Joint analysis of eye-movements and electroencephalograms using coupled hidden Markov and topic models

PhD Student : B. Olivier¹ Supervisors : J-B. Durand¹ A. Guérin-Dugué² M. Clausel¹ PERSYVAL-lab funding

> ¹Laboratoire Jean Kuntzmann University of Grenoble Alpes

²GIPSA-lab University of Grenoble Alpes

PhD Students half-day of Laboratoire Jean Kuntzmann

Outline

1 Introduction

2 State of the art

3 Modeling

4 Application

1 Introduction

2 State of the art

3 Modeling

4 Application

The context

- A cross-disciplinary PhD between Statistics and Cognitive Science (CS)
- What is CS ?
 - Studying the mind and its processes
 - "Thinking can best be understood in terms of representational structure in the mind and computational procedures that operate on those structures"¹
 - Early 1930's : first variant of artificial neural networks inspired from biological neural networks
 - 1973 : first use of the term "Cognitive Science" and creation of the CS journal
- More precisely we are interested in **oculometry**, the science which study the eye-movement

¹P. Thagard, Cognitive Science, the Stanford encyclopedia of Philosophy, 2008

General goals

- Decipher underlying cognitive phases in the cognitive processes of a press review-like task while recording the scanpath of eye-movement
- Characterize these phases with eye-movements
- Explain the phase changes using the local text properties

1 Introduction

3 Modeling

4 Application

Simola2008²

• Use a model on eye-movement series to **infer phases in the reading process** which can be interpreted as steps in the cognitive processes leading to the decision

Example of eye movement trajectories for a Q&A task

- \times : scanning phase
- \bigtriangleup : reading phase
- \Box : decision phase
- \oplus 3 reading phrases are identified and discriminated with an accuracy of 60.2% (33% pure chance)
- Eye-movement analysis implies two linked phenomenon. What one read guide his thoughts, the thoughts guide what is going to be read after

²J. Simola, J. Salojärvi, I. Kojo, *Cognitive Systems Research*, 2008

Obermaier2001³

• A model is used for the analysis of EEGs

- The EEG analysis has been widely studied and there are known EEG patterns in order to characterize cognitive processes
- ⊖ In our case, it does not take into account the text properties and the way it is processed

³B. Obermaier, C. Guger, C. Neuper, G. Pfurstscheller, Pattern Recognition Letters, 2001 8/2

Reviewed goals

- Couple eye-movement data with EEG data and text properties in a new coherent model using a single coupled model⁴
- Further, the goal is to model "human data mining"
- The main difficulty of jointly modeling eye-movements and EEGs is due to material variability, people variability and signal overlapping⁵

More generally,

- we need to deal with sequential data
- we need change point detection to catch the changes of phase

 \rightarrow What kind of model can we use ?

⁴S. Zhong, J. Ghosh, Department of Electrical and Computer Engineering, 2001

⁵A. Frey et al., *Frontiers in Systems Neuroscience*, 2013

1 Introduction

2 State of the art

3 Modeling

4 Application

- $(x_1, ..., x_T)$ denotes the observed data produced by the R.V. $(X_1, ..., X_T)$, with $X_t \in \mathcal{V} = \{v_1, ..., v_K\}$, where \mathcal{V} is the set of **observed** states, and t = 1, ..., T are the time instants
- $(z_1, ..., z_T)$ denotes the latent data produced by the R.V. $(Z_1, ..., Z_T)$, with $Z_t \in S = \{1, ..., M\}$, where S is the set of **hidden states**, and t = 1, ..., T
- At each time t, an observation is associated to a latent variable in order to obtain a segmentation

Hidden Markov Model, discrete space and time case II

Figure: Graphical model corresponding to the 1st order HMM

• In order to deal with **tractability**, the trick is to use the d-separation property and assume the following conditional independence :

$$Z_{t} \perp Z_{1..t-1} | Z_{t-1}, \forall t = 2..T$$

$$X_{t} \perp X_{1..t-1}, Z_{1..t-1} | Z_{t}, \forall t = 2..T$$

• Therefore, the joint probability distribution is denoted :

$$p(x_1..x_T, z_1...z_T) = p(z_1) \Big[\prod_{t=2}^T p(z_t|z_{t-1}) \Big] \prod_{t=1}^T p(x_t|z_t)$$

Hidden Markov Model, discrete space and time case III

• The model parameters can be identified as :

$$\begin{aligned} \mathsf{a}(i,j) &= \mathsf{p}(Z_t = j | Z_{t-1} = i), \quad i, j \in \mathcal{S} \\ \mathsf{b}_i(\mathsf{v}_t) &= \mathsf{p}(X_t = \mathsf{v}_t | Z_t = i), \quad \mathsf{v}_t \in \mathcal{V}, i \in \mathcal{S} \\ \pi(j) &= \mathsf{p}(Z_1 = j), \quad j \in \mathcal{S} \end{aligned}$$

• Parameters estimation is carried out by an **Expectation-Maximization** (EM) algorithm while inference is achieved via a **Forward/Backward** algorithm

⊖ Limit : The sojourn duration distribution of each hidden state is necessarily Geometric

Hidden Semi-Markov Model⁶ I

- We now consider that a hidden state has a **variable duration** *d*, with a corresponding number of observations produced in this state
- In HSMM, the state duration distribution can either be parametric (e.g. exponential distributions) or non-parametric

Figure: General HSMM

⁶S-Z. Yu Artificial Intelligence, 2010

Hidden Semi-Markov Model II

 In the most general case, the state transition probability distribution from (i, d') to (j, d), i ≠ j is :

$$p(i, d')(j, d) \equiv p[Z_{[t:t+d-1]} = j \mid Z_{[t-d':t-1]} = i]$$

• For simplicity and tractability, we will make the following assumption on the transition probability distribution and get a specific model called **Explicit Duration HMM** :

$$\begin{aligned} \mathsf{a}(i,d')(j,d) &= a_{ij} \mathsf{p}_j(d) \\ a_{ij} &= \mathsf{p}[Z_{[t} = j \mid Z_{t-1]} = i] \\ \mathsf{p}_j(d) &\equiv \mathsf{p}[Z_{t:t+d-1} = j \mid Z_{[t} = j] \end{aligned}$$

- Afterwards, assumptions can be made on $p_j(d)$ to simplify the model and fit other distributions than the geometric one in the classic HMM case
- Parameters can also be retrieved via an EM algorithm while inference is achieved using a F/B algorithm

Application of HSMM on eye-movement data I

- Reminder :
 - Text skimming for Q&A tasks
 - Segment scanpaths into interpretable zones
- The observed variable $X_t \in \mathcal{V}$ at time t characterizes the **eye fixation**
- The set of observed states is the **read mode** $\mathcal{V} = \{v_0, ..., v_4\}$, with v_0 : word skip, v_1 : next word, v_2 : same word, v_3 : previous word, v_4 : further backward
- The hidden variable $Z_t \in \mathcal{S} = \{0, ..., 4\}$ characterize the **reading** strategies
- The number of hidden state is deduced using BIC criterion

Using Explicit Duration HMM, the parameters are as follows :

- The transition probabilities from reading strategy *i* to reading strategy *j*, $i \neq j$: $a_{ij} \equiv p[Z_{[t} = j \mid Z_{t-1]} = i]$
- The sojourn duration distributions d in reading strategy j: $p_j(d) \equiv p[Z_{t:t+d-1} = j \mid Z_{[t} = j]$
- The emission probabilities, observe a read mode v_t while using reading strategy j : b_{j,d}(v_t) ≡ p[v_{t:t+d-1}|Z_{t:t+d-1} = j]

Application of HSMM on eye-movement data III

Figure: Reading strategies

 state 0 and 1 are combined according to their duration distribution for a better interpretation

Application of HSMM on eye-movement data IV

Figure: Sojourn duration distributions

Application of HSMM on eye-movement data V

Individual 4, text 9 (bird hunting)

Figure: Segmentation of reading strategies

•
$$\hat{Z}_1...\hat{Z}_T = argmax_{Z_1,...,Z_T}p[Z_1,...,Z_T|X_1,...X_T]$$

Conclusion

Advantages :

- Using HSMM allowed us to provide a **better discrimination** of the reading strategies changes
- Identification of variability that prevent us to give global conclusions on the experience

Ongoing work and perspectives :

- Improve issues related to material variability, people variability and signal overlapping
- **Build a single framework** to jointly handle eye movement data and EEG data for a better discrimination and interpretation of the reading strategies and related cognitive processes

References I

J. Simola, J. Salojärvi, I. Kojo

Using hidden Markov model to uncover processing states from eye movements in information search tasks

Cognitive Systems Research, 2008.

A. Frey, G. Ionescu, B. Lemaire, F. López-Orozco, T. Baccino, A. Guérin-Dugué

Decision-making in information seeking on texts: an eye-fixation-related potentials investigation

Frontiers in Systems Neuroscience, 2013.

S-Z. Yu

Hidden semi-Markov models

Artificial Intelligence, 2010.

- B. Obermaier, C. Guger, C. Neuper, G. Pfurstscheller Hidden Markov models for online classification of single trial EEG data *Pattern Recognition Letters*, 2001.
- 🔋 S. Zhong, J. Ghosh

A New Formulation of Coupled Hidden Markov Models Department of Electrical and Computer Engineering, 2001.