéquation pour les modèles de maintenance imparfaite.
- Comparer les deux approches : tests d'adéquation / choix de modèles