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Introduction I

The copula-based modeling of multivariate distributions is finding
extensive applications in many fields such as hydrology (Salvadori,
Michele, Kottegoda, and Rosso, 2007), finance and insurance
(McNeil, Frey, and Embrechts, 2005) or actuarial sciences (Frees
and Valdez, 1998).

Let X be a d-dimensional random vector with continuous marginal
cumulative distribution functions (c.d.f.s) F1, . . . ,Fd . From the work
of Sklar (1959), the c.d.f. F of X can be written in a unique way as

F (x) = C{F1(x1), . . . ,Fd(xd)}, x ∈ Rd ,

where the function C : [0, 1]d → [0, 1] is a copula.

Copula

A d-dimensional copula is a c.d.f. on [0, 1]d with standard uniform marginal
c.d.f.s.
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Introduction II

Assume that C and F1, . . . ,Fd are unknown and let X1, . . . ,Xn be
drawn from a strictly stationary sequence of continuous d-dimensional
random vectors with c.d.f. F .

For any i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, denote by R1:n
ij the rank of

Xij among X1j , . . . ,Xnj and let Û1:n
ij = R1:n

ij /n.

The random vectors Û
1:n
i = (Û1:n

i1 , . . . , Û1:n
id ), i ∈ {1, . . . , n}, are often

referred to as pseudo-observations from the copula C , and a natural
nonparametric estimator of C is the empirical copula of X1, . . . ,Xn,
i.e.,

C1:n(u) =
1

n

n∑
i=1

1(Û
1:n
i ≤ u), u ∈ [0, 1]d .

The empirical copula plays a key role in most nonparametric inference
procedures on C . The asymptotics of these procedures typically
follow from the asymptotics of the empirical copula process.
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Introduction III

One of the key issues is: given data X1, . . . ,Xn, which parametric
copula family should be used?

There are many families of copulas: Archimedean, elliptical,
extreme-value, etc (see e.g. Joe, 1997; Nelsen, 2006).

Any family, if exchangeable, can be made asymmetrical using
Khoudraji’s device (Khoudraji, 1995; Genest, Ghoudi, and Rivest,
1998; Liebscher, 2008).

To guide the choice of a parametric copula family, nonparametric
tests based on the empirical copula can be used.

Most of the tests to be mentioned are implemented in the copula R
package but the computation of their approximate p-value is valid
only when X1, . . . ,Xn are i.i.d. random vectors.

The extension to strongly mixing observations is possible as we
shall see.
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Some nonparametric tests I

A first natural step would be to test for independence: Is the
unknown copula C significantly different from the independence
copula Π(u) = Πd

j=1uj , u ∈ [0, 1]d?

Such a test can be based on the empirical process

√
n{C1:n(u)− Πd

j=1uj}

and a natural test statistic is

n

∫
[0,1]d
{C1:n(u)− Πd

j=1uj}2du.

More details can be found for instance in Genest and Rémillard
(2004); K and Holmes (2009); Quessy (2010).

A second step would for instance be to test for exchangeability.
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Some nonparametric tests II
In the bivariate case, such a test can be based on the empirical
process √

n{C1:n(u1, u2)− C1:n(u2, u1)}.

More details can be found in Genest, Nešlehová, and Quessy (2012).

One could also test for extreme-value dependence (Ben Ghorbal,
Genest, and Nešlehová, 2009; K and Yan, 2010; K, Segers, and Yan,
2011a).

One avenue consists of testing if C is max-stable, i.e., if

C (u) = {C (u
1/r
1 , . . . , u

1/r
d )}r , ∀u ∈ [0, 1]d , ∀ r > 0.

Several empirical processes could be used. One of these is

Er ,n(u) =
√

n
[
{C1:n(u1/r )}r − C1:n(u)

]
, u ∈ [0, 1]d .

More details can be found in K, Segers, and Yan (2011a).
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Some nonparametric tests III

More powerful tests can be obtained by focusing on the underlying
Pickands dependence function.

Fix d = 2. Bivariate extreme-value copulas are characterized by a
convex function A : [0, 1]→ [1/2, 1] satisfying
max(t, 1− t) ≤ A(t) ≤ 1 for all t ∈ [0, 1], and can be represented as

C (u1, u2) = exp

[
log(u1u2)A

{
log(u2)

log(u1u2)

}]
,

(u1, u2) ∈ (0, 1]2 \ {(1, 1)}.

The function A is commonly referred to as the Pickands
dependence function (Pickands, 1981).
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Some nonparametric tests IV

Given an estimator An of A (see Gudendorf and Segers, 2012, for nice
multivariate estimators), tests for extreme-value dependence can then
naturally be based on the process

√
n

(
C1:n(u1, u2)− exp

[
log(u1u2)An

{
log(u2)

log(u1u2)

}])
.

More details can be found in K and Yan (2010) and in the PhD thesis
of Gordon Gudendorf who extended the approach to arbitrary
dimensions.

Nonparametric tests of Archimedeanity for bivariate copulas can be
found in Bücher et al. (2012).

. . .
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A class of goodness-of-fit test I

Let C = {Cθ : θ ∈ O} be a chosen parametric copula family, where O
is an open subset of Rp for some integer p > 0.

We wish to test

H0 : C ∈ C against H1 : C 6∈ C.

A relatively large number of testing procedures have been proposed in
the literature. See Berg (2009); Genest, Rémillard, and Beaudoin
(2009) for reviews and Monte Carlo studies.

These authors advocate the use of “blanket tests” (no strategic
choice of smoothing parameter, weight function, kernel, window, etc).

One approach that appears to perform well consists of comparing C1:n

with an estimation Cθn of C obtained assuming that H0 : C ∈ C0

holds.
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A class of goodness-of-fit test II

The quantity θn is an estimator of θ computed from the

pseudo-observations Û
1:n
1 , . . . , Û

1:n
n .

This amounts to using the empirical process

√
n{C1:n(u)− Cθn(u)}, u, v ∈ [0, 1].

See for instance Genest, Rémillard, and Beaudoin (2009) or K, Yan,
and Holmes (2011b) for more details.
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Ok but what about change-point detection?

A broad class of nonparametric tests for change-point detection
particularly sensitive to changes in the copula can be derived from the
process

Dn(s,u) =
√

n λn(0, s)λn(s, 1){C1:bnsc(u)− Cbnsc+1:n(u)},
(s,u) ∈ [0, 1]d+1,

where λn(s, t) = (bntc − bnsc)/n and with the convention that
Ck:k−1(u) = 0 for all u ∈ [0, 1]d and all k ∈ {1, . . . , n}.
The above definition is a mere transposition to the copula context of
the “classical construction” adopted for instance in Csörgő and
Horváth (1997, Section 2.6).
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The sequential empirical copula process I

Under the corresponding null hypotheses, all of the previously
mentioned empirical processes can be rewritten in terms of the
two-sided sequential empirical copula process. It is defined, for
any (s, t) ∈ ∆ = {(s, t) ∈ [0, 1]2 : s ≤ t} and u ∈ [0, 1]d , by

Cn(s, t,u) =
1√
n

bntc∑
i=bnsc+1

{
1(Û

bnsc+1:bntc
i ≤ u)− C (u)

}
.

The latter process can be rewritten in terms of the empirical copula
Cbnsc+1:bntc of the sample Xbnsc+1, . . . ,Xbntc as

Cn(s, t,u) =
√

nλn(s, t){Cbnsc+1:bntc(u)− C (u)},

where λn(s, t) = (bntc − bnsc)/n and with the convention that
Ck:k−1(u) = 0 for all u ∈ [0, 1]d and all k ∈ {1, . . . , n}.
The quantity Cn(0, 1, ·, ·) is the “standard” empirical copula process.
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The sequential empirical copula process II

For instance, under the null hypothesis of no change in the
distribution, the process for detecting changes in the dependence
structure can be simply rewritten as

Dn(s,u) = λn(s, 1)Cn(0, s,u)+λn(0, s)Cn(s, 1,u), (s,u) ∈ [0, 1]d+1.

Similarly, all of the previously mentioned processes can be rewritten in
terms of Cn under the corresponding null hypotheses.

It is therefore crucial to obtain the weak limit of Cn.

Let U1, . . . ,Un be the unobservable sample obtained from X1, . . . ,Xn

by the probability integral transforms Uij = Fj(Xij). The
corresponding sequential empirical process is then defined as

B̃n(s,u) =
1√
n

bnsc∑
i=1

{1(Ui ≤ u)− C (u)}, (s,u) ∈ [0, 1]d+1.
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The sequential empirical copula process III

Condition (1)

The unobservable sample U1, . . . ,Un is drawn from a strictly stationary
sequence (Ui )i∈Z such that B̃n converges weakly in `∞([0, 1]d+1) to a
tight centered Gaussian process BC concentrated on

{α? ∈ C([0, 1]d+1) : α?(s,u) = 0 if one of the components of (s,u) is 0, and

α?(s, 1, . . . , 1) = 0 for all s ∈ (0, 1]}.

Condition (2)

For any j ∈ {1, . . . , d}, the partial derivatives Ċj = ∂C/∂uj exist and are
continuous on Vj = {u ∈ [0, 1]d : uj ∈ (0, 1)}.
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The sequential empirical copula process IV
Theorem (Bücher and K (2013))

Assume that the unobservable sample U1, . . . ,Un satisfies Condition 1 and
that C satisfies Condition 2. Then,

sup(s,t,u)∈∆×[0,1]d

∣∣∣Cn(s, t,u)− C̃n(s, t,u)
∣∣∣ Pr→ 0, where

C̃n(s, t,u) = {B̃n(t,u)− B̃n(s,u)} −
d∑

j=1

Ċj(u){B̃n(t,u(j))− B̃n(s,u(j))}.

Consequently, Cn  CC in `∞(∆× [0, 1]d), where, for
(s, t,u) ∈ ∆× [0, 1]d ,

CC (s, t,u) = {BC (t,u)−BC (s,u)}−
d∑

j=1

Ċj(u){BC (t,u(j))−BC (s,u(j))},

where BC is the weak limit of B̃n.
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The sequential empirical copula process V

The following corollary is an immediate consequence of the strong
approximation result of Dhompongsa (1984), which states that, if
U1, . . . ,Un is drawn from a strictly stationary sequence (Ui )i∈Z
whose strong mixing coefficients satisfy αr = O(r−a), a > 2 + d , then
B̃n  BC in `∞([0, 1]d+1), that is, U1, . . . ,Un satisfies Condition 1.

Corollary

Assume that X1, . . . ,Xn is drawn from a strictly stationary sequence
(Xi )i∈Z whose strong mixing coefficients satisfy αr = O(r−a), a > 2 + d.
Then, provided C satisfies Condition 2,

sup
(s,t,u)∈∆×[0,1]d

∣∣∣Cn(s, t,u)− C̃n(s, t,u)
∣∣∣ Pr→ 0.
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A dependent multiplier bootstrap for Cn I

The weak limit of Cn is unwiedly. We need a resampling scheme to
carry out the previously mentioned tests.

Starting from the seminal work of Bühlmann (1993, Section 3.3),
Bücher and K (2013) have studied a dependent multiplier bootstrap
for Cn which extends the multiplier bootstrap of Rémillard and
Scaillet (2009) to the sequential and strongly mixing setting.

The key idea in Bühlmann (1993) is to replace i.i.d. multipliers by
suitably serially dependent multipliers that will capture the serial
dependence in the data.

We say that a sequence of random variables (ξi ,n)i∈Z is a dependent
multiplier sequence if:

(M1) The sequence (ξi,n)i∈Z is strictly stationary with E(ξ0,n) = 0,
E(ξ2

0,n) = 1 and E(|ξ0,n|ν) <∞ for all ν ≥ 1, and is independent of
the available sample X1, . . . ,Xn.
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A dependent multiplier bootstrap for Cn II

(M2) There exists a sequence `n →∞ of strictly positive constants such that
`n = o(n) and the sequence (ξi,n)i∈Z is `n-dependent, i.e., ξi,n is
independent of ξi+h,n for all h > `n and i ∈ N.

(M3) There exists a function ϕ : R→ [0, 1], symmetric around 0, continuous
at 0, satisfying ϕ(0) = 1 and ϕ(x) = 0 for all |x | > 1 such that
E(ξ0,nξh,n) = ϕ(h/`n) for all h ∈ Z.

Let M be a large integer and let (ξ
(1)
i ,n )i∈Z, . . . , (ξ

(M)
i ,n )i∈Z be M

independent copies of the same dependent multiplier sequence.

For any m ∈ {1, . . . ,M} and any (s,u) ∈ [0, 1]d+1, let

B̂(m)
n (s,u) =

1√
n

bnsc∑
i=1

ξ
(m)
i ,n {1(Û

1:n
i ≤ u)− C1:n(u)}.

To define “almost” independent copies of Cn for large n in the spirit
of Rémillard and Scaillet (2009), we additionally need to estimate the
partial derivatives Ċj .
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A dependent multiplier bootstrap for Cn III

As we continue, we consider estimators Ċj ,n of Ċj satisfying the
following condition put forward in Segers (2012):

Condition (3)

For any j ∈ {1, . . . , d}, there exists a constant K > 0 such that
|Ċj ,n(u)| ≤ K for all n ≥ 1 and u ∈ [0, 1]d , and, for any δ ∈ (0, 1/2),

sup
u∈[0,1]d

uj∈[δ,1−δ]

|Ċj ,n(u)− Ċj(u)| Pr→ 0.
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A dependent multiplier bootstrap for Cn IV

We can now define empirical processes that can be fully computed
and that, under appropriate conditions, can be regarded as “almost”
independent copies of Cn for large n. For any m ∈ {1, . . . ,M} and
(s, t,u) ∈ ∆× [0, 1]d , let

Ĉ(m)
n (s, t,u) = {B̂(m)

n (t,u)− B̂(m)
n (s,u)}

−
d∑

j=1

Ċj ,n(u){B̂(m)
n (t,u(j))− B̂(m)

n (s,u(j))}.
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A dependent multiplier bootstrap for Cn V

Proposition (Unconditional dependent multiplier bootstrap for Cn)

Assume that `n = O(n1/2−ε) for some 0 < ε < 1/2 and that X1, . . . ,Xn is
drawn from a strictly stationary sequence (Xi )i∈Z whose strong mixing
coefficients satisfy αr = O(r−a), a > 3 + 3d/2. Then, under Conditions 2
and 3, (

Cn, Ĉ
(1)
n , . . . , Ĉ(M)

n

)
 
(
CC ,C

(1)
C , . . . ,C(M)

C

)
in {`∞(∆× [0, 1]d)}M+1, where CC is the weak limit of the two-sided

sequential empirical copula process Cn and C(1)
C , . . . ,C(M)

C are independent
copies of CC .

A simple possible choice is to estimate the partial derivatives Ċj by
finite-differences as proposed by Rémillard and Scaillet (2009).
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A dependent multiplier bootstrap for Cn VI

Back to change-point detection : To be able to compute
approximate p-values for statistics derived from Dn, it is then natural
to define the processes

D̂(m)
n (s,u) = λn(s, 1)Ĉ(m)

n (0, s,u) + λn(0, s)Ĉ(m)
n (s, 1,u),

m ∈ {1, . . . ,M}, which could be thought of as “almost” independent
copies of Dn under the null hypothesis of no change in the
distribution.

Under the null and the conditions of the previous Proposition, we
immediately obtain from the continuous mapping theorem that

Dn, D̂
(1)
n , . . . , D̂(M)

n weakly converge jointly to independent copies of
the same limit.

The latter result is the key step for establishing that “multiplier” tests
based on Dn hold their level asymptotically.
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A dependent multiplier bootstrap for Cn VII

Note that the bandwidth parameter `n defined in Assumption (M2)
plays a role similar to that of the block length in the block
bootstrap of Künsch (1989).

Its value has therefore a crucial influence on the finite-sample
performance of the dependent multiplier bootstrap.

To make testing procedures automatic, we have extended the
approach of Politis and White (2004) to the empirical process setting
and suggest an estimator of `n.

Ivan Kojadinovic (UPPA) Workshop “Copulas and extremes” Grenoble, November 2013 24 / 29



Bibliography I

M. Ben Ghorbal, C. Genest, and J. Nešlehová. On the test of Ghoudi,
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M. Csörgő and L. Horváth. Limit theorems in change-point analysis. Wiley
Series in Probability and Statistics. John Wiley & Sons, Chichester, UK,
1997.

Ivan Kojadinovic (UPPA) Workshop “Copulas and extremes” Grenoble, November 2013 25 / 29



Bibliography II
S. Dhompongsa. A note of the almost sure approximation of the empirical

process of weakly dependent random vectors. Yokohama Mathematical
Journal, 32:113–121, 1984.

E.W. Frees and E.A. Valdez. Understanding relationships using copulas.
North American Actuarial Journal, 2:1–25, 1998.

C. Genest and B. Rémillard. Tests of independence and randomness based
on the empirical copula process. Test, 13(2):335–369, 2004.

C. Genest, K. Ghoudi, and L.-P. Rivest. Discussion of “Understanding
relationships using copulas”, by E. Frees and E. Valdez. North American
Actuarial Journal, 3:143–149, 1998.

C. Genest, B. Rémillard, and D. Beaudoin. Goodness-of-fit tests for
copulas: A review and a power study. Insurance: Mathematics and
Economics, 44:199–213, 2009.
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