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Abstract. In this paper, we propose a dimension reduction model for spatially dependent variables.
Namely, we investigate an extension of the inverse regression method of Li [15] under strong mixing
condition. Li’s method is based on estimation of the matrix of covariance of the expectation of the
explanatory given the dependent variable, called the inverse regression. Then, we study, under strong
mixing condition, the weak and strong consistency of this estimate, using a kernel estimate of the inverse
regression. We provide the asymptotic behaviour of this estimate. A spatial predictor based on this
dimension reduction approach is also proposed.

1. Introduction

Spatial data analysis is a growing field over the last decade, with various applications in several domains
such as soil science, geology, oceanography, econometrics, epidemiology, forestry and many others (see for
example [18], [7] or [8] for exposition, methods and applications). In nonparametric spatial estimation,
the estimator is, as in the i.i.d. observations case, penalized by the dimension of the regressor, which
is often called in statistics, “the curse of dimensionality”. For general references, we refer to Tran [19],
Tran and Yakowitz [20], Carbon, Hallin and Tran [5], Carbon et al. [6], Hallin et al. [9], Carbon [3]) or
for nonparametric spatial regression see e.g. Biau and Cadre [1], Lu and Chen ([16], [17]), Hallin et al.
[10], Carbon, Francq and Tran [4].

Dimension reduction methods are classically used to overcome this issue. Observing an i.i.d sample
Zi = (Xi, Yi) the aim is to estimate the regression function m(x) = E(Y |X = x). In the dimension
reduction framework, one assumes that there exist Φ an orthonormal matrix d×D, with D as small as
possible, and g : RD → R, an unknown function such that the function m(.) can be written as

(1) m(x) = g(Φ .X).

Model 1 conveys the idea that “less information on X” (Φ .X) provides as much information on m(.) as
X. The function g is the regression function of Y given the D dimensional vector Φ.X. Estimating the
matrix Φ and then the function g (by nonparametric methods) provides an estimator which converges
faster than the initial nonparametric estimator. Φ is uniquely defined under orthogonal transformation
and an estimation of this later is done through an estimation of his range Im(ΦT ) (where ΦT is the
transpose of Φ) called Effective Dimensional Reduction space (EDR).

Various methods for dimension reduction exist in the literature for i.i.d observations. For example
we refer to the classical theory of principal component analysis, leading to the multiple linear regression,
or the generalized linear model in [2], using data transformations leading to linear approximation of the
model. The additive models ( e.g. Hastie and Tibshirani [12]) deals with methods based on the derivative
estimation of the gradient of the regression function E(Y |X = x) developped in [11], [13] or [21].

In this paper, we focus on the Inverse Regression method, proposed by Li in [15]: if X is such that
for all vector b in Rd, there exists a vector B of RD such that E(bT X|Φ.X) = BT (Φ.X) (this later
condition is satisfied as soon as X is elliptically distributed), then, if Σ denotes the variance of X, the
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space Im(Σ−1var(E(X|Y )) is included into the EDR space. Moreover, the two spaces coincide if the
matrix Σ−1var(E(X|Y )) is of full rank (recall that Rank(Σ−1var(E(X|Y ))) = D).

Hence, the estimation of the EDR space is essentially based on the estimation of the matrix of the
inverse regression E(X|Y ), where Σ is also estimated using a classical empirical estimator.

In his initial version, Li suggested an estimator based on the regressogram estimate of E(X|Y ) but
drawbacks of the regressogram lead other authors to suggest alternatives based on the nonparametric
estimation of EX|Y , see for instance [14] or [22] which enable to recover the optimal rate of convergence
in
√

n.

In this work, we deal with dimension reduction for spatial data. We focus on a kernel estimate for
the inverse regression for spatial dependent data under strong mixing conditions, studied in [1, 6, 4]and
provide a consistent estimator of the EDR space. We also use the properties of the inverse regression
method to build a dimension reduction predictor which correspond to the nonparametric predictor of [1].
Indeed, in [1] nonparametric spatial predictor based on kernel method is proposed. It is an interesting
alternative to parametric predictor methods such as the krigging method since it does not requires any
underlying model. It only requires the knowledge of the number of the neighbors. We will see that the
property of the inverse regression method provides a way of estimating this number.
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