Estimation of a new parameter discriminating between Weibull tail-distributions and heavy-tailed distributions

BY

Jonathan EL METHNI

in collaboration with

Laurent GARDES & Stéphane GIRARD & Armelle GUILLOU

Tunis Thursday 26th May 2011.

- RHÔNE-ALPES

(日) (圖) (문) (문) (문)

Introduction to the extreme value theory	Model	Estimators	Illustration on simulations	Concluding remarks
0000		00000		

- Introduction to the extreme value theory
 - Motivations
 - 3 domains of attraction
 - Fréchet / Gumbel

2 Model

- Estimators
 - Definition
 - Asymptotic properties
- Illustration on simulations

Concluding remarks

Outline	Model	Estimators	Concluding remarks
0000		00000	
Motivations			

Let X_1, \ldots, X_n be a sample of independent and identically distributed random variables driven from X with cumulative distribution function F, and let $X_{1,n} \leq \cdots \leq X_{n,n}$ denote the order statistics associated to this sample.

• We want to estimate the extreme quantile x_{p_n} of order p_n associated to the random variable $X \in \mathbb{R}$ defined by

$$x_{p_n} = \overline{F}^{\leftarrow}(p_n) = \inf\{x, \overline{F}(x) \leq p_n\},\$$

with $p_n \to 0$ when $n \to \infty$. The function $\overline{F}^{\leftarrow}$ is the generalized inverse of the non-increasing function $\overline{F} = 1 - F$.

• Difficulty : If $np_n \to 0$ then $\mathbb{P}(x_{p_n} > X_{n,n}) \to 1$.

Outline	Model	Estimators	Illustration on simulations	Concluding remarks
0000		00000		
Principals results on ext	reme value the	eory		

Fisher-Tippett-Gnedenko theorem

Under some conditions of regularity on the cumulative distribution function F, there exists a real parameter γ and two sequences $(a_n)_{n\geq 1} > 0$ and $(b_n)_{n\geq 1} \in \mathbb{R}$ such that for all $x \in \mathbb{R}$,

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{X_{n,n}-b_n}{a_n}\leq x\right)=\mathcal{H}_{\gamma}(x),$$

with

$$\mathcal{H}_{\gamma}(x) = \begin{cases} \exp\left(-(1+\gamma x)_{+}^{-1/\gamma}\right) & \text{if } \gamma \neq 0, \\ \exp\left(-e^{-x}\right) & \text{if } \gamma = 0, \end{cases}$$

where $y_+ = \max(0, y)$.

Outline	Model	Estimators 00000	Illustration on simulations	Concluding remarks
3 domains of attraction				

- \mathcal{H}_{γ} is called the cumulative distribution function of the extreme value distribution.
- If F verifies the Fisher-Tippett-Gnedenko theorem, we say that F belongs to the domain of attraction of H_γ.
- γ is called the extreme value index.

Fréchet ($\gamma > 0$)	Gumbel ($\gamma = 0$)	Weibull ($\gamma < 0$)
Pareto	Normal	Uniform
Student	Exponential	Beta
Burr	Log-normal	
Fréchet	Gamma	
	Weibull	

Dutline

000

Estimators 00000

Fréchet maximum domain of attraction : heavy-tailed distributions

Model

All cumulative functions which belong to the Fréchet maximum domain of attraction denoted by $\mathcal{D}(Fréchet)$ can be rewritten as

$$\bar{F}(x) = x^{-1/\gamma} \ell(x),$$

where $\gamma > 0$ and $\ell(x)$ is a slowly varying function *i.e.* $\ell(\lambda x)/\ell(x) \to 1$ as $x \to \infty$ for all $\lambda \ge 1$. $\overline{F}(x)$ is said to be regularly varying at infinity with index $-1/\gamma$. This property is denoted by $\overline{F} \in \mathcal{R}_{-1/\gamma}$.

000

Model

Estimators 00000

Fréchet maximum domain of attraction : heavy-tailed distributions

All cumulative functions which belong to the Fréchet maximum domain of attraction denoted by $\mathcal{D}(Fréchet)$ can be rewritten as

$$\bar{F}(x) = x^{-1/\gamma} \ell(x),$$

where $\gamma > 0$ and $\ell(x)$ is a slowly varying function *i.e.* $\ell(\lambda x)/\ell(x) \to 1$ as $x \to \infty$ for all $\lambda \ge 1$. $\overline{F}(x)$ is said to be regularly varying at infinity with index $-1/\gamma$. This property is denoted by $\overline{F} \in \mathcal{R}_{-1/\gamma}$.

Gumbel maximum domain of attraction : light-tailed distributions

There is no simple representation for distributions which belong to $\mathcal{D}(Gumbel)$. We focus on an interesting sub-family called Weibull tail-distributions

$$\bar{F}(x) = \exp\left(-x^{\alpha}\ell(x)\right),$$

where α is called the Weibull tail-coefficient and $\ell(x)$ is a slowly varying function.

	0000	00000		
Outline	Introduction to the extreme value theory	Estimators	Illustration on simulations Concluding reman	

Model established by L. Gardes, S. Girard & A. Guillou

First order condition $(A_1(\tau, \theta))$

Let us consider the family of survival distribution functions defined as

$$(\mathbf{A}_1(\tau,\theta)) \ \overline{F}(x) = \exp(-K_{\tau}^{\leftarrow}(\log H(x))) \text{ for } x \ge x_* \text{ with } x_* > 0 \text{ and } x_*$$

•
$$K_{\tau}(y) = \int_{1}^{y} u^{\tau-1} du$$
 where $\tau \in [0, 1]$,

• *H* an increasing function such that $H^{\leftarrow} \in \mathcal{R}_{\theta}$ where $\theta > 0$.

Model	established by L. Gardes, S	Girard & A.	Guillou	
Outline	Introduction to the extreme value theory			Concluding remar

First order condition $(\mathbf{A}_1(\tau,\theta))$

Let us consider the family of survival distribution functions defined as

$$(\mathbf{A}_1(\tau, \theta)) \ \overline{F}(x) = \exp(-K_{\tau}^{\leftarrow}(\log H(x))) \text{ for } x \ge x_* \text{ with } x_* > 0 \text{ and } x_*$$

•
$$K_{\tau}(y) = \int_{1}^{y} u^{\tau-1} du$$
 where $\tau \in [0, 1]$,

• *H* an increasing function such that $H^{\leftarrow} \in \mathcal{R}_{\theta}$ where $\theta > 0$.

Proposition

- *F* verifies $(A_1(0, \theta))$ if and only if *F* is a Weibull-tail distribution function with Weibull tail-coefficient θ .
- If F verifies $(\mathbf{A}_1(\tau, \theta))$, $\tau \in [0, 1)$ and if H is twice differentiable then F belongs to the Gumbel maximum domain of attraction.
- F verifies (A₁(1, θ)) if and only if F is in the Fréchet maximum domain of attraction with tail-index θ.

Outline	Introduction to the extreme value theory	Estimators	Illustration on simulations	Concluding remarks
Estima	tor of θ	00000		

Definition

Denoting by (k_n) an intermediate sequence of integers, the following estimator of θ is considered :

$$\widehat{\theta}_{n,\tau}(k_n) = \frac{H_n(k_n)}{\mu_{\tau}(\log(n/k_n))},$$

with, for all t > 0,

$$\mu_{\tau}(t) = \int_0^\infty \left(K_{\tau}(x+t) - K_{\tau}(t) \right) \mathrm{e}^{-x} dx.$$

Definition

Let us consider (k_n) an intermediate sequence of integers such that $k_n \in \{1 \dots n\}$ the Hill estimator is given by :

$$H_n(k_n) = \frac{1}{k_n - 1} \sum_{i=1}^{k_n - 1} \log(X_{n-i+1,n}) - \log(X_{n-k_n+1,n}).$$

	0000	00000		
Outline	Introduction to the extreme value theory	Estimators	Illustration on simulations	Concluding remark

Model established by L. Gardes, S. Girard & A. Guillou

Definition

An estimator of the extreme quantile x_{p_n} can be deduced by :

$$\widehat{x}_{p_n,\widehat{\theta}_{n,\tau}(k_n)} = X_{n-k_n+1,n} \exp\left(\widehat{\theta}_{n,\tau}(k_n) \left(K_{\tau}(\log(1/p_n)) - K_{\tau}(\log(n/k_n))\right)\right)$$

Outline	Introduction to the extreme value theory	Estimators	Concluding rema
	0000	00000	

Model established by L. Gardes, S. Girard & A. Guillou

Definition

An estimator of the extreme quantile x_{p_n} can be deduced by :

$$\widehat{x}_{p_n,\widehat{\theta}_{n,\tau}(k_n)} = X_{n-k_n+1,n} \exp\left(\widehat{\theta}_{n,\tau}(k_n) \left(K_{\tau}(\log(1/p_n)) - K_{\tau}(\log(n/k_n))\right)\right)$$

Second order condition $(A_2(\rho))$

To establish the asymptotic normality of the estimators, a second-order condition on ℓ is required :

(A₂(ρ)) There exist $\rho < 0$, a function b satisfying $b(x) \rightarrow 0$ and |b| asymptotically decreasing such that uniformly locally on $\lambda > 0$

$$\log\left(\frac{\ell(\lambda x)}{\ell(x)}\right) \sim b(x) \mathcal{K}_{\rho}(\lambda), \text{ when } x \to \infty$$

It can be shown that necessarily $|b| \in \mathcal{R}_{\rho}$.

Outline	Introduction to the extreme value theory	Model		Concluding remarks
An	intuitive justification		00000	
	Objectives			
	() Estimate $ au$ independently	from θ ,		

Outline	Introduction to the extreme value theory 0000	Model •••••	Concluding remarks
An	intuitive justification		
	Objectives		
	0 Estimate $ au$ independently	from θ ,	
	2 Replace $ au$ by $\widehat{ au}_n$ in $\widehat{ heta}_{n, au}(k_n)$	n),	

Outline	Introduction to the extreme value theory 0000	Model	••••	Concluding remarks
An int	tuitive justification			

Objectives

- **Q** Estimate τ independently from θ ,
- **2** Replace τ by $\hat{\tau}_n$ in $\hat{\theta}_{n,\tau}(k_n)$,
- Replace τ by $\hat{\tau}_n$ and $\hat{\theta}_{n,\tau}(k_n)$ by $\hat{\theta}_{n,\hat{\tau}_n}(k_n)$ in $\hat{x}_{p_n,\hat{\theta}_{n,\tau}(k_n)}$.

Outline	Introduction to the extreme value theory	Model		Illustration on simulations	Concluding remarks
	0000		00000		
An intu	uitive justification				

Objectives

- **Q** Estimate τ independently from θ ,
- **2** Replace τ by $\hat{\tau}_n$ in $\hat{\theta}_{n,\tau}(k_n)$,
- **3** Replace τ by $\hat{\tau}_n$ and $\hat{\theta}_{n,\tau}(k_n)$ by $\hat{\theta}_{n,\hat{\tau}_n}(k_n)$ in $\hat{x}_{p_n,\hat{\theta}_{n,\tau}(k_n)}$.

Note that for (k_n) and (k'_n) two intermediate sequences of integers such that $\widehat{\theta}_{n,\tau}(k_n) \xrightarrow{P} \theta$ and $\widehat{\theta}_{n,\tau}(k'_n) \xrightarrow{P} \theta$ and $k'_n > k_n$ we have

$$\frac{\widehat{\theta}_{n,\tau}(k_n)}{\widehat{\theta}_{n,\tau}(k'_n)} = \frac{H_n(k_n)}{H_n(k'_n)} \frac{\mu_{\tau}(\log(n/k'_n))}{\mu_{\tau}(\log(n/k_n))} \xrightarrow{P} 1.$$

Then,

$$\frac{H_n(k_n)}{H_n(k_n')} \stackrel{P}{\sim} \frac{\mu_{\tau}(\log(n/k_n))}{\mu_{\tau}(\log(n/k_n'))} = \psi(\tau; \log(n/k_n), \log(n/k_n')),$$

where

$$\psi(x;t,t')=rac{\mu_x(t)}{\mu_x(t')}$$
 is a bijection from $\mathbb R$ to $\left(-\infty, exp(t-t')
ight).$

Outline	Introduction to the extreme value theory	Model		Concluding remarks
	0000		0000	
Estima	tor of $ au$			

Definition

Denoting by (k_n) and (k'_n) two intermediate sequences of integers such that $k'_n > k_n$, the following estimator of τ is considered :

$$\widehat{\tau}_n = \begin{cases} \psi^{-1} \left(\frac{H_n(k_n)}{H_n(k'_n)}; \log(n/k_n), \log(n/k'_n) \right) & \text{if } \frac{H_n(k_n)}{H_n(k'_n)} < \frac{k'_n}{k_n}, \\ u & \text{if } \frac{H_n(k_n)}{H_n(k'_n)} \ge \frac{k'_n}{k_n}. \end{cases}$$

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

where u is the realization of a standard uniform distribution.

Outline	Introduction to the extreme value theory	Model	00000	Concluding remarks
Asympt	totic properties			

Asymptotic normality of $\hat{\tau}_n$

Suppose that $(A_1(\tau, \theta))$ and $(A_2(\rho))$ hold. Let (k_n) and (k'_n) be two intermediate sequences of integers such that

$$\begin{array}{ll} (H_1) & k_n \to \infty, & k'_n/n \to 0, & k_n/k'_n \to 0, & \sqrt{k'_n}b(\exp K_\tau(\log n/k'_n)) \to 0, \\ \\ & (H_2) & \log(n/k'_n)\left(\log_2(n/k_n) - \log_2(n/k'_n)\right) \to \infty, \\ & \sqrt{k_n}\left(\log_2(n/k_n) - \log_2(n/k'_n)\right) \to \infty. \end{array}$$

we have :

$$\sqrt{k_n} \left(\log_2(n/k_n) - \log_2(n/k'_n) \right) (\widehat{\tau}_n - \tau) \stackrel{d}{\rightarrow} \mathcal{N}(0, 1).$$

where $\log_2 = \log(\log)$.

Outline	Introduction to the extreme value theory 0000	Model	00000	Concluding remarks
Asymp	totic properties			

Replacing τ by $\hat{\tau}_n$ we obtain

$$\widehat{\theta}_{n,\widehat{\tau}_n}(k_n) = \frac{H_n(k_n)}{\mu_{\widehat{\tau}_n}(\log(n/k_n))}.$$

Outline	Introduction to the extreme value theory 0000	Model	00000	Concluding remarks
Asymp	totic properties			

Replacing τ by $\hat{\tau}_n$ we obtain

$$\widehat{\theta}_{n,\widehat{\tau}_n}(k_n) = \frac{H_n(k_n)}{\mu_{\widehat{\tau}_n}(\log(n/k_n))}.$$

Asymptotic normality of $\widehat{\theta}_{n,\widehat{\tau}_n}(k_n)$

Suppose that $(A_1(\tau, \theta))$ and $(A_2(\rho))$ hold. Let (k_n) and (k'_n) be two intermediate sequences of integers such that (H_1) , (H_2) hold with

$$(H_3) \quad \left(\log_2(n/k_n) - \log_2(n/k'_n)\right) / \log_2(n/k_n) \to 0,$$

$$(H_4)\sqrt{k_n}\left(\log_2(n/k_n)-\log_2(n/k_n')\right)/\log_2(n/k_n)\to\infty.$$

we have :

$$\frac{\sqrt{k_n}\left(\log_2(n/k_n) - \log_2(n/k'_n)\right)}{\log_2(n/k_n)}\left(\widehat{\theta}_{n,\widehat{\tau}_n}(k_n) - \theta\right) \stackrel{d}{\to} \mathcal{N}(0,\theta^2).$$

Outline	Introduction to the extreme value theory 0000	Model	00000	Concluding remarks
Asym	ptotic properties			

Replacing τ by $\hat{\tau}_n$ and $\hat{\theta}_{n,\tau}(k_n)$ by $\hat{\theta}_{n,\hat{\tau}_n}(k_n)$ we obtain

 $\widehat{x}_{p_n,\widehat{\theta}_n,\widehat{\tau}_n(k_n)} = X_{n-k_n+1,n} \exp\left(\widehat{\theta}_{n,\widehat{\tau}_n}(k_n) \left(K_{\widehat{\tau}_n}(\log(1/p_n)) - K_{\widehat{\tau}_n}(\log(n/k_n))\right)\right).$

Outline	Introduction to the extreme value theory 0000	Model	00000	Illustration on simulations	Concluding remarks
Asymp	ototic properties				

Replacing τ by $\hat{\tau}_n$ and $\hat{\theta}_{n,\tau}(k_n)$ by $\hat{\theta}_{n,\hat{\tau}_n}(k_n)$ we obtain

$$\widehat{x}_{p_n,\widehat{\theta}_n,\widehat{\tau}_n}(k_n) = X_{n-k_n+1,n} \exp\left(\widehat{\theta}_{n,\widehat{\tau}_n}(k_n) \left(K_{\widehat{\tau}_n}(\log(1/p_n)) - K_{\widehat{\tau}_n}(\log(n/k_n))\right)\right)$$

Asymptotic normality of $\widehat{x}_{p_n,\widehat{\theta}_n,\widehat{\tau}_n}(k_n)$

Suppose that $(\mathbf{A}_1(\tau, \theta))$ and $(\mathbf{A}_2(\rho))$ hold. Let (k_n) and (k'_n) be two intermediate sequences of integers such that (H_1) , (H_2) , (H_3) , (H_4) hold with

we have :

$$\frac{\sqrt{k_n}\left(\log_2(n/k_n) - \log_2(n/k'_n)\right)}{\int_{\log(n/k_n)}^{\log(1/p_n)}\log(u)u^{\tau-1}du} \left(\frac{\widehat{x}_{\rho_n,\widehat{\theta}_n,\widehat{\tau}_n}(k_n)}{x_{\rho_n}} - 1\right) \xrightarrow{d} \mathcal{N}(0,\theta^2).$$

Outline	Introduction to the extreme value theory 0000	Model	Estimators 00000	Concluding remarks
Simula	tions			

- We generate N = 100 samples $(\mathcal{X}_{n,i})_{i=1,...,N}$ of size n = 300.
- On each sample $(\mathcal{X}_{n,i})$, the estimator $\widehat{\chi}_{p_n,\widehat{\theta}_n,\widehat{\tau}_n}(k_n)$ is computed for $k_n = 2, \ldots, 299$ and $k'_n = k_n, \ldots, 300$.
- In what follows we show simulation results for quantiles corresponding to $p_n = 1/2n = 1.6 * 10^{-3}$.
- $\bullet\,$ The associated deciles of the empirical Mean-Squared Error \mathcal{MSE} are plotted.
- Comparison with an estimator of A. L. M. Dekkers, J.H.J. Einmahl & L. de Haan.

Outline Introduction to the extreme value theory Model
0000

Estimator

Concluding remarks

2

Gamma distribution for $\widehat{x}_{p_n,\widehat{\theta}_n,\widehat{\tau}_n}(k_n) / \mathcal{D}(Gumbel)$

Empirical deciles of the Mean-Square Error

oduction to the extreme value theory

Model

Estimators

Concluding remarks

2

Gamma distribution for an estimator of A. L. M. Dekkers et al.

Empirical deciles ot the Mean-Square Error $< \square > < \equiv > < \equiv >$

Empirical deciles of the Mean-Square Error

2

Outline	Introduction to the extreme value theory	Model	Estimators	Concluding rema
	0000		00000	

Pareto distribution for an estimator of A. L. M. Dekkers et al.

문 🛌 🖻

Conclu	iding romarks			
	0000		00000	
Outline	Introduction to the extreme value theory	Model	Estimators	Illustration on simulations

• The choice of the parameters k_n and k'_n in practice.

<u> </u>			00000		
Outline	Introduction to the extreme value theory	Model	Estimators	Illustration on simulations	

- The choice of the parameters k_n and k'_n in practice.
- Adapt our results to the case $\tau > 1$ and investigate the possible link with super-heavy tails.

Outline	Introduction to the extreme value theory 0000	Model	Estimators 00000	Illustration on simulations
Conclu	iding remarks			

- The choice of the parameters k_n and k'_n in practice.
- Adapt our results to the case $\tau > 1$ and investigate the possible link with super-heavy tails.

Extend this work to random variable Y = φ(X) where X has a parent distribution satisfying (A₁(τ, θ)).

Outline	Introduction to the extreme value theory	Model	Estimators 00000	Illustration on simulations
Conclu	ding remarks			

- The choice of the parameters k_n and k'_n in practice.
- Adapt our results to the case $\tau > 1$ and investigate the possible link with super-heavy tails.
- Extend this work to random variable Y = φ(X) where X has a parent distribution satisfying (A₁(τ, θ)).
- For instance, choosing $\varphi(x) = x^* 1/x$ would allow to consider distributions in the Weibull maximum domain of attraction (with finite endpoint x^*).

Outline	Introduction to the extreme value theory 0000	Model	Estimators 00000	Illustration on simulations
Main r	eferences			

- Dekkers, A. L. M., Einmahl, J. H. J., De Haan, L., (1989). A Moment Estimator for the Index of an Extreme-Value Distribution, The Annals of Statistics, 17, 1833-1855.
 - Gardes, L., Girard, S., Guillou, A., (2011). Weibull tail-distributions revisited : a new look at some tail estimators, Journal of Statistical Planning and Inference, 141, 429–444.
- Gnedenko, B.V., (1943). Sur la distribution limite du terme maximum d'une série aléatoire, The Annals of Mathematics, 44, 423-453.
- Hill, B.M., (1975). A simple general approach to inference about the tail of a distribution, The Annals of Statistics, 3, 1163-1174.

Outline	Introduction to the extreme value theory	Model	Estimators	Illustration on simulations
	0000		00000	

Thank you for your attention