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Copulas

Let (X1, . . . ,Xd) be a vector of continuous random variables. Then the
unique copula of this vector is defined as

C (u1, . . . , ud) = P(U1 ≤ u1, . . . ,Ud ≤ ud)

with
(U1, . . . ,Ud) = (FX1(X1), . . . ,FXd (Xd))

and where FX1 , . . . ,FXd are the marginal CDFs of (X1, . . . ,Xd).

By studying the copula function, you study how the variables depend on
each other, how they interact.



Archimedean Copulas

Archimedean copulas are a class of copulas that admit the (simple)
representation

C (u1, . . . , ud) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud))

where ψ is called the generator and must be d-monotone on [0,∞), see
McNeil and Nešlehová (2009) for more details.

Example of generator (Clayton generator):

ψ(x) = (1 + x)−1/θ

θ ∈ (0,∞)



Archimedean Copulas

An Archimedean copula is defined through its generator, ψ.

Estimation is usually performed either by assuming ψ is known up to
some Euclidean parameter(s) or by not assuming anything about ψ, i.e.,
you have to estimate the whole ψ function, see Genest et al. (2011).



An important drawback of Archimedean copulas

C (u1, . . . , ud) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud))

Since Archimedean copulas are highly symmetric functions, all margins of
the same dimension are equal.

For modeling purposes, this becomes an increasingly strong assumption
as the dimension d grows.



Introducing asymmetries: nested Archimedean copulas

Asymmetries, that is, more realistic dependencies, can be modeled by a
hierarchical structure of Archimedean copulas, obtained by plugging in
Archimedean copulas into each other (Joe, 1997).



Nested Archimedean copulas

Start from an Archimedean copula (not necessarily a bivariate one):

C0(ui , • ) = ψ0(ψ−1
0 (ui ) + ψ−1

0 ( • ))

where the argument • is replaced by another Archimedean copula (again,
not necessarily a bivariate one), such as

Cjk(uj , uk) = ψjk(ψ−1
jk (uj) + ψ−1

jk (uk))

in order to get a nested Archimedean copula of the form

C0(ui ,Cjk(uj , uk)) = ψ0

(
ψ−1
0 (ui ) + ψ−1

0 (ψjk(ψ−1
jk (uj) + ψ−1

jk (uk)))
)



Nested Archimedean copulas

The way the two previous Archimedean copulas were plugged in
corresponds to the following structure, which we will refer to as λjk later
on:

Ui

Uj Uk

D0

Djk



Nested Archimedean copulas

The hierarchical structure inherent to any nested Archimedean copula is
actually a roadmap of dependencies:

U1

U2 U3

U4

U5 U6 U7 U8 U9

D123

D0

D23

D567 D89



Nested Archimedean copulas

Nested Archimedean copulas, also called hierarchical Archimedean
copulas (HAC), are made up of two things: a tree structure and a
collection of generators, one for each internal node of the structure.

C0(ui ,Cjk(uj , uk)) = ψ0

(
ψ−1
0 (ui ) + ψ−1

0 (ψjk(ψ−1
jk (uj) + ψ−1

jk (uk)))
)

Ui

Uj Uk

D0

Djk

Notice that Archimedean copulas are a special case of Nested
Archimedean copulas. It is implied throughout this presentation that the
class of NACs encompass the class of Archimedean copulas.



Nested Archimedean copulas: estimation of the structure

Based on an iid sample of size n from (X1, ...,Xd) and admitting the joint
distribution of (U1, ...,Ud) is a nested Archimedean copula,

how to estimate the structure by making the less and weakest
assumptions possible about that NAC?

Even beter: how to estimate the structure by making NO assumption at
all about that NAC?

If you assume all generators accross the (unknown) structure are known
up to one Euclidean parameter and that the parameter’s values are strictly
increasing as you go down in the structure, see Okhrin et al. (2013).
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Recovering a target structure from trivariate structures

Key point for the first approach: if the structure of (Ui ,Uj ,Uk) is known
for any distinct i , j , k ∈ {1, ..., d}, then the structure of (U1, ...,Ud) can
be retrieved. That is, it is sufficient to know the marginal structure of all
possible sets of three variables to retrieve the target structure.

Proof: see Segers and Uyttendaele (2013)*

*Paper to appear in CSDA soon, manuscript already available on the
CSDA website.



Recovering a target structure from trivariate structures:
an example

Suppose d = 4, that is we have (U1,U2,U3,U4). Say the structure is:

U1 U2 U3 U4

D12

D0

D34

There are
(
4
3

)
= 4 marginal trivariate structures for this vector.

What are they?
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Estimation of a trivariate structure
Another key point: for any (Ui ,Uj ,Uk), there are only four possible
structures:

Ui Uj Uk

D0

Λijk

Ui

Uj

Uk

D0

Dik

Ui Uj

Uk Dij

D0

Ui

Uj Uk

D0

Djk

λik λij λjk



Estimation of a trivariate structure

We need to perform comparisons between empirical bivariate distributions
in order to choose the correct trivariate structure. Not an easy problem.
But....

...it is known from Genest and Rivest (1993) that the Kendall distribution
of a pair of variables (Xj ,Xk) fully determines the copula of that pair if it
is an Archimedean copula. And, in a NAC, any bivariate distribution is
actually an Archimedean copula. Kendall distributions are univariate.



Kendall distribution function

Define a random variable Wjk as

Wjk = Cjk(Uj ,Uk)

Then the map defined, for all w ∈ [0, 1], by

Kjk(w) = P(Wjk ≤ w)

is the Kendall distribution function (Barbe et al. 1996; Nelsen et al.
2003; Genest and Rivest 2001).



Estimation of a trivariate structure: the procedure

First, estimate the three empirical Kendall distributions (Genest,

Nešlehová, and Ziegel, 2011), that is, get K̂ij , K̂ik , K̂jk .

Calculate a distance between any two empirical Kendall distributions. Get
δij,ik , δij,jk , δik,jk .

Pick the smallest of the three distances. Is it significantly smaller than
the two others?



Say δij,jk is the minimum distance. Is it significantly smaller than δij,ik or
δik,jk?

If no, then the true structure must be Λijk , also called the trivial trivariate
structure:

Ui Uj Uk

D0

If yes, then the true structure must be λik :

Ui

Uj

Uk

D0

Dik



This last problem can be formalized as

H0 : the true structure is Λijk , the trivial structure.
H1 : the true structure is not Λijk .

and if H0 is rejected, being able to identify the smallest distance among
δij,ik , δij,jk and δik,jk also enables to easily pick a structure among the
three remaining structures λjk , λik and λij .

The test statistic for this test is equal to the difference of the minimum
distance and the average of the two remaining distances. The H0

distribution can be found thanks to some bootstrap.



The biggest difficulty of this first approach

A given target structure can always be broken down into a set of
trivariate structures. This set of trivariate structures can then be used to
recover the target structure.

BUT, given a set of trivariate structures, it is not always possible to
retrieve a target structure. Such sets of trivariate structures are called
broken or faulty sets.



The biggest difficulty of this first approach: an example
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The biggest difficulty of this first approach: an example
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The biggest difficulty of this first approach

A quick fix is however suggested in Segers and Uyttendaele (2013) to
ensure we always end up with a d-variate estimated structure at the end
of this first approach.

Unfortunately, if the true distribution of (U1, . . . ,Ud) is not a NAC, the
end result of this quick fix is usually that the final estimated structure is
the one of a d-variate Archimedean copula, that is, a trivial structure of
dimension d .



The biggest difficulty of this first approach

In summary, this first approach combined with the quick fix as suggested
in Segers and Uyttendaele (2013) lacks robustness with respect to the
NAC assumption of the data. If the true copula of the data is not a NAC,
we usually end up with a d-variate trivial structure.

There is hope however that a better fix than the one suggested in Segers
and Uyttendaele (2013) could come and solve this issue.
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Preliminary: definition of a binary tree

A binary tree is a tree such that each internal node of the tree has two
and only two children.

U1

U2 U3

U4

U5

U6 U7

D123

D0

D23

D4567

D567

D67



A two-step procedure

The second approach to estimate a NAC structure is a two-step
procedure and requires a weak assumption on the NAC for the first step.

First, estimate a binary tree on U1, . . . ,Ud .

Second, check which parts of the binary tree can be collapsed.



First step: estimation of a binary structure

Based on an iid sample of size n from (X1, ...,Xd) such that the
distribution of (U1, . . . ,Ud) is a NAC, estimate a distance for every
couple (Xi ,Xj) with distinct i , j ∈ {1, . . . , d}.

Cluster the variables one at the time according to the estimated distances
to get a binary tree on (X1, ...,Xd).

This approach makes sense only if the estimated distances are measures
of dependence (a large dependence being translated by a small distance)
and you assume that the NAC structure is such that the dependence
increases as we go down the structure.



First step: estimation of a binary structure

Suggestion of measures of dependence between two variables we could
use:

Kendall’s τ ,

A distance between the (theoretical) Kendall distribution of two
independent variables and the empirical Kendall distribution of the
two variables,

Hoeffding’s D statistic.

Remark: these three distances are all such that
d̂ist(Xi ,Xj) = d̂ist(Ui ,Uj). So the binary tree on (X1, ...,Xd) is actually
also the binary tree on (U1, . . . ,Ud).



Step 2: collapsing of the binary tree

If for some reason you know that the NAC structure is a binary tree, then
you should obviously skip this second step.

If you have no clue about what the true NAC structure is, inspect all
internal edges of the estimated binary structure and collapse two linked
nodes into one if a criterion is not met.



Step 2: collapsing of the binary tree

Suppose you end up with the left structure as binary structure. You
check if the nodes D4567 and D567 can be collapsed into one, and if so,
you end up with the structure on the right.
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Step 2: a criterion based on Kendall’s τ for collapsing

U4

U5

U6 U7

D4567

D567

D67

U4 U5

U6 U7

D4567+567

D67

For each pair of variables such that the two variables of the pair are
related through the parent node, estimate Kendall’s τ between the two
variables. Average all Kendall’s τ you get this way.
For each pair of variables such that the two variables of the pair are
related through the child node, estimate Kendall’s τ between the two
variables. Average all Kendall’s τ you get this way.

If the absolute difference between the average Kendall’s τ of the parent
node and the average Kendall’s τ of the child node is lower than a
threshold τc , collapse the two nodes into one.



Step 2: a criterion based on the comparison of trivariate
pieces for collapsing

U4

U5

U6 U7

D4567

D567

D67

U4 U5

U6 U7

D4567+567

D67

If we break down the two structures into trivariate pieces, we see that the
left structure is only made of trivariate pieces where we always have two
variables that are more related than a third one.

In the structure on the right, the trivariate structures of (U4,U5,U6) and
of (U4,U5,U7) are trivial trivariate structures.



Step 2: a criterion based on the comparison of trivariate
pieces for collapsing

Test 1:
H0: the structure of (U4,U5,U6) is the trivial structure, denoted Λ456.
H1: H0 is wrong.

Test 2:
H0: the structure of (U4,U5,U7) is the trivial structure, denoted Λ457.
H1: H0 is wrong.

Use as test statistic for both tests either the bootstrap test statistic or
the Friedman test statistic, both discussed in the first approach to
estimate a NAC structure.

If the average p-value of the two tests is lower or equal to a threshold α,
do not collapse the nodes D4567 and D567 into one.



Advantages and disadvantages of this two-step approach
to estimate a NAC structure

The main advantage of this second, two-step approach to estimate a
NAC structure over the first approach is that we do not lack robustness
with respect to the assumption that the data have a NAC as true copula.

The main disadvantage is that this second approach assumes that the
NAC of (U1, . . . ,Ud) is such that the dependence (measured in terms of
one of the three distances defined earlier) between the random variables
strictly increases as we go down the NAC structure. It remains however a
weak assumption about the NAC.



First things first

Structure estimation: a first approach based on trivariate pieces

Structure estimation: a second approach based on binary structures

Structure estimation: a third approach inspired by phylogenetics

Is a NAC a good idea for my data?
(work in progress)

The future of research about NACs



Phylogenetics

Phylogeneticians encountered the following problem a long time ago:
how to retrieve a target structure that will represent as well as possible
an input set of trees, this set including trees of various sizes, conflicting
trees and also missing trees (that is, some information to build the target
structure is actually lacking).



Phylogenetics

Methods solving this problem are called supertree methods by
phylogeneticians.

Some interesting references to get started are Bininda-Emonds (2004),
Wilkinson et al. (2005) or Swenson et al. (2012).



Supertree methods in R

There are only two supertree methods in R, both in the phytools package.

As input, both methods only accept a set of binary trees.

The output tree is also a binary tree, and is unrooted.



Structure estimation: a third approach

Suggestion: for every set of distinct i , j , k ∈ {1, ..., d}, pick the best
non-trivial trivariate structure for (Ui ,Uj ,Uk), that is, pick the best
structure among λij , λik and λjk . We already know it is an easy problem.

Use then the resulting set of estimated trivariate structures (only binary
structures) as input set for the two supertree methods available in the
phytools package.

Get an unrooted binary tree as output, root it*, and try to collapse some
of the internal nodes using one of the two criterions introduced in the
second approach to estimate a NAC structure.

*See the blog of Liam Revell, author of the phytools package, for more
details about the rooting.



Advantages of the third approach to estimate a NAC
structure

This third approach to estimate a NAC structure has the advantages of
the two previous approaches:

It is not required to assume anything about the NAC from which we want
to estimate a structure (first approach),

AND the structure estimation is robust with respect to the NAC
assumption (second approach).
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Is a NAC a good idea for my data?

Proposition 1 from Okhrin et al. (2009):

“Let F be an arbitrary multivariate distribution function based on a NAC.
Then F can be uniquely recovered from the marginal distribution
functions and all bivariate copula functions.”

Since all bivariate copula functions in a NAC are actually Archimedean
distributions, Proposition 1 can be conveniently rewritten as:

“Let C be a NAC on (U1, . . . ,Ud). Then C can be uniquely recovered
from all Kendall distributions, one for each pair (Ui ,Uj) of random
variables.”



Is a NAC a good idea for my data?

By definition of a NAC, if two pairs of random variables are such that the
two variables (Ui ,Uj) of the first pair are related through a node A and
that the two variables (Uk ,Ul) of the second pair are also related through
the same node A, then both pairs (Ui ,Uj) and (Uk ,Ul) have the same
Kendall distributions.

Such pairs are said to belong to the same equivalence class (Segers and
Uyttendaele, 2013).



Is a NAC a good idea for my data?

Thus to check if the data are compatible with a NAC, one could:

For each pair of variables, get the (unconstrained) empirical Kendall
distribution.

Estimate a NAC structure on the data, λ̂.

For each pair of variables, get the (constrained) empirical Kendall
distribution under the assumption that the pair comes from a NAC with
structure equal to λ̂. All pairs belonging to the same equivalence class
are assigned the same empirical Kendall distribution: just average all
(unconstrained) empirical Kendall distributions within the equivalence
class. The equivalence classes are defined by λ̂.

Finally, check for discrepancies between the (unconstrained) empirical
Kendall distributions and the (constrained) empirical Kendall
distributions pair by pair of random variables.



Is a NAC a good idea for my data?

If there are too many large discrepancies, you can exclude a NAC as the
true copula for your data.

However, if you fail to spot serious discrepancies, do NOT conclude a
NAC will fit the data well! Failure to spot serious discrepancies is not
enough to conclude a NAC will fit the data well.

The diagnostic tool developed here only allows to maybe exclude a NAC
as true copula for your data, nothing more.



Is a NAC a good idea for my data? Examples
Dataset = daily logreturns from 2000 to 2006 of d=9 companies based in
Belgium.
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Is a NAC a good idea for my data? Examples

The Davis dataset (library “car”) has 200 rows and 4 columns. The
subjects were men and women engaged in regular exercise.

height repht repwt weight

Node2

Node1

Node3

height

repht

repwt

weight



Is a NAC a good idea for my data? Examples

Dataset “States”, 51 rows and 6 columns. The observations are the U.S.
states and Washington, D.C.

pop - Population: in 1,000s.

SATV - Average score of graduating high-school students in the
state on the verbal component of the Scholastic Aptitude Test (a
standard university admission exam).

SATM - Average score of graduating high-school students in the
state on the math component of the Scholastic Aptitude Test.

percent - Percentage of graduating high-school students in the state
who took the SAT exam.

dollars - State spending on public education, in dollars per student.

pay - Average teacher’s salary in the state, in dollars.



Is a NAC a good idea for my data? Examples

− SATM − SATV

dollars paypercent

pop

Node4

Node2

Node3
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Is a NAC a good idea for my data? Examples

Examination results of more than 243 students at ULB (Université Libre
de Bruxelles).

DROI101

LANG102 LANG112

MATH102 PHYS101

SOCA105

STAT102 TRAN101
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The future of research about NACs

Sufficient and necessary condition(s) on the generators to ensure we have
a copula?

Estimation of the generators under these condition(s)?

Data generation from an estimated (structure + generators) NAC?

Better goodness-of-fit tests or diagnostic tools?

NACs are a class of copulas with the potential to become even more
popular than the Archimedean class of copulas. However this will not
happen untill the above issues are properly solved.
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McNeil, A. J. and J. Nešlehová (2009), “Multivariate Archimedean
copulas, d-monotone functions and l1-norm symmetric distributions.”
The Annals of Statistics, 37, 3059–3097.



References II
Nelsen, R.B., J.J. Quesada-Molina, J.A. Rodŕıguez-Lallena, and
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