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research project presentation



data

Structured data

∙ Time series from housing data (power consumption,
temperature...)

∙ Metadata surrounding these time series (location and type of
measurement device, category of physical quantity measured...)

Unstructured data

∙ Diverse web information sources (tweets, weather, satellite
pictures...)

∙ Expert (human) knowledge on the field
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applications

Industrial applications:

Regression

∙ Virtual sensing
∙ Forecasting
∙ Key performance indicator (KPI) prediction

Classification

∙ Fault detection (one class classification), diagnosis (multiclass
classification)

∙ Predictive maintenance, predictive diagnosis

Clustering

∙ e.g. Typical days profiling
4



current exploration: probabilistic graphical models

Technical advantages of PGMs

∙ Broad category of models (Hidden Markov Models, Markov
Random Fields, Bayesian Networks, Deep Belief Networks...)

∙ Easy handling of missing data / heterogeneous data (metadata)
∙ Several ways to incorporate human knowledge
∙ Generative models: same model can be used for diverse
applications

A very active research field

∙ Recent reference books:
∙ Probabilistic Graphical Models (Koller and Friedman, 2012)
∙ A Probabilistic Approach on Machine Learning (Murphy, 2012)

∙ Benchmarks keep getting better in several recent papers
∙ Programming libraries are currently being developed
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overview of probabilistic graphical models



theoretical framework and vocabulary

Application
marginal estimation
value prediction

Model (PGM)
directed: BN

undirected: MRF

Data
M instances of
r.v. (X1, . . . , Xn) LEARNING

Knowledge
from field expert

ELIC
ITAT

ION

INFERENCE
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tasks associated with pgms

Inference

∙ Marginal inference: For i ∈ {1, . . . ,n}, evaluate P(Xi).
∙ MAP inference: For i ∈ {1, . . . ,n}, evaluate argmaxxi∈Val(Xi)P(xi)

Learning

∙ Parameter learning (for a given structure): maximize likelihood
∙ Structure learning:

∙ structure scoring: likelihood-based
∙ structure exploration (optimisation in super-exponential space)

Knowledge incorporation

∙ Priors in Bayesian approach for both learning tasks
∙ Starting points proposals for heuristic algorithms (particularly
interesting in super-exponential structure spaces)
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aims for the next weeks:

Programming:

Define a simple application to be run on a real dataset

Bibliographic exploration:

Sum-product networks (sometime inference is possible in linear
time), cutting-edge variationnal methods

Short term goal:

Build a PGM that incorporates expert knowledge and metadata, and
that competes with Schneider Electric’s current benchmark
algorithms (SVM...) on a given problem (KPIs prediction?)
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Thank you
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representation

Two main categories of graphical models:

Directed (Bayesian networks) Joint distribution decomposes in a
product of local conditional distributions:

P(X1, . . . , Xn) =
n∏
i=1

P(Xi|PaXi)

Ex: Dynamic Bayesian networks, Kalman filters, Hidden
Markov models

Undirected (Markov random fields) Joint distribution decomposes
in a product of local potentials:

P(X1, . . . , Xn) =
1
Z
∏
c

ϕc(Xc)

Ex: Ising model, Deep Belief Networks
We often use the Gibbs representation: for each clique
c, ϕc(xc) = exp(−Ec(xc)) where Ec is the energy
function of clique c
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what is inference

What we want to infer

∙ Marginal inference. For i ∈ {1, . . . ,n}, evaluate

P(Xi)
P(Xi | E = e)

∙ MAP inference For i ∈ {1, . . . ,n}, evaluate

argmaxxi∈Val(Xi)P(xi)
argmaxxi∈Val(Xi)P(xi | E = e)

Complexity

For both directed and undirected graphs: NP-Hard problem in
general: number of computations is exponential in number of
variables
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inference

Different inference algorithms:
INFERENCE

Exact
Var Elimination
Junction tree

Approximate

Stochastic
MCMC (Gibbs,MH) Deterministic

Belief propagation Variational
Mean field
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learning (1/2)

Log-likelihood function

∙ Bayesian networks

l(θ) =
M∑

m=1

n∑
i=1

log (P(Xi = xi [m] |PaXi = ui [m]))

∙ Markov random fields

l(θ) =
M∑

m=1

∑
c

log (ϕc(xc [m]))−M log(Z(θ))
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learning (2/2)

Table: Maximum likelihood estimation in 4 main situations

Complete data Incomplete data
unimodal likelihood multimodal likelihood

BNs sufficient statistics tractable specific algorithms
optimization in closed form (Expectation-Maximization)

inference

MRFs no closed-form optimization both challenges
(partition function) part. funct. & missing data
inference inference
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knowledge incorporation

Priors in Bayesian approach

for both learning tasks (θ is the vector of parameters, l(θ) the
corresponding log-likelihood, D the data and G the graph structure)

∙ Parameter learning: maximum a posteriori:

θ̂MAP = argmaxθ P(θ|D) = argmaxθ l(θ) + log(P(θ))

∙ Structure learning (Bayesian score):

scoreB(G : D) = log( P(D|G)︸ ︷︷ ︸∫
P(D|θ,G)P(θ|G)dθ

) + log(P(G))

Starting points in optimization algorithms

Starting point proposals for heuristic algorithms (particularly
interesting in super-exponential structure spaces) can be very useful
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