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Motivations

Let X1, . . . ,Xn be a sample of independent and identically distributed random
variables driven from X with cumulative distribution function F , and let
X1,n ≤ · · · ≤ Xn,n denote the order statistics associated to this sample.

We want to estimate the extreme quantile xpn of order pn associated to
the random variable X ∈ R defined by

xpn = F
←

(pn) = inf{x , F̄ (x) ≤ pn},

with pn → 0 when n→∞. The function F
←

is the generalized inverse of
the non-increasing function F̄ = 1− F .

Difficulty : If npn → 0 then P(xpn > Xn,n)→ 1.
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Principals results on extreme value theory

Fisher-Tippett-Gnedenko theorem

Under some conditions of regularity on the cumulative distribution function F ,
there exists a real parameter γ and two sequences (an)n≥1 > 0 and (bn)n≥1 ∈ R
such that for all x ∈ R,

lim
n→∞

P
(
Xn,n − bn

an
≤ x

)
= Hγ(x),

with

Hγ(x) =

{
exp

(
−(1 + γx)

−1/γ
+

)
if γ 6= 0,

exp
(
−e−x

)
if γ = 0,

where y+ = max(0, y).
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3 domains of attraction

Hγ is called the cumulative distribution function of the extreme value
distribution.

If F verifies the Fisher-Tippett-Gnedenko theorem, we say that F belongs
to the domain of attraction of Hγ .

γ is called the extreme value index.

Fréchet (γ > 0) Gumbel (γ = 0) Weibull (γ < 0)
Pareto Normal Uniform
Student Exponential Beta
Burr Log-normal
Fréchet Gamma

Weibull

5 / 22



Outline Introduction to the extreme value theory Model Estimators Illustration on simulations Concluding remarks

Fréchet maximum domain of attraction : heavy-tailed distributions

All cumulative functions which belong to the Fréchet maximum domain of
attraction denoted by D(Fr échet) can be rewritten as

F̄ (x) = x−1/γ`(x),

where γ > 0 and `(x) is a slowly varying function i.e. `(λx)/`(x)→ 1 as
x →∞ for all λ ≥ 1. F̄ (x) is said to be regularly varying at infinity with
index −1/γ. This property is denoted by F̄ ∈ R−1/γ .

Gumbel maximum domain of attraction : light-tailed distributions

There is no simple representation for distributions which belong to D(Gumbel).
We focus on an interesting sub-family called Weibull tail-distributions

F̄ (x) = exp (−xα`(x)) ,

where α is called the Weibull tail-coefficient and `(x) is a slowly varying
function.
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Model established by L. Gardes, S. Girard & A. Guillou

First order condition (A1(τ, θ))

Let us consider the family of survival distribution functions defined as

(A1(τ, θ)) F̄ (x) = exp(−K←τ (logH(x))) for x ≥ x∗ with x∗ > 0 and

Kτ (y) =
∫ y

1
uτ−1du where τ ∈ [0, 1],

H an increasing function such that H← ∈ Rθ where θ > 0.

Proposition

F verifies (A1(0, θ)) if and only if F is a Weibull-tail distribution function
with Weibull tail-coefficient θ.

If F verifies (A1(τ, θ)), τ ∈ [0, 1) and if H is twice differentiable then F
belongs to the Gumbel maximum domain of attraction.

F verifies (A1(1, θ)) if and only if F is in the Fréchet maximum domain of
attraction with tail-index θ.
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Estimator of θ

Definition

Denoting by (kn) an intermediate sequence of integers, the following estimator
of θ is considered :

θ̂n,τ (kn) =
Hn(kn)

µτ (log(n/kn))
,

with, for all t > 0,

µτ (t) =

∫ ∞
0

(Kτ (x + t)− Kτ (t)) e−xdx .

Definition

Let us consider (kn) an intermediate sequence of integers such that
kn ∈ {1 . . . n} the Hill estimator is given by :

Hn(kn) =
1

kn − 1

kn−1∑
i=1

log(Xn−i+1,n)− log(Xn−kn+1,n).
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Model established by L. Gardes, S. Girard & A. Guillou

Definition

An estimator of the extreme quantile xpn can be deduced by :

x̂pn,θ̂n,τ (kn) = Xn−kn+1,n exp
(
θ̂n,τ (kn) (Kτ (log(1/pn))− Kτ (log(n/kn)))

)
.

Second order condition (A2(ρ))

To establish the asymptotic normality of the estimators, a second-order
condition on ` is required :

(A2(ρ)) There exist ρ < 0, a function b satisfying b(x)→ 0 and |b|
asymptotically decreasing such that uniformly locally on λ > 0

log

(
`(λx)

`(x)

)
∼ b(x)Kρ(λ), when x →∞.

It can be shown that necessarily |b| ∈ Rρ.
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An intuitive justification

Objectives

1 Estimate τ independently from θ,

2 Replace τ by τ̂n in θ̂n,τ (kn),

3 Replace τ by τ̂n and θ̂n,τ (kn) by θ̂n,τ̂n (kn) in x̂pn,θ̂n,τ (kn).

Note that for (kn) and (k ′n) two intermediate sequences of integers such that

θ̂n,τ (kn)
P−→ θ and θ̂n,τ (k ′n)

P−→ θ and k ′n > kn we have

θ̂n,τ (kn)

θ̂n,τ (k ′n)
=

Hn(kn)

Hn(k ′n)

µτ (log(n/k ′n))

µτ (log(n/kn))
P−→ 1.

Then,
Hn(kn)

Hn(k ′n)
P∼ µτ (log(n/kn))

µτ (log(n/k ′n))
= ψ(τ ; log(n/kn), log(n/k ′n)),

where

ψ(x ; t, t′) =
µx(t)

µx(t′)
is a bijection from R to

(
−∞, exp(t − t′)

)
.
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Estimator of τ

Definition

Denoting by (kn) and (k ′n) two intermediate sequences of integers such that

k ′n > kn, the following estimator of τ is considered :

τ̂n =

 ψ−1
(

Hn(kn)
Hn(k′

n) ; log(n/kn), log(n/k ′n)
)

if Hn(kn)
Hn(k′

n) <
k′
n

kn
,

u if Hn(kn)
Hn(k′

n) ≥
k′
n

kn
.

where u is the realization of a standard uniform distribution.

11 / 22



Outline Introduction to the extreme value theory Model Estimators Illustration on simulations Concluding remarks

Asymptotic properties

Asymptotic normality of τ̂n

Suppose that (A1(τ, θ)) and (A2(ρ)) hold. Let (kn) and (k ′n) be two
intermediate sequences of integers such that

(H1) kn →∞, k ′n/n→ 0, kn/k
′
n → 0,

√
k ′nb(expKτ (log n/k ′n))→ 0,

(H2) log(n/k ′n)
(
log2(n/kn)− log2(n/k ′n)

)
→∞,

√
kn
(
log2(n/kn)− log2(n/k ′n)

)
→∞.

we have :
√
kn
(
log2(n/kn)− log2(n/k ′n)

)
(τ̂n − τ)

d→ N (0, 1).

where log2 = log(log).
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Asymptotic properties

Replacing τ by τ̂n we obtain

θ̂n,τ̂n (kn) =
Hn(kn)

µτ̂n (log(n/kn))
.

Asymptotic normality of θ̂n,τ̂n (kn)

Suppose that (A1(τ, θ)) and (A2(ρ)) hold. Let (kn) and (k ′n) be two
intermediate sequences of integers such that (H1), (H2) hold with

(H3)
(
log2(n/kn)− log2(n/k ′n)

)
/ log2(n/kn)→ 0,

(H4)
√
kn
(
log2(n/kn)− log2(n/k ′n)

)
/ log2(n/kn)→∞.

we have :
√
kn (log2(n/kn)− log2(n/k ′n))

log2(n/kn)

(
θ̂n,τ̂n (kn)− θ

)
d→ N (0, θ2).
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Asymptotic properties
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x̂pn,θ̂n,τ̂n (kn) = Xn−kn+1,n exp
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θ̂n,τ̂n (kn) (Kτ̂n (log(1/pn))− Kτ̂n (log(n/kn)))

)
.
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Suppose that (A1(τ, θ)) and (A2(ρ)) hold. Let (kn) and (k ′n) be two
intermediate sequences of integers such that (H1), (H2), (H3), (H4) hold with

(log(n/kn))1−τ (Kτ (log(1/pn))− Kτ (log(n/kn)))→∞,

(log2(1/pn))/
√
kn(log2(n/kn)− log2(n/k ′n))→ 0,

log2(n/kn)(Kτ (log(1/pn))− Kτ (log(n/kn)))∫ log(1/pn)

log(n/kn)
log(u)uτ−1du

→ 0,

we have :

√
kn (log2(n/kn)− log2(n/k ′n))∫ log(1/pn)

log(n/kn)
log(u)uτ−1du

(
x̂pn,θ̂n,τ̂n (kn)

xpn
− 1

)
d−→ N (0, θ2).
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Simulations

We generate N = 100 samples (Xn,i )i=1,...,N of size n = 300.

On each sample (Xn,i ), the estimator x̂pn,θ̂n,τ̂n (kn) is computed for

kn = 2, . . . , 299 and k ′n = kn, . . . , 300.

In what follows we show simulation results for quantiles corresponding to
pn = 1/2n = 1.6 ∗ 10−3.

The associated deciles of the empirical Mean-Squared Error MSE are
plotted.

Comparison with an estimator of A. L. M. Dekkers, J.H.J. Einmahl & L.
de Haan.
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Gamma distribution for x̂
pn,θ̂n,τ̂n (kn)

/ D(Gumbel)

Empirical deciles of the Mean-Square Error
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Gamma distribution for an estimator of A. L. M. Dekkers et al.

Empirical deciles ot the Mean-Square Error
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Pareto distribution for x̂
pn,θ̂n,τ̂n (kn)

/ D(Fr échet)
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18 / 22



Outline Introduction to the extreme value theory Model Estimators Illustration on simulations Concluding remarks

Pareto distribution for an estimator of A. L. M. Dekkers et al.

Empirical deciles of the Mean-Square Error
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Concluding remarks

Conclusions and Further Work

The choice of the parameters kn and k ′n in practice.

Adapt our results to the case τ > 1 and investigate the possible link with
super-heavy tails.

Extend this work to random variable Y = ϕ(X ) where X has a parent
distribution satisfying (A1(τ, θ)).

For instance, choosing ϕ(x) = x∗ − 1/x would allow to consider
distributions in the Weibull maximum domain of attraction (with finite
endpoint x∗).
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Thank you for your attention
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