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RESEARCH PROJECT PRESENTATION



DATA

Structured data
- Time series from housing data (power consumption,
temperature...)

- Metadata surrounding these time series (location and type of
measurement device, category of physical quantity measured...)

Unstructured data

- Diverse web information sources (tweets, weather, satellite
pictures...)

- Expert (human) knowledge on the field



APPLICATIONS

Industrial applications:

Regression

- Virtual sensing
- Forecasting

- Key performance indicator (KPI) prediction

Classification

- Fault detection (one class classification), diagnosis (multiclass
classification)

- Predictive maintenance, predictive diagnosis
Clustering

- e.g. Typical days profiling



CURRENT EXPLORATION: PROBABILISTIC GRAPHICAL MODELS

Technical advantages of PGMs

- Broad category of models (Hidden Markov Models, Markov
Random Fields, Bayesian Networks, Deep Belief Networks...)

- Easy handling of missing data / heterogeneous data (metadata)
- Several ways to incorporate human knowledge

- Generative models: same model can be used for diverse
applications

A very active research field

- Recent reference books:
- Probabilistic Graphical Models (Koller and Friedman, 2012)
- A Probabilistic Approach on Machine Learning (Murphy, 2012)

- Benchmarks keep getting better in several recent papers

- Programming libraries are currently being developed



OVERVIEW OF PROBABILISTIC GRAPHICAL MODELS



THEORETICAL FRAMEWORK AND VOCABULARY

Data
M instances of
. (X1,...,%n)

Application

marginal estimation

Model (pGm)
directed: BN
undirected: MRF

INFERENCE

value prediction

Knowledge
from field expert



TASKS ASSOCIATED WITH PGMS

Inference

- Marginal inference: Fori € {1,...,n}, evaluate P(X)).

- MAP inference: Forie {1,...,n}, evaluate argmaxy cvaix)P(Xi)
Learning

- Parameter learning (for a given structure): maximize likelihood
- Structure learning:

- structure scoring: likelihood-based
- structure exploration (optimisation in super-exponential space)

Knowledge incorporation

- Priors in Bayesian approach for both learning tasks

- Starting points proposals for heuristic algorithms (particularly
interesting in super-exponential structure spaces)



NEXT STEPS



AIMS FOR THE NEXT WEEKS:

Programming:

Define a simple application to be run on a real dataset

Bibliographic exploration:

Sum-product networks (sometime inference is possible in linear
time), cutting-edge variationnal methods

Short term goal:

Build a PGM that incorporates expert knowledge and metadata, and
that competes with Schneider Electric’'s current benchmark
algorithms (SVM...) on a given problem (KPIs prediction?)



THANK YOU



REPRESENTATION

Two main categories of graphical models:

Directed (Bayesian networks) Joint distribution decomposes in a
product of local conditional distributions:

P(Xq, ..., Xn) = ﬁ P(Xi|Pax,)
i—1

Ex: Dynamic Bayesian networks, Kalman filters, Hidden

Markov models
Undirected (Markov random fields) Joint distribution decomposes
in a product of local potentials:

PO, ..., Xn) = %H e(Xc)

Ex: Ising model, Deep Belief Networks

We often use the Gibbs representation: for each clique
C, dc(xc) = exp(—Ec(xc)) where E¢ is the energy
function of clique c



WHAT IS INFERENCE

What we want to infer

- Marginal inference. Fori € {1,...,n}, evaluate
P(X})
P(Xi |[E=e)

- MAP inference Fori e {1,...,n}, evaluate

argmaxy, eval(x,) P(xi)

argmaxxiGVaL(x‘)P(xi |E= e)

Complexity

For both directed and undirected graphs: NP-Hard problem in
general: number of computations is exponential in number of
variables



INFERENCE

Different inference algorithms:

INFERENCE

Exact

Var Elimination
Junction tree

Approximate

Deterministic

Stochastic
MCMC (Gibbs,MH)

Variational

[Belief propagationj M feld
ean fie




LEARNING (1/2)

Log-likelihood function

- Bayesian networks

M n

I(0) = ZZ log (P(Xi = xi [m] [Pax; = uj [m]))

- Markov random fields

M

[(6) =YD log(¢c(xc [m])) — M log(Z(6))

m=1 ¢



LEARNING (2/2)

Table: Maximum likelihood estimation in 4 main situations

Complete data
unimodal likelihood

Incomplete data
multimodal likelihood

BNs | sufficient statistics tractable | specific algorithms
optimization in closed form | (Expectation-Maximization)
inference
MRFs | no closed-form optimization | both challenges

(partition function)
inference

part. funct. & missing data
inference




KNOWLEDGE INCORPORATION

Priors in Bayesian approach

for both learning tasks (¢ is the vector of parameters, |(6) the
corresponding log-likelihood, D the data and G the graph structure)

- Parameter learning: maximum a posteriori:
6" = argmaxg P(6|D) = argmaxy L(0) + log(P(8))
- Structure learning (Bayesian score):
scoreg(G: D) =log(  P(DIG) )+ log(P(G))
~——

[ P(D|0,G)P(0]G)do

Starting points in optimization algorithms

Starting point proposals for heuristic algorithms (particularly
interesting in super-exponential structure spaces) can be very useful
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