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Motivation

Some “stylized facts” about multivariate financial return data
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I Scatterplots look elliptical.
I Distributions are heavy-tailed :

Pr(X > x) ∼ cP/x
αP , Pr(X < −x) ∼ cL/x

αL (x→∞).

I There is tail dependence in negative returns, i.e. in losses :

lim
u↓0

pr(FX1 (X1) ≤ u | FX2 (X2) ≤ u) > 0.

(“lower tail correlation”)
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Motivation

Modelling financial data

Data are multivariate – often in relatively high dimension when we consider a
portfolio (e.g. D > 5).

Due to the stylized facts, a t-copula seems an appropriate dependence model
for financial data.

I Parameters are a correlation matrix and the degree of freedom.

I Parameters can be estimated with robust rank-based methods.

This means fitting a “global” model to the entire range of the data.

Question : Is extreme value behavior different from gobal behavior ?
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Motivation

Objectives in this talk

I characterize the tail dependence in elliptical distributions ;

I construction of the corresponding limit distributions :

I max-stable for componentwise maxima ;

I Pareto for threshold exceedances ;

I present an efficient likelihood with partial censoring ;

I Bayesian inference with a nonparametric correlation structure :
application to loss data of 13 European stocks from the finance sector.

6/28



Limit distributions for elliptical extremes

Motivation

Limit distributions for elliptical extremes
Tail dependence in elliptical distributions
Likelihood inference with partial censoring

Application : Bayesian modelling of financial extremes

Conclusions

7/28



Limit distributions for elliptical extremes

Tail dependence in elliptical distributions

Elliptical distributions
[Cambanis et al., 1981, Anderson and Fang, 1990], . . .

Stochastic polar representation X
d
= RAU + M

with

I a random radius R ≥ 0 ;

I a dispersion matrix Σ = AAT ,
assumed to be invertible in the following ;

I a random vector U uniform on {x | xTx = 1},
independent of R ;

I a median vector M.
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Limit distributions for elliptical extremes

Tail dependence in elliptical distributions

Tail dependence in elliptical distributions

[Hult and Lindskog, 2002, Hashorva, 2006]

We have tail dependence in elliptical distributions if

Pr(R ≥ tr)

Pr(R ≥ t)
→ r−α, t →∞,

for all r > 0 with some fixed α > 0.

Then for all components j ∈ {1, . . . ,D}, we observe

Pr(Xj ≥ tx)

Pr(Xj ≥ t)
=

Pr(Xj ≤ −tx)

Pr(Xj ≤ −t)
→ x−α, t →∞,

for all x > 0.

Multivariate elliptical t distributions are tail dependent with α = df.
The multivariate normal distribution is not tail dependent.
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Limit distributions for elliptical extremes

Tail dependence in elliptical distributions

Limit distributions : the extremal elliptical model

Let Xi i.i.d. copies of a tail-dependent elliptical random vector X.

I We get a max-stable limit distribution G for rescaled componentwise
maxima :

max
i=1,...,n

a−1
n Xi → Z ∼ G , n→∞.

Max-stability : maxi=1,...,n ã
−1
n Zi

d
= Z for i.i.d. copies Zi of Z.

I Equivalently, we get a multivariate generalized Pareto limit distribution
H for rescaled threshold exceedances :

X+/u |
(

max
j=1,...,D

Xj ≥ u

)
→ Y ∼ H, u →∞.

Peaks-over-threshold stability : [Y/u | (maxj=1,...,D Yj ≥ u)]
d
= Y for

u ≥ 1.
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Limit distributions for elliptical extremes

Tail dependence in elliptical distributions

The limiting dependence structure

We can decouple the marginal behavior from the dependence structure.
Let X∗ with X ∗j = 1/

[
1− FXj (Xj)

]
a standardized vector with standard Pareto

margins.

We characterize the convergence of the dependence structure :

I maxima :
max

i=1,...,n
n−1X∗i → Z∗ ∼ G∗, n→∞.

I threshold exceedances :

X∗/u |
(

max
j=1,...,D

X ∗j ≥ u

)
→ Y∗ ∼ H∗, u →∞.

G∗ and H∗ are characterized by a so-called exponent measure η on [0,∞]D :

I G∗(z) = exp
{
−η
(
[0, z]C

)}
;

I H∗(·) =
η{(·)∩[0,1]C}
η([0,1]C )

;

I The index α is now a dependence parameter.
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Limit distributions for elliptical extremes

Tail dependence in elliptical distributions

Construction of the limit distributions

[Opitz, 2013, Thibaud and Opitz, 2013]

Let Σ = AAT the correlation matrix.

I Max-stable vectors Z∗ ∼ G∗ are constructed as

Z∗ = [E(U1,1)α+]−1 × max
i=1,2,...

(AUi )
α
+/Vi

with

I Ui ∼ Unif{x : xTx = 1} i.i.d. ;

I V1 < V2 < · · · a unit rate Poisson process on [0,∞).

I Peaks-over-threshold stable vectors Y∗ ∼ H∗ are constructed as

Y∗ =
{
R (AU)α+ |

[
‖R (AU)α+ ‖∞ ≥ 1

]}
with R ∼ Par(1).

The elliptical structure persists in the limit.
The exponent measure η has positive mass on {x ∈ [0,∞)D | minj xj = 0}.
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Limit distributions for elliptical extremes

Tail dependence in elliptical distributions

The role of the shape parameter α

I α is a concentration parameter.

I Convergence to asymptotic independence when α→∞ with fixed Σ.

I Convergence to the Hüsler-Reiss dependence when α→∞ and

α
[
11T −Σ(α)

]
has a nontrivial limit for α→∞.
[Hüsler and Reiss, 1989, Hashorva, 2005, Nikoloulopoulos et al., 2009]
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Limit distributions for elliptical extremes

Likelihood inference with partial censoring

Inference

We intend to use max-stable and multivariate Pareto distribution for modelling
multivariate extremal behavior.

Asymptotically, joint tail behavior is the same for max-stable and Pareto
distributions. However, due to the componentwise maximum operation, we find
stronger dependence in the max-stable tail.

It can be useful to decouple the marginal behavior from the dependence
structure.

Univariate extreme value theory suggests marginal tail parameters µj (position),
σj > 0 (scale) and ξj (shape). The literature on their estimation is vast.

We focus on estimation of the dependence structure.
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Limit distributions for elliptical extremes

Likelihood inference with partial censoring

Likelihood inference with partial censoring of exceedances

Let V (u) = η
{

[0, u]C
}

the dependence function. Then Pr(X∗ 6≤ u) ≈ V(u).

Principle

I An event X∗ is considered as extreme when a threshold vector u is
exceeded in at least one component, i.e. when maxj X

∗
j /uj ≥ 1.

I Components X ∗j < uj are censored.

I Likelihood contribution of X∗ :
I when none of the components exceeds its thresholds : 1− V (u) ;
I when w.l.o.g. components X∗1 = x1, ...,X∗j0 = xj0 are exceedances :

−
∂j0

∂x1 × . . .× ∂xj0
V (x1, . . . , xj0 , uj0+1, ..., uD).

The main difficulty typically lies in the calculation of partial derivatives when D
is large (≥ 3).

Partial derivates can be calculated for the extremal elliptical model even in
large dimension [Thibaud and Opitz, 2013].
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Limit distributions for elliptical extremes

Likelihood inference with partial censoring

The dependence function V

V can be expressed in terms of multivariate t probabilities :

Vα,Σ(u) =
D∑
j=1

u−1
j tα+1

{
(u−j/uj)

1/α | Σ−j,j , (α + 1)−1
(
Σ−j,−j −Σ−j,jΣ

T
−j,j

)}
[Nikoloulopoulos et al., 2009]

Algorithms beyond plain Monte-Carlo exist for the calculation of V (u) with
integer-valued α ([Genz and Bretz, 2009] ; package mvtnorm in R).
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Application : Bayesian modelling of financial extremes

Modelling of dependence in extreme financial losses (1998-2013)

(work in progress)

I 13 stocks from financial institutions in the European union :
Allianz, Banco Bilbao, BNP Paribas, AXA, Deutsche Bank, Generali,
Société Générale, Ing Groep, Munich Re, Banco Santander, Unicredit,
Commerzbank, Crédit Agricole ;

I we model dependence in GARCH(1, 1)-residual daily losses, considered
as stationary ;

I We estimate a t-copula from all data : d̂fglob, Σ̂glob.

I We estimate the extremal elliptical model from exceedances in a Bayesian
framework :

I partial censoring ;

I nonparametric correlation matrix ;

I uniform prior for α ∈ {1, 2, . . . , 20}.

Interpretation of ellipticity :
the variable R in an elliptical random vector RAU captures systemic risk.
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Application : Bayesian modelling of financial extremes

Robust estimation of t-copulae from all data

Cf. [Klüppelberg et al., 2007, Wang and Peng, 2013].

If Σ is the correlation matrix associated to an elliptical random vector X, then
Kendall’s τ for two components Xj1 ,Xj2 is

τj1j2 = 2π−1arcsin(σj1j2)

Hence we can define the estimator Σ̂glob of Σglob with entries

σ̂j1j2 = sin(0.5πτ̂j1j2 ),

where τ̂j1j2 is the empirical version of Kendall’s τ .

Given Σ̂glob, we can use the maximum-likelihood estimator d̂f of the degree of
freedom based on the empirical copula.
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Application : Bayesian modelling of financial extremes

Exploring the data : global vs. extremal bivariate behavior
Empirical estimates of the tail correlation are based on 98%-exceedances.
The global t-copula model underestimates tail correlation (with α = d̂f = 13).
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Application : Bayesian modelling of financial extremes

Prior distribution for the correlation matrix Σ

It is difficult to define non-informative priors on correlation matrices ;
e.g., a uniform prior on all correlation matrices leads to σj1j2 concentrated
around 0 for j1 6= j2.

Here we aim at centering Σ on Σ̂glob :

I if AAT = Σ, the row vectors of A lie on the Euclidean unit sphere ;

I we can use von Mises-Fisher priors for the rows aj of A ;

I we center aj on âglob,j, with prior density

cκ exp
(
κ aT

j âglob,j

)
;

I the prior of the concentration parameter κ is uniform over [0, 100].

Note : The matrix root A is not unique, but this is not really a problem in the
Bayesian context.
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Application : Bayesian modelling of financial extremes

Modified partial censoring

We consider an event X∗ as extreme when at least one of the individual losses
exceeds its 99% quantile, i.e. uj = 100 for j = 1, . . . , 13 (219 extreme events).

For improved estimation efficiency, we apply partial censoring with a lower
threshold ũj = 10, j = 1, . . . , 13.

Hence the likelihood contribution of an observation x of X∗ is as follows :

I when max xj/uj < 1 :
1− V (u);

I when max xj/uj ≥ 1 and
w.l.o.g. components x1 ≥ ũ1,. . .,xj0 ≥ ũj0 are exceedances :

− ∂ j0

∂x1 × . . .× ∂xj0
V (x1, . . . , xj0 , ũj0+1, . . . , ũD).
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Application : Bayesian modelling of financial extremes

A technical difficulty : different shape parameters α

We use MCMC with the Metropolis-Hastings algorithm to simulate the
posterior distribution.

If α increases, values σj1j2 must also increase to maintain the same degree of
tail dependence. Hence, finding a good Metropolis-Hastings proposal for Σ is
complicated when α ∈ {1, 2, . . . , 20} changes.

Instead, we propose :

I First, run MCMC chains independently for each value α.

I Then apply Bayesian model averaging with respect to the parameter α.
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Application : Bayesian modelling of financial extremes

Results : Posterior distribution of α
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Values concentrate below the estimation of the global model, leading to
stronger dependence.
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Application : Bayesian modelling of financial extremes

Results : Posterior mean correlation matrix
For the mode α = 11.
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We obtain higher correlation coefficients in the extremal model.
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Conclusions

Conclusions

I Since mixtures of dependence functions V are still dependence functions,
the Bayesian model defines a valid dependence function.

I In financial data, global models may tend to underestimate tail
dependence.

I Results without volatility filtering are similar, although estimated values of
α are smaller (d̂fglob = 5).
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Conclusions

Some perspectives

I Consider other censoring schemes that avoid the heavy calculation of
V (u).

I Refine the model to take account of extreme events that affect only a
single component (operational risk).

I Model other than financial data :
the comparison of the global t copula model and the extremal elliptical
model for extremes can be useful in other contexts.
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