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Université Joseph Fourier
Laboratoire Jean Kuntzmann, Equipe/Projet INRIA MOISE

joint work with Elena Di Bernardino, CNAM

1st ”Lyon-Grenoble meeting on Extremes”

Clémentine PRIEUR



Multivariate Conditional Tail Expectation The Kendall’s process A new non parametric estimator of the multivariate CTEα Simulations and study on real data Conclusion, perspectives

Outline

1 Multivariate Conditional Tail Expectation

2 The Kendall’s process

3 A new non parametric estimator of the multivariate CTEα

4 Simulations and study on real data

5 Conclusion, perspectives

Clémentine PRIEUR



Multivariate Conditional Tail Expectation The Kendall’s process A new non parametric estimator of the multivariate CTEα Simulations and study on real data Conclusion, perspectives

Outline

1 Multivariate Conditional Tail Expectation

2 The Kendall’s process

3 A new non parametric estimator of the multivariate CTEα

4 Simulations and study on real data

5 Conclusion, perspectives

Clémentine PRIEUR



Multivariate Conditional Tail Expectation The Kendall’s process A new non parametric estimator of the multivariate CTEα Simulations and study on real data Conclusion, perspectives

Quantile curve and risk measures: possible extensions for dim ≥ 2

Notation, definitions :

Let X = (X1, . . . ,Xd) be a random vector with continuous distribution

function F : Rd
+ → [0, 1].

Let α ∈ (0, 1), d ≥ 2. Define the upper α-level set (resp. the
α-quantile curve) of F by

L(α) = {x ∈ Rd
+ : F (x) ≥ α}, ∂L(α) = {x ∈ Rd

+ : F (x) = α}.
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Quantile curve and risk measures: possible extensions for dim ≥ 2

The α-quantile curve has been proposed to generalize the
Value-at-Risk (VaR) in dimension d ≥ 2 (see e.g., Embrechts &

Puccetti, 2006; Nappo & Spizzichino, 2009).

Advantages :
• “metric-free”,
• provides a data segmentation of predefined size,
• valid for symmetric as far as non-symmetric distribution functions,

• De Haan & Huang (1995), Chebana & Ouarda (2011) used quantile

curves to model hydrological events.
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Quantile curve and risk measures: possible extensions for dim ≥ 2

Definition (Di Bernardino et al., 2012)

Consider a random vector X with continuous distribution function

F : Rd
+ → [0, 1]. For α ∈ (0, 1), we define the Multivariate Conditional

Tail Expectation by

CTEα(X) =

 E[ X1 |X ∈ L(α) ]
...

E[ Xd |X ∈ L(α) ]



Remark

CTEα does not use an aggregate variable (sum, min, max, . . . ) to
analyse the multivariate risk’s issue. This measure is of particular
interest when factors of risk are heterogeneous and can therefore
not be aggregated.
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Quantile curve and risk measures: possible extensions for dim ≥ 2

Definition (Di Bernardino et al., 2011; Cousin et al, 2012)

Consider a random vector X with continuous distribution function

F : Rd
+ → [0, 1]. Define U = (F1(X1), . . . ,Fd(Xd)). For α ∈ (0, 1), we

define the Multivariate Conditional Tail Expectation by

CTEα(X) =

 E[ X1 |C (U) ≥ α ]
...

E[ Xd |C (U) ≥ α ]


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Quantile curve and risk measures: possible extensions for dim ≥ 2

Main objective of our work : estimating the Multivariate
Conditional Tail Expectation and derive the properties of our
estimate.

Level sets-based plug-in, Di Bernardino et al. (2011) :

For α ∈ (0, 1) and T > 0, define

Ln(α)T = {x ∈ [0,T ]2, Fn(x) ≥ α}.

Let (Tn) be an increasing positive sequence. Let X 1, . . .X n be a
sample of the d-variate distribution F .
Di Bernardino et al. (2011) define and study properties of

ĈTE
Tn

α (X ) =

(∑n
j=1 X j

11{X j∈Ln(α)Tn}∑n
j=1 1{X j∈Ln(α)Tn}

, . . . ,

∑n
j=1 X j

d1{X j∈Ln(α)Tn}∑n
j=1 1{X j∈Ln(α)Tn}

)′
.

A difficulty is the way to adjust the sequence (Tn). Therefore we
propose here a new estimator of CTEα.
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A major tool, the Kendall’s process

Let X 1, . . . ,X n a random sample of size n ≥ 2 from the d-variate
continuous distribution function F . Let Vi ,n denote the proportion
of observations X j , j 6= i , such that X j ≤ X i componentwise. We
then define Kn the empirical distribution function derived from the
(dependent) pseudo-observations Vi ,n.

Remark

Let Fn(x) = 1
n

∑n
j=1 1X j≤x , we can write

Kn(t) =
1

n

n∑
j=1

1Fn(X j )≤t+ 1−t
n
.

We also define the Kendall’s distribution by K (t) = P[F (X ) ≤ t],
and C will denote the copula associated to F .
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A major tool, the Kendall’s process

I : the distribution function K (t) of F (X ) admits a continuous density
k(t) on (0, 1] that verifies k(t) = o

(
t−1/2 log−1/2−ε ( 1

t

))
, for some

ε > 0 as t → 0,

II : there exists a version of the conditional distribution of the vector
U := (F1(X1), ...,Fd(Xd)) given C (U) = t and a countable family P of
partitions C of [0, 1]d into a finite number of Borel sets satisfying:

inf
C∈P

max
A∈C

diam(A) = 0,

such that for all A ∈ C the mapping

t 7→ ηt(A) = k(t) P[U ∈ A |C (U) = t]

is continuous on (0, 1] with η1(A) = k(1)1{(1,...,1)∈A}.
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A major tool, the Kendall’s process

Remark

• A necessary condition for Assumption II is that F is partially
strictly increasing. In particular, all copulas whose density function
is continuous and positive on (0, 1)d sastisfy II.
• Several examples for assumptions I and II are derived in Barbe &
Genest (1996).

Theorem (Barbe & Genest, 1996)

Define the centered Kendall’s process

αn(t) =
√

n (Kn(t)− K (t)) .

Under assumptions I and II, αn
D−−−−→

n→+∞
α where α is a continuous

Gaussian process with zero mean and covariance function Γ.
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A new estimator

Let X = (X1, . . . ,Xd). X is said to satisfy the ”regularity
conditions” if

• F : Rd
+ → [0, 1] is partially strictly increasing,

• there exists r > 2 such that E(|Xi |r ) <∞, for i = 1, . . . , d ,

• assumption I is satisfied.
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Let X 1, . . . ,X n be a sample of the d-variate distribution F . We
define U i = (F1(X i

1), . . . ,Fd(X i
d)). Let Cn the empirical

distribution function associated to C .

Definition (Di Bernardino & Prieur (2012))

The Kendall-based estimator for the Multivariate α-Conditional
Tail Expectation is defined by

ĈTEα(X ) =
1

1− Kn(α)



1

n

n∑
i=1

X i
11{Cn(U i )≥α}

...

1

n

n∑
i=1

X i
d1{Cn(U i )≥α}


.
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Properties of our estimator

Let ĈTEα =
(
ĈTEα,1, . . . , ĈTEα,d

)′
.

Define αCTE
n (α) =

(
αCTE

n,1 (α), . . . , αCTE
n,d (α)

)′
by

αCTE
n, j (α) =

√
n (ĈTEα,j − CTEα,j), j = 1, . . . , d .

Theorem (Di Bernardino & Prieur, 2012)

Under the ”regularity conditions”, αCTE
n

D−−−−→
n→+∞

αCTE where αCTE

is a continuous Gaussian process with zero mean and
(cross-)covariance function ΓCTE .

The expression for Γi ,j
CTE (s, t), i , j = 1, . . . , d , s, t ∈ [0, 1] is

complex and depends on the limit covariance function Γ (see
Theorem on the Kendall’s process).
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Sketch of the proof

The proof is strongly based on the one of the convergence of the
Kendall’s process (see Barbe & Genest, 1996). We first write

αCTE
n, j (α) = (1−Kn(α))−1(1−K (α))−1 (ζn,j(α)+φn,j(α)+ψn,j(α))

with

ζn,j(α) =
√

n K (α)

(
n−1

n∑
i=1

X i
j

(
1{Cn(U i )≥α} − 1{C(U i )≥α}

))
,

φn,j(α) =
√

n K (α)

(
n−1

n∑
i=1

X i
j 1{C(U i )≥α} − E[ Xj 1{C(U)≥α} ]

)
,

ψn,j(α) =
√

n E[ Xj 1{C(U)≥α} ] (Kn(α)− K (α)).
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Sketch of the proof (2)

We then use a technical adaptation of the proof in Barbe & Genest
to prove the convergence in D of each term in the sum.

We then make use of the continuous mapping theorem to prove
the convergence of the finite dimensional distributions of the sum.

The tightness is deduced as the limit of each process in the sum is
continuous.
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Asymptotic normality

X = (X1,X2), independent and exponentially distributed marginals
with parameter 2.

Q-Q plot for
√

n (ĈTE
K

α,1 − CTEα,1) on 100 simulations, with α = 0.38,

n = 50, 250, 800.
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Comparaison of the two estimators

For the level sets-based estimator, we do the ”best choice” for Tn. This
is a compromise between
• the rate of convergence of LTn

n (α) to L(α) (which decreases with Tn),

• the tail behavior of X, i.e. (P(X1 ≥ Tn or X2 ≥ Tn))−1, which

increases with Tn.

We consider
1) Independent copula with exponentially distributed marginals

2) Clayton copula with parameter 1, with exponential and Burr(4, 1)

univariate marginals.

sample size n = 1000, number of replications r = 100,

α = 0.10, 0.24, 0.38 0.52, 0.66, 0.80
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Comparaison of the two estimators

α CTEα ĈTEαLα
ĈTEαK σ̂Lα σ̂K RMSELα RMSEK

0.10 (1.255, 0.627) (1.222, 0.638) (1.259, 0.628) (0.044, 0.022) (0.039, 0.021) (0.043, 0.039) (0.032, 0.036)

0.24 (1.521, 0.761) (1.488, 0.811) (1.524, 0.761) (0.069, 0.023) (0.053, 0.023) (0.051, 0.042) (0.035, 0.037)

0.38 (1.792, 0.896) (1.797, 0.911) (1.791, 0.895) (0.075, 0.038) (0.068, 0.037) (0.044, 0.046) (0.037, 0.043)

0.52 (2.102, 1.051) (2.082, 1.047) (2.113, 1.056) (0.104, 0.052) (0.094, 0.045) (0.052, 0.052) (0.045, 0.044)

0.66 (2.492, 1.246) (2.461, 1.255) (2.507, 1.259) (0.139, 0.071) (0.137, 0.071) (0.057, 0.056) (0.056, 0.052)

0.80 (3.061, 1.531) (3.011, 1.544) (3.105, 1.535) (0.251, 0.125) (0.248, 0.122) (0.084, 0.082) (0.083, 0.081)

Table: X with independent and exponentially distributed components
with parameter 1 and 2 respectively.
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Comparaison of the two estimators

α CTEα ĈTEαLα
ĈTEαK σ̂Lα σ̂K RMSELα RMSEK

0.10 (1.188, 1.229) (1.049, 1.192) (1.179, 1.231) (0.032, 0.021) (0.031, 0.021) (0.019, 0.033) (0.013, 0.018)

0.24 (1.448, 1.366) (1.283, 1.379) (1.442, 1.372) (0.053, 0.224) (0.039, 0.023) (0.019, 0.063) (0.014, 0.017)

0.38 (1.727, 1.505) (1.525, 1.471) (1.724, 1.506) (0.046, 0.031) (0.041, 0.029) (0.019, 0.031) (0.017, 0.022)

0.52 (2.049, 1.666) (1.803, 1.625) (2.065, 1.667) (0.058, 0.041) (0.048, 0.039) (0.023, 0.034) (0.021, 0.031)

0.66 (2.454, 1.875) (2.129, 1.823) (2.479, 1.873) (0.071, 0.054) (0.069, 0.046) (0.035, 0.039) (0.029, 0.033)

0.80 (3.039, 2.202) (2.591, 2.144) (3.029, 2.252) (0.111, 0.105) (0.103, 0.103) (0.055, 0.054) (0.041, 0.049)

Table: X with Clayton copula with parameter 1, F1 exponential
distribution with parameter 1, F2 Burr(4, 1) distribution.
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What happens for high levels

Independent and exponentially distributed marginals with
parameters 1 (resp. 2), α = 0.9. Then CTE0.9 = (3.78, 1.89).

n 1000 1500 2000 2500

σ̂K (0.416, 0.299) (0.411, 0.256) (0.368, 0.155) (0.221, 0.113)

σ̂Lα (0.444, 0.308) (0.431, 0.295) (0.377, 0.168) (0.241, 0.123)

RMSEK (0.113, 0.158) (0.111, 0.135) (0.095, 0.087) (0.072, 0.063)

RMSELα (0.123, 0.163) (0.115, 0.161) (0.099, 0.089) (0.077, 0.079)

We need 2500 data to obtain performances similar to the ones
when α = 0.8 and n = 1000.

A challenge is the estimation of extreme risks α ≥ 0.95.
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Deterioration when α increases

With r = 100 replications and sample size equal to n = 1000, we

derive empirical confidence intervals for ĈTEα,2K :[
ĈTEα,2K − u0.95

σ̂K√
n
, ĈTEα,2K + u0.95

σ̂K√
n

]
with u0.95 the quantile of order 0.95 of the standard gaussian
distribution.
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Influence of the dependence

Clayton family C (u, v) =
(
max(u−θ + v−θ − 1 , 0)

)−1/θ
with

−1 ≤ θ ≤ +∞. Uniform marginals, r = 100 and n = 1000.

α
θ −0.95 0 1 104

0.10

CTEα 0.6419

ĈTEαK 0.6397bσK 0.0337
RMSEK 0.0538

CTEα 0.6047

ĈTEαK 0.6062bσK 0.0106
RMSEK 0.0177

CTEα 0.5827

ĈTEαK 0.5831bσK 0.0102
RMSEK 0.0176

CTEα 0.5500

ĈTEαK 0.5495bσK 0.0091
RMSEK 0.0165

0.38

CTEα 0.7757

ĈTEαK 0.7723bσK 0.0475
RMSEK 0.0611

CTEα 0.7617

ĈTEαK 0.7644bσK 0.0127
RMSEK 0.0179

CTEα 0.7494

ĈTEαK 0.7521bσK 0.0108
RMSEK 0.0178

CTEα 0.6900

ĈTEαK 0.6903bσK 0.0105
RMSEK 0.0171

0.66

CTEα 0.8825

ĈTEαK 0.8936bσK 0.1261
RMSEK 0.1442

CTEα 0.8789

ĈTEαK 0.8848bσK 0.0181
RMSEK 0.0184

CTEα 0.8754

ĈTEαK 0.8799bσK 0.0119
RMSEK 0.0182

CTEα 0.8300

ĈTEαK 0.8305bσK 0.0117
RMSEK 0.0176

Clémentine PRIEUR



Multivariate Conditional Tail Expectation The Kendall’s process A new non parametric estimator of the multivariate CTEα Simulations and study on real data Conclusion, perspectives

River flow data-set

data-set from the National River Flow Archive of the Center for Ecology

& Hydrology in UK

http://www.ceh.ac.uk/index.html

hydrological data-set recorded in the uplands of mid-Wales : river
flow data measured at the Hore site and at the Tanllwyth site from
’85 to ’03 (m3s−1), n = 2134.

α 0.45 0.625 0.8

ĈTEα,K (0.2099, 0.1339) (0.2795, 0.1831) (0.4775, 0.2652)

ĈTELα (0.1388, 0.1683) (0.1662, 0.1941) (0.3621, 0.2863)
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River flow data-set

Figure: River flow data; ĈTEα,K (black star), ĈTELα
(black dot) for

different values of α.
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Conclusion, perspectives

Conclusion :
• a new non parametric estimator,
• no extra parameter to fix,
• a functional central limit theorem.

Perspective :
A main issue is to derive estimators for the Multivariate CTEα
whose properties are good even for high levels α.
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E. Di Bernardino, T. Laloë, V. Maume-Deschamps, and C. Prieur (2011). Plug-in estimation of level sets in a
non-compact setting with applications in multivariable risk theory. ESAIM P&S.
http://dx.doi.org/10.1051/ps/2011161.

P. Embrechts and G. Puccetti (2006). Bounds for functions of multivariate risks. J. of Multivariate Analysis, 97
(2), p.526-547.

G. Nappo and F. Spizzichino (2009). Kendall distributions and level sets in bivariate exchangeable survival models.

Information Sciences, 179, p. 2878-2890.

Clémentine PRIEUR


	Multivariate Conditional Tail Expectation
	The Kendall's process
	A new non parametric estimator of the multivariate CTE
	Simulations and study on real data
	Conclusion, perspectives

