Séparation de source en aveugle appliquée aux images hyperspectrales OMEGA (ICA & mélange positif)

Frédéric Schmidt, Hafrun Hauksdottir, Saïd Moussaoui, Christian Jutten, Jocelyn Chanussot.

Plan

• Séparation de source

Mélanges de glaces

• Mélange de minéraux

Quantification : quels critères ?

• Représentation de surface :

- Automatique, sans a priori
- Diversité des observations : ⇒Statistiques
- Redondance d'information
 ⇒basée sur plusieurs canaux spectraux, sur plusieurs pixels.

Indépendance spatiale/spectrale

- Spatiale :
 - Distributions des proportions de surface sont indépendantes
 - -Bien contraint

• Spectrale :

Distributions des spectres sont indépendantes
Mal contraint

Analyses en composantes indépendantes

 « JADE », indépendance spatiale : ⇒Mauvaise estimation des spectres

Cardoso, J., *Signal Processing Letters*, **1997**

- « BPSS », indépendance spectrale :
 - -Contraintes :
 - sources et matrice de mélange positives (gamma)
 - sources indépendantes entre elles
 - ⇒Prometteuse mais :
 - Méthode Monte Carlo : temps de calcul long, très gourmand en mémoire

Méthode JADE+BPSS : positivité et indépendance

On the Decomposition of Mars Hyperspectral Data by ICA and Bayesian Positive Source Separation, S. Moussaoui, H. Hauksdottir, F. Schmidt, C. Jutten, J. Chanussot, D. Brie, S. Douté, C. Benediksson, Neurocomputing, 2007

JADE + BPSS

1. ACI « JADE » spatial

2. Tirage de ~300 spectres représentatifs

3. ACI « BPSS » spectral

Détection de présence de glaces

- Calotte permanente sud de Mars
- Présence des bandes atmosphériques

JADE + BPSS

JADE + Bayésien

- 1. Classification JADE
- 2. Tirage de 50 spectres représentatifs

(parmi les 15% avec le plus grand SNR)

JADE + BPSS

3. Méthode bayésienne

Comparaison avec inversion

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

120

JADE+BPSS

Inversion (méthode kNN)

Utilisation en spectro-imagerie Classification non-supervisée 0.6 (a) Dataset 1.a (a) Dataset 1.a (a) Dataset 1.a Eau (%) Image $CO_2(\%)$ ORB0030_0 20,53 17,48 21,84 16,76 OKB0041_1 2.5 2.5 2.5 ORB0041_1.CUT 63,48 48,72 (b) Dataset 2.a (b) Dataset 2.a (b) Dataset 2.a ORB0061_1 24,30 10,00 ORB0103 41,09 15,50 2.5 μm 2.5 um (c) Dataset 3.a (c) Dataset 3.a (c) Dataset 3.a 0.6 0.4 2.5 2.5 2.5 3.5 (d) Dataset 4.a (d) Dataset 4.a (d) Dataset 4.a

Détection de présence de minéraux

- Plus complexe (profondeur de bande)
- Nécessite une correction des bandes atmosphériques

Exemples de spectres **OMEGA** spectra **Poussière** Spectral index (Offset for clarity) H_2O CO_2 gypse 50 250 100 150 200 Index Number

Sulfates dans la zone polaire Nord

 Dans les plaines sombres

Méthode Wavanglet

Langevin et al., 2005

0.2 0.4 0.6

0.8

0.1

0

0.8

Abondances

Source 1

Source 2

Spectres

Source 1 basalte (LPG, A. Pommerol) Source 2 gypse (LPG, A. Pommerol)

Perspectives

Conclusion Estimation des spectres des corps chimiques purs

Amélioration

Nombre de source (JADE et BPSS)
Dépendance du nombre de pixel par classe
Présence de glace

Sulfates dans Valles Marineris

