Patchwork copulas

Fabrizio Durante

School of Economics and Management Free University of Bozen-Bolzano (Italy) fabrizio.durante@unibz.it http://sites.google.com/site/fbdurante

Workshop "Copulas and Extremes" - November, 19-20, 2013

イロト イポト イヨト イヨト

Outline

Introduction

- 2 Complete dependence and shuffles of Min
- 3 A measure-theoretic notion of shuffle of Min
- 4 Multivariate shuffles of copulas
- 5 The patchwork construction

6 Conclusions

★ B > < B >

The main goal

Given a copula *C*, a patchwork copula derived from *C* is any copula whose mass probability distribution coincides with the mass distribution of *C* up to some *d*-dimensional boxes $B_i \subseteq \mathbb{I}^d$ (here $\mathbb{I} := [0, 1]$), in which the probability mass is distributed in a different way.

Applications:

- Modification of tail dependence behaviour
- Approximation of copulas

Patchwork copulas include ordinal sum constructions, orthogonal grid constructions, gluing copulas, upper comonotonicity, piecing-together, etc.

Aim: provide a general framework for patchwork copulas.

The main tool

Given a copula *C*, a probability measure μ_C is defined on all boxes *B* of \mathbb{I}^d via

$$\mu_C(B) = V_C(B) = \mathbb{P}(\mathbf{U} \in B),$$

where $\mathbf{U} \sim C$, and extended by classical arguments to all Borel sets. Moreover, such a measure is *d*-fold stochastic, i.e.

$$\mu_C(p_i^{-1}(A)) = \lambda(A)$$

for any Borel set $A \subseteq \mathbb{I}$ (λ = Lebesgue measure) and for any canonical projection p_i .

Conversely, given a *d*-fold stochastic measure μ , a copula is defined via

$$C_{\mu}(\mathbf{u}) = \mu([\mathbf{0},\mathbf{u}]) \text{ for all } \mathbf{u} \in \mathbb{I}^d.$$

イロト 不得 とくき とくき とうき

Outline

Introduction

2 Complete dependence and shuffles of Min

A measure-theoretic notion of shuffle of Min

- 4 Multivariate shuffles of copulas
- The patchwork construction

6 Conclusions

∃ > < ∃ >

Complete dependence

Definition

A r.v. Y is defined to be completely dependent on a r.v. X if there exists a measurable function f such that

$$\mathbb{P}(Y=f(X))=1.$$

The r.v.'s X and Y are mutually completely dependent (in short, MCD) if there exists a bijective measurable function f such that

 $\mathbb{P}(Y=f(X))=1.$

(Lancaster, 1963)

In other words, two r.v.'s are MCD if one variable is perfectly predictable from the other one, and conversely.

Shuffle of Min

Shuffles of Min are bivariate copulas constructed by means of a rearrangement of the probability mass of the Fréchet upper bound $M_2(u_1, u_2) = \min\{u_1, u_2\}$.

Proposition

Let (X, Y) be a random pair distributed according to the copula C. Then C is a shuffle of Min iff $\mathbb{P}(Y = f(X)) = 1$ for some bijective piece-wise continuous function f.

(Mikusinski, Sherwood and Taylor, 1992)

(1日) (日) (日) (日)

If two r.v.'s are coupled by means of a shuffle of Min, then they are MCD.

Placing the mass of the copula M_2 on \mathbb{I}^2 .

- ₹ 🖹 🕨

Cut \mathbb{I}^2 into a finite number of vertical strips.

∃▶ ∢∃▶

Eventually, flip some strips around their vertical axis of symmetry.

> < = > < = >

"Shuffle" the strips and reassemble them to reform \mathbb{I}^2 . The resulting picture represents the probability mass distribution of a "shuffle of Min".

Kimeldorf & Sampson's shuffle of Min

(日)

Kimeldorf & Sampson's shuffle of Min

Theorem

There are sequences $(U_n)_n$ and $(V_n)_n$ of r.v.'s all having uniform distribution on (0, 1) such that:

- for each n, U_n and V_n are mutually completely dependent,
- the pairs (U_n, V_n) converge in law to a pair (U, V) of independent r.v.'s each having a uniform distribution on (0, 1).

(Kimeldorf and Sampson, 1978; Vitale, 1991)

> < E > < E >

In other words, independent r.v.'s can be approximated by means of a sequence of MCD r.v.'s.

Outline

Introduction

2 Complete dependence and shuffles of Min

3 A measure-theoretic notion of shuffle of Min

- 4 Multivariate shuffles of copulas
- The patchwork construction

6 Conclusions

The shuffling transformation

Let $T \in \mathcal{T}_p$, the class of measure-preserving bijections of \mathbb{I} , i.e. for all Borel sets $A \subseteq \mathbb{I}$,

$$\lambda(T^{-1}(A)) = \lambda(A)$$

We define the shuffling transformation $S_T \colon \mathbb{I}^2 \to \mathbb{I}^2$ via

$$S_T(u_1, u_2) = (T(u_1), u_2)$$

for every $(u_1, u_2) \in \mathbb{I}^2$.

Proposition

A copula C is a shuffle of Min iff there exists a piece-wise continuous $T \in \mathfrak{T}_p$ such that $\mu_C = S_T * \mu_M$, i.e. for all Borel $A \subseteq \mathbb{I}^2$

$$\mu_C(A) = \mu_M(S_T^{-1}(A))$$

(Durante, Sarkoci and Sempi, 2009)

Shuffles of copulas

Definition

Let *C* be any copula. A copula *D* is a shuffle of *C* if there exists $T \in \mathcal{T}_p$ such that

 $\mu_D = S_T * \mu_C.$

(Durante, Sarkoci and Sempi, 2009)

・ 同 ト ・ ヨ ト ・ ヨ ト

In other words, any copula can be modified by cutting in a countable number of stripes its probability mass and by shuffling the resulting stripes.

Representation of shuffles of copulas

We recall that any copula C can be represented in the form

$$C(\mathbf{u}) = C_{f_1,\dots,f_d} = \lambda(f_1^{-1}[0,u_1] \cap \dots \cap f_d^{-1}[0,u_d])$$

for suitable mpt's f_1, \ldots, f_d .

(Vitale, 1996; Kolesárová, Mesiar, Sempi, 2008)

Proposition

Let $D = D_{f,g}$ be a copula represented in terms of mpt's in the following way:

$$D_{f,g}(u_1, u_2) = \lambda \left(f^{-1}[0, u_1] \cap g^{-1}[0, u_2] \right)$$

Then any shuffle of D via $T \in \mathfrak{T}_p$ (write: D_T) can be represented in the form

$$D_T(u_1, u_2) = \lambda \left((T \circ f)^{-1}[0, u_1] \cap g^{-1}[0, u_2] \right)$$

Remark

The mapping

$$\varphi \colon \mathfrak{T}_{p} \times \mathfrak{C}_{2} \to \mathfrak{C}_{2}, \quad \varphi(T, C) = C_{T}$$

defines an action of the group \mathcal{T}_p on the set of all copulas. The orbit of a copula *C* with respect to this action is the set

$$\mathfrak{T}_{p}(C) = \{C_{T} \mid T \in \mathfrak{T}_{p}\}$$

formed by all shuffles of *C*.

Properties of shuffles of copulas

- $\mathfrak{T}_{p}(C) = \{C\}$ iff $C = \Pi_{2}$.
- If *C* is abs continuous, then every copula belonging to $\mathcal{T}_p(C)$ is abs continuous.
- If $C \neq \Pi_2$, then $\mathfrak{T}_p(C)$ contains non-symmetric copulas.

イロト イポト イヨト イヨト

Approximation by means of shuffles

Proposition

For every copula *C*, the independence copula Π can be approximated uniformly by elements of $T_p(C)$.

(Durante, Sarkoci and Sempi, 2009)

ヘロン 人間 とくほ とんぼう

The proof is based on ergodic theory and uses the following facts:

- the existence of suitable weakly mixing transformations in T_p ;
- the following Lemma by Walters (1982).

Lemma

Let $(\Omega, \mathfrak{F}, \nu)$ be a measure space. Let $T: \Omega \to \Omega$ be a weakly mixing transformation. Then there exists a subset D of \mathbb{Z}_+ of density zero such that

$$\lim_{\substack{n\to\infty\\n\neq D}} \int_{\Omega} (f \circ T^n) (x) g(x) \, d\nu = \int_{\Omega} f(x) \, d\nu \, \int_{\Omega} g(x) \, d\nu$$

for all real functions f and g in $L^2(\nu)$.

Outline

Introduction

- 2 Complete dependence and shuffles of Min
- 3 A measure-theoretic notion of shuffle of Min
- 4 Multivariate shuffles of copulas
 - 5 The patchwork construction

6 Conclusions

< 3 > < 3 >

Another look at shuffles of Min

© F. Durante (FUB)

21/48

2

< ロ > < 四 > < 回 > < 回 > < 回 > .

Another look at shuffles of Min

Consider two suitable partitions $\mathcal{J}^1 = (J_i^1)$ and $\mathcal{J}^2 = (J_i^2)$ such that $J_i^1 \times J_i^2$ is a square.

Another look at shuffles of Min

Plug an affine transformation of the probability mass of M_2 or W_2 in the square $J_i^1 \times J_i^2$.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Visual definition of shuffle of copulas

For i = 1, 2, 3, take $C_i \in C_2$ and plug an affine transformation of the measure induced by C_i in the square $J_i^1 \times J_i^2$. The resulting measure is doubly stochastic.

Definition of shuffle of copulas

Let $\mathcal{J}^1, \ldots, \mathcal{J}^d$ be systems of closed and non-empty intervals of \mathbb{I} ,

$$\mathcal{J}^{i} = \left(J_{n}^{i} = \left[a_{n}^{i}, b_{n}^{i}\right]\right)_{n \in N}$$

such that:

- (S1) *N* represents a finite or countable index set, i.e. $N = \{0, 1, ..., \tilde{n}\}$ or $N = \mathbb{Z}_+$;
- (S2) for every $i \in \{1, 2, ..., d\}$ and $n, m \in N$, $n \neq m$, J_n^i and J_m^i have at most one endpoint in common;
- (S3) for every $i \in \{1, 2, ..., d\}, \sum_{n \in N} \lambda(J_n^i) = 1;$
- (S4) for every $n \in N$, $\lambda(J_n^1) = \lambda(J_n^2) = \cdots = \lambda(J_n^d)$.

Let $(C_n)_{n \in \mathbb{N}}$ be a system of *d*-copulas.

イロト 不得 とくき とくき とうき

Definition of a shuffle of copulas

For all $\mathbf{u} \in \mathbb{I}^d$,

$$C(\mathbf{u}) = \sum_{n \in N} \lambda(J_n^1) C_n \left(\frac{u_1 - a_n^1}{\lambda(J_n^1)}, \dots, \frac{u_d - a_n^d}{\lambda(J_n^1)} \right)$$

is a copula, called shuffling copula related to the partitions $(\mathcal{J}^i)_{i=1}^d$ and the system $(C_n)_{n \in N}$.

(Durante, Fernández-Sánchez, 2010)

The multivariate shuffling copula is a patchwork copula since it can be also viewed as a modification of the probability mass of M_d in some suitable boxes.

Probabilistic interpretation of a shuffle of copulas

Assume that:

• for every
$$n \in N$$
, $\mathbf{U}^n = \left(U_1^n, \ldots, U_d^n\right) \sim C_n$

• *Z* is a discrete random variable assuming values in *N* such that, for every $n \in N$, $P(Z = n) = \lambda(J_n^1)$.

For every $n \in N$, consider the random vector

$$\mathbf{V}^n = (V_1^n, \dots, V_d^n) = \left(\lambda(J_n^1)U_1^n + a_n^1, \dots, \lambda(J_n^1)U_d^n + a_n^d\right).$$

Finally, let us consider the random vector W given by

$$\mathbf{W} = \sum_{n \in N} \sigma_n(Z) \mathbf{V}^n,$$

where, for every $n \in N$, $\sigma_n(x) = 1$ if x = n, $\sigma_n(x) = 0$ otherwise. Then **W** is distributed according to a shuffle of $(C_n)_n$.

・ロン ・四 ・ ・ ヨン ・ ヨン … ヨ

Ordinal sums of bivariate copulas

Let $(]a_i, b_i[]_{i \in J}$ be a family of non-empty, pairwise disjoint, open subintervals of \mathbb{I} and let $(T_i)_{i \in J}$ be a family of copulas. Then the function

$$C(u_1, u_2) = \begin{cases} a_i + (b_i - a_i) C_i \left(\frac{u_1 - a_i}{b_i - a_i}, \frac{u_2 - a_i}{b_i - a_i} \right) & \text{if } (u_1, u_2) \in]a_i, b_i[^2, \\ \min(u_1, u_2) & \text{otherwise,} \end{cases}$$

is a copula, called ordinal sum of the summands $(\langle a_i, b_i, C_i \rangle)_{i \in \mathcal{I}}$.

(1日) (日) (日)

Geometric interpretation of ordinal sums

2

Multivariate ordinal sum of copulas

An ordinal sum of multivariate copulas can be introduced in the following way:

Let *L* be a finite or countable set, let $([a_k, b_k])_{k \in L}$ be a system of sub–intervals of \mathbb{I} , and let $(C_k)_{k \in L}$ be a system in \mathbb{C}_d .

Then the ordinal sum *C* of $(C_k)_{k \in L}$ wrt the family of intervals $([a_k, b_k])_{k \in L}$ is the *d*-copula defined, for all $\mathbf{u} \in \mathbb{I}^d$ by

$$C(\mathbf{u}) = \begin{cases} a_k + (b_k - a_k) C_k \left(\frac{\min\{u_1, b_k\} - a_k}{b_k - a_k}, \dots, \frac{\min\{u_d, b_k\} - a_k}{b_k - a_k} \right), \\ \text{if } \min\{u_1, u_2, \dots, u_d\} \in]a_k, b_k[\text{ for some } k \in L, \\ \min\{u_1, u_2, \dots, u_d\}, \quad \text{elsewhere.} \end{cases}$$

(Mesiar and Sempi, 2010; Jaworski and Rychlik, 2008)

・ロト ・ 四ト ・ ヨト ・ ヨト …

Approximation by means of shuffles

Proposition

Fix a *d*-copula *C*. Then any copula can be approximated uniformly by means of shuffles of the system $(C_n)_{n \in \mathbb{N}}$, where $C_n = B$ for every *n*.

(Durante, Fernández-Sánchez, 2010)

Corollary

Any copula can be approximated uniformly by means of shuffles of copulas that are absolutely continuous.

(Durante, Fernández-Sánchez, 2010)

Remark

The approximation of copulas by means of shuffles strongly depends on the topology over C_d .

Example

Consider the topology induced on \mathcal{C}_d by the Sobolev norm

$$\|C\| = \left(\int_{\mathbb{I}^d} |\nabla C(u)|^2 du\right)^{1/2}.$$

If *C* is a shuffle of Min, then ||C|| = 1; but $||\Pi_2|| = 2/3$.

In the Sobolev norm, shuffles of Min do not approximate Π_2 .

(Siburg and Stoimenov, 2008)

・ 御 ト ・ 臣 ト ・ 臣 ト …

Outline

Introduction

- 2 Complete dependence and shuffles of Min
- 3 A measure-theoretic notion of shuffle of Min
- 4 Multivariate shuffles of copulas
- 5 The patchwork construction

6 Conclusions

Definition

Let *C* and *C*_B be *d*-dimensional copulas and let $B = [\mathbf{a}, \mathbf{b}]$ be a non-empty box contained in \mathbb{I}^d such that $\mu_C(B) = \alpha > 0$. The function $C^* : \mathbb{I}^d \to \mathbb{I}$ given by

$$C^*(\mathbf{u}) = \mu_C\left([\mathbf{0},\mathbf{u}] \cap B^c\right) + \alpha C_B\left(\widetilde{F}_B^1(u_1),\ldots,\widetilde{F}_B^d(u_d)
ight)$$

is a copula, where

$$\widetilde{F}_B^i(x_i) = \frac{1}{\alpha} \mu_C \left([a_1, b_1] \times \cdots \times [a_{i-1}, b_{i-1}] \times [a_i, x_i] \times [a_{i+1}, b_{i+1}] \times \cdots \times [a_d, b_d] \right),$$

for every $x_i \in [a_i, b_i].$

The copula C^* is called patchwork of (B, C_B) into C and it is denoted by the symbol $C^* = \langle B, C_B \rangle^C$.

(Durante, Fernández-Sánchez and Sempi, 2013)

<ロ> <四> <四> <四> <三</p>

Illustration: tail modification

Consider the patchwork $C^* = \langle B, C_B \rangle^C$, where $B = [\mathbf{a}, \mathbf{1}]$ given by

$$C^*(\mathbf{u}) = \mu_C\left([\mathbf{0},\mathbf{u}] \setminus [\mathbf{a},\mathbf{1}]\right) + \alpha C_B\left(\widetilde{F}_B^1(u_1),\ldots,\widetilde{F}_B^d(u_d)\right),$$

where $\alpha = V_C(B)$ and, for every $i \in \{1, \ldots, d\}$, one has

$$\widetilde{F}^i_B(x_i) = rac{1}{lpha} V_C\left([a_1,1] imes \dots [a_i,x_i] imes \dots imes [a_d,1]
ight) \,.$$

An algorithm for generating a random sample from C^* goes as follows.

- Generate **u** from the copula *C*.
- **2** Generate **v** from the copula C_B .

3 For
$$i = 1, 2, ..., d$$
 set $w_i = (\tilde{F}_B^i)^{-1}(v_i)$.

• If $\mathbf{u} \in B$, then return \mathbf{w} . Otherwise, return \mathbf{u} .

イロト 不得 とくき とくき とうき

Illustration: tail modification

Random sample of 1000 realizations from the copula $\langle B, C_B \rangle^C$ where $B = [0.5, 1]^3$, *C* is the independence copula and C_B is the comonotone copula.

© F. Durante (FUB)

Illustration: worst-case VaR scenario

Given the vector of losses (L_1, L_2) having fixed marginals, the worst-possible VaR (at level α) for the sum $L^+ = L_1 + L_2$ (write: $\overline{VaR}_{\alpha}(L^+)$) is given when (L_1, L_2) is coupled by $\langle [\alpha, 1]^2, W_2 \rangle^{M_2}$.

Interestingly, it is well known that

 $VaR_{\alpha}(L_1) + VaR_{\alpha}(L_2) \leq \overline{VaR}_{\alpha}(L^+),$

where the left hand side corresponds to the comonotone case.

Now, for any copula *C*, the patchwork $C^* = \langle [\alpha, 1]^2, C \rangle^{M_2}$ can be used in order to interpolate between the comonotonic scenario and the worst-case scenario for $VaR_{\alpha}(L^+)$.

イロト 不得 とくき とくき とうき

Illustration: worst-case VaR scenario

э

イロト イポト イヨト イヨト

Illustration: worst-case VaR scenario

	$\tau = 1$	$\tau = 0.50$	au=0.00	$\tau = -0.50$	$\tau = -1$
$VaR_{\alpha}(L_1^{C^*},L_2^{C^*})$	2.5631	2.5663	2.5749	3.0340	3.2897

Numerical approximation of $VaR_{0.90}(L_1^{C^*}, L_2^{C^*})$ where $L_1, L_2, \sim N(0, 1), C^* = \langle [0.90, 1]^2, C \rangle^{M_2}$ for a Clayton copula *C* with Kendall's τ equal to the indicated value. Results based on 10⁶ simulation from the given copula.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Illustration: upper comonotonicity

Let C_B be an arbitrary *d*-copula and let M_d be the comonotone copula. Consider the patchwork of copulas of type $\langle B, C_B \rangle^{M_d}$, where $B = [\mathbf{0}, \mathbf{a}]$. Then

$$C^*(\mathbf{u}) = \mu_C \left([\mathbf{0}, \mathbf{u}] \cap B^c \right) \\ + \alpha C_B \left(\frac{\min\{a_1, \dots, u_1, \dots, a_d\}}{\alpha}, \dots, \frac{\min\{a_1, \dots, u_d, \dots, a_d\}}{\alpha} \right)$$

Notice that in this case, $\alpha = V_{M_d}(B) = \min\{a_1, \ldots, a_d\}.$

When all the components of **a** are equal to a, constructions of copulas of this type describe upper comonotonic random vectors (Cheung, 2009).

<ロト < 回 > < 回 > < 回 > < 三 > < 三 > < 三

Illustration: upper comonotonicity

Random sample of 1000 realizations from the copula $\langle B, C_B \rangle^{M_2}$ where $B = [0, 0.8]^2$, C_B is a Frank with Kendall's tau equal to: 0.5 (left) and 0.75 (right).

(日)

Definition: the general case

Let *C* and C_{B_s} ($s \in S$) be *d*-dimensional copulas and let B_s ($s \in S$) be a system (finite or countable) of non-empty boxes contained in \mathbb{I}^d such that $\lambda_d(B_s \cap B_{s'}) = 0$ if $s \neq s'$. Let $B = \bigcup_{s \in S} B_s$. Then the function $C^* : \mathbb{I}^d \to \mathbb{I}$ given by

$$C^*(\mathbf{u}) = \mu_C\left([\mathbf{0},\mathbf{u}] \cap B^c\right) + \sum_{s \in S} \alpha_s C_s\left(\widetilde{F}^1_{B_s}(u_1),\ldots,\widetilde{F}^d_{B_s}(u_d)\right),$$

is a copula.

The copula C^* is called patchwork of $(B_s, C_{B_s})_{s \in S}$ into C and it is denoted by the symbol $C^* = \langle B_s, C_{B_s} \rangle_{s \in S}^C$.

(1日) (1日) (日)

The patchwork construction

Define $\mathbb{C}_d^S := \{(C_s)_{s \in S}\}$, where, for every $s \in S$, C_s is a *d*-copula. Let $C \in \mathbb{C}_d$ and let B_s $(s \in S)$ be a system of *d*-boxes. Formally, the patchwork is defined as the mapping $T_C : \mathbb{C}_d^S \to \mathbb{C}_d$ given by

$$T_C\left((C_s)_{s\in S}\right) := \langle B_s, C_s \rangle_{s\in S}^C$$

 T_C is uniformly continuous when C_d is endowed by the uniform distance d_{∞} , and C_d^S by the distance

$$d_S\left((C_s)_{s\in S}, (\widetilde{C}_s)_{s\in S}\right) := \sup_{s\in S} d_\infty(C_s, \widetilde{C}_s).$$

(Durante, Fernández-Sánchez and Sempi, 2013)

イロト 不得 とくき とくき とうき

The patchwork construction and approximation

Then patchwork constructions are the general setting when an approximation of a copula C can be considered, by using, for instance, the following scheme:

- Divide the domain \mathbb{I}^d in several boxes $\mathbb{I}^d = \bigcup_i B_i$ such that each B_i is sufficiently small.
- For any B_i approximate $\mu_{C|B_i}$ with another convenient measure μ_i .
- Join all the measure μ_i 's by obtaining a suitable *d*-fold stochastic measure $\mu = \sum_i \mu_i$.

Depending on the expression of μ_i 's several approximations of copulas can be obtained (Bernstein copulas, checkerboard copulas, etc.).

・ロト ・ 日本 ・ 日本 ・ 日本 ・ 日本

Outline

Introduction

- 2 Complete dependence and shuffles of Min
- 3 A measure-theoretic notion of shuffle of Min
- 4 Multivariate shuffles of copulas
- 5 The patchwork construction

We have revisited the notion of patchwork copulas by using measure-theoretic techniques.

The introduced construction principle:

- works in any dimension
- induces specific tail behaviour in the dependence structure
- can be used in the approximation of copulas

> < = > < = >

Bibliography

- F. Durante, S. Saminger-Platz, and P. Sarkoci. Rectangular patchwork for bivariate copulas and tail dependence. *Comm. Statist. Theory Methods*, 38(15):2515–2527, 2009.
- F. Durante, P. Sarkoci, and C. Sempi. Shuffles of copulas. J. Math. Anal. Appl., 352(2):914–921, 2009.
- F. Durante and J. Fernández-Sánchez. Multivariate shuffles and approximation of copulas. *Statist. Probab. Lett.*, 80(23-24):1827–1834, 2010.
- F. Durante and J. Fernández-Sánchez. On the approximation of copulas via shuffles of Min. *Statist. Probab. Lett.*, 82(10):1761–1767, 2012.
- F. Durante, J. Fernández-Sánchez, and C. Sempi. Multivariate patchwork copulas: a unified approach with applications to partial comonotonicity. *Insurance Math. Econom.*, 53(3):897–905, 2013.

イロト 不得 とくき とくき とうき

Questions? Comments?

Thanks for your attention!

More information about this talk:

• Visit my home-page http://sites.google.com/site/fbdurante

More information about copulas:

• visit CopulaWiki https://sites.google.com/site/copulawiki

Submit your paper to **DEPENDENCE MODELING**:

• http://www.degruyter.com/view/j/demo

• • = • • = •