Mutation models: probabilistic study and parameter estimation

MAZOYER Adrien Supervisor : YCART Bernard (SVH)

17th December 2014

MAZOYER Adrien

Mutation models

17th December 2014 1 / 15

Example

p = 2, p = 0.1, cells = 255, mutants = 56

log-normal lifetimes

p = 0.5, p = 0.01, cells = 220, mutants = 69

Motivations

J

N _{mut}	N_{f}
2	1.36e9
3	1.05e9
0	4.28e8
0	6.24e8
5	7.36e8
6	4.90e8
110	1.36e9
1	9.56e8
0	6.82e8

Parameters of interest:

- $\rightarrow~\pi$: Probability of mutation
- $\rightarrow~\alpha$: Mean number of mutations
- $\rightarrow \rho$: "Fitness"

. . .

Classical model: Luria-Delbrück (LD)

[1, Luria-Delbrück(1943)] ; [2, Lea-Coulson(1949)] ; [3, Hamon-Ycart(2012)]

Assumptions

- At time 0 a homogeneous culture of n normal cells.
- The generation time of any normal cell is exponentially distributed with parameter ν.
- A splitting normal cell is replaced by :
 - $\bullet\,$ One normal and one mutant cell with probability $\pi\,$
 - Two normal cells with probability 1π .
- The generation time of any mutant cell is exponentially distributed with parameter μ .
- A splitting mutant cell is replaced by two mutant cells.
- All random variables and events (division times and mutations) are mutually independent.

< 17 ▶

Number of divisions tends to ∞ Mutation probability tends to 0 \Rightarrow Asymptotic model

3 ingredients

Occurrences of random mutations during a growth process.

- Growth of each clone starting from a single mutant cell.
- Number of cells in a mutant clone that develops for a finite time.

Number of divisions tends to ∞ Mutation probability tends to 0 \Rightarrow Asymptotic model

3 ingredients

Occurrences of random mutations during a growth process.

\Rightarrow Poisson distribution (law of small numbers)

Growth of each clones starting from a single mutant cell.

 \Rightarrow Sequence of independent exponential times for each clone.

Number of cells in a mutant clone that develops for a finite time.

 \Rightarrow Sequence of independent geometric numbers (Yule process).

Results

Asymptotic assumptions

Let t_n et π_n two sequences and $\alpha > 0$ such that :

$$\lim_{n \to \infty} \pi_n = 0, \ \lim_{n \to \infty} t_n = +\infty, \ \lim_{n \to \infty} \pi_n n e^{\nu t_n} = \alpha$$

Initial result

As $n \to \infty$, the final number of mutants at time t_n , starting with n normal cells, converges to the distribution with probability generating function

$$g_{\alpha,\rho}(z) = \exp(\alpha(h_{\rho}(z) - 1))$$

where $h_\rho(z)$ is the probability generating function of the Yule distribution with parameter $\rho=\nu/\mu.$

[3, Hamon-Ycart(2012)] [4, Athreya-Ney(1972)]

Advantages - drawbacks

Advantages

• Explicit asymptotic distribution for the final number of mutants, with 2 parameters :

- α : mean number of mutations ;
- ρ : "fitness" parameter ($\rho = \nu/\mu$).
- Several estimation methods for α and ρ :
 - Maximum Likelihood estimators (but heavy tail distribution...) ;
 - Generating function estimators ;

• p_0 estimators (relies on $\mathbb{P}[0 \text{ mutants}] = e^{-\alpha}$).

Drawbacks: bias sources

- The developing times are i.i.d. exponentially distributed.
- Ignore cell deaths.
- No fluctuation of final number of cells.

A D > A A P >

New assumptions

The generation time of a normal (resp. mutant) cell born at time $s\geq 0$ has cumulative distribution function

$$F_{\nu}(s,t) = 1 - e^{-\nu(s,t)}$$
 (resp. $F_{\mu}(s,t) = 1 - e^{-\mu(s,t)}$)

where ν (resp. $\mu),$ is positive, differentiable and increasing, such that

$$\lim_{t\to\infty}\nu(s,t)=+\infty\quad\text{and}\quad\forall\,t\in[0\,;\,s]\,,\;\nu(s,t)=0\,.$$

Results

Main Result (Under similar asymptotic assumptions)

As $n \to \infty$, the final number of mutants at time t_n , starting with n normal cells, converges to the distribution with probability generating function

$$g(z) = \exp \left\{ \alpha (\mathcal{I}(z, +\infty) - 1) \right\} ,$$

where \mathcal{I} depends on ν and μ .

Results

Main Result (Under similar asymptotic assumptions)

As $n \to \infty$, the final number of mutants at time t_n , starting with n normal cells, converges to the distribution with probability generating function

$$g(z) = \exp\left\{\alpha(\mathcal{I}(z, +\infty) - 1)\right\},\$$

where \mathcal{I} depends on ν and μ .

Particular case : $\mu(s,t) = \frac{\nu(s,t)}{\rho}$

As $n \to \infty$, the final number of mutants at time t_n , starting with n normal cells, converges to the distribution with probability generating function

$$g_{\alpha,\rho}(z) = \exp(\alpha(h_{\rho}(z) - 1))$$

where $h_{\rho}(z)$ is the probability generating function of the Yule distribution with parameter $\rho.$

MAZOYER Adrien

Current and future works

Theoretical work

- Studying non identical constant lifetimes case.
- Multitype branching process.
- Including cell deaths.

Theoretical work

- Studying non identical constant lifetimes case.
- Multitype branching process.
- Including cell deaths.

Practical work

Implementation of a R package including

- simulation ;
- estimation ;
- statistical tests.

Thank you for your attention !

S.E. Luria and M. Delbrück.

Mutations of bacteria from virus sensitivity to virus resistance. *Genetics*, 28(6):491–511, 1943.

D.E. Lea and C.A. Coulson.

The distribution of the number of mutants in bacterial populations. *Journal of Genetics*, 49(3):264–285, 1949.

A. Hamon and B. Ycart. Statistics for the Luria-Delbrück distribution. *Elect. J. Statist.*, 6:1251–1272, 2012.

K.B. Athreya and P.E. Ney. Branching processes. Springer Berlin Heidelberg, 1972.