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Censored Multivariate extremes: �oods in the `Gardons'
joint work with Benjamin Renard

I Daily stream�ow data at 4 neighbouring sites :
St Jean du Gard, Mialet, Anduze, Alès.

I Joint distributions of extremes ?

→ probability of simultaneous �oods.
I Recent, `clean' series very short
I Historical data from archives, depending on `perception

thresholds' for �oods (Earliest: 1604). → censored data

Gard river Neppel et al. (2010)

How to use all di�erent kinds of data ? 2



Wishes

I Flexible model for the dependence structure of large excesses
(non parametric) in moderate dimension

I Uncertainty assessment (Bayesian framework)

I Use the dependence structure to improve marginal estimation
at poorly gauged sites
(joint estimation margins + dependence)
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Outline

Multivariate extremes and model uncertainty

Dirichlet mixture model: a reparameterization

Historical, censored data in the Dirichlet model
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Multivariate extremes
I Random vectors Y = (Y1, . . . ,Yd ,) ; Yj ≥ 0
I Margins: Yj ∼ Fj , 1 ≤ j ≤ d

(Generalized Pareto above large thresholds)

I Standardization (→ unit Fréchet margins)

Xj = −1/ log [Fj(Yj)] ; P(Xj ≤ x) = e−1/x , 1 ≤ j ≤ d

I Joint behaviour of extremes: distribution of X above large
thresholds ?

P(X ∈ A|X ∈ A0)? (A ⊂ A0, 0 /∈ A0), A0 `far from the origin'.

u
1 X1

X2

u
2

A
0
 : 

“Extremal region”

A 

X
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Polar decomposition and angular measure

I Polar coordinates: R =
∑d

j=1 Xj (L1 norm) ; W = X

R
.

I W ∈ simplex Sd = {w : wj ≥ 0,
∑

j wj = 1}.
I Angular probability measure:

H(B) = P(W ∈ B) (B ⊂ Sd ).
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Fundamental Result de Haan, Resnick, 70's, 80's

I Radial homogeneity (regular variation)

P(R > r ,W ∈ B|R ≥ r0) ∼
r0→∞

r0

r
H(B) (r = c r0, c > 1)

I Above large radial thresholds, R is independent from W
I H (+ margins) entirely determines the joint distribution
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I One condition only for genuine H: moments constraint∫
w dH(w) = (

1

d
, . . . ,

1

d
).

Center of mass at the center of the simplex.
I Few constraints: non parametric family !
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Estimating the angular measure: non parametric problem

I Non parametric estimation (empirical likelihood, Einmahl et

al., 2001, Einmahl, Segers, 2009, Guillotte et al, 2011.) No explicit
expression for asymptotic variance, Bayesian inference with
d = 2 only.

I Compromise: Mixture of countably many parametric models
→ In�nite-dimensional model + easier Bayesian inference
(handling parameters).

Dirichlet mixture model

( Boldi, Davison, 2007 ; Sabourin, Naveau, 2013)

I Can Dirichlet mixtures be used with censored data ?

8



Outline

Multivariate extremes and model uncertainty

Dirichlet mixture model: a reparameterization

Historical, censored data in the Dirichlet model
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Dirichlet distribution

∀w ∈
◦
Sd , diri(w | µ, ν) =

Γ(ν)∏d
i=1 Γ(νµi )

d∏
i=1

w
νµi−1
i .

I µ ∈
◦
Sd : location parameter (point on the simplex): `center';

I ν > 0 : concentration parameter.

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

ex: µ = (0.15, 0.35, 0.5), ν = 9.
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Dirichlet distribution

∀w ∈
◦
Sd , diri(w | µ, ν) =

Γ(ν)∏d
i=1 Γ(νµi )

d∏
i=1

w
νµi−1
i .

I µ ∈
◦
Sd : location parameter (point on the simplex): `center';

I ν > 0 : concentration parameter.

0.00 0.35 0.71 1.06 1.41

w3 w1

w2

H valid: µ = (1/3, 1/3, 1/3).
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Dirichlet mixture model Boldi, Davison, 2007

I µ = µ · ,1:k , ν = ν1:k , p = p1:k , ψ = (µ,p,ν),

hψ(w) =
k∑

m=1

pm diri(w | µ · ,m, νm)

I Moments constraint → on (µ, p):

k∑
m=1

pm µ.,m = (
1

d
, . . . ,

1

d
) .

Weakly dense family (k ∈ N) in the space of admissible angular
measures
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Bayesian inference and censored data

I Two issues : (i) parameters constraints (ii) censorship

(i) Bayesian framework: MCMC methods to sample the posterior
distribution.
Constraints ⇒ Sampling issues for d > 2. Boldi, Davison, 2007

I Re-parametrization: No more constraint, �tting is manageable
for d = 5: Sabourin, Naveau, 2013

(ii) Censoring: data6= points but segments or boxes in Rd .
I Intervals overlapping threshold: extreme or not ?

I Likelihood: density dr
r2

dH(w) integrated over boxes.

I Sabourin ; Sabourin, Renard, in preparation
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Re-parametrization

I How to build a prior on (p , µ) ?

I Constraint on center of mass:
∑

j pj µ · ,j

I Sequential construction : Use associativity properties of
barycenter.

I Intermediate variables: partial centers of mass ; determined
by eccentricity parameters (e1, . . . , ek−1) ∈ (0, 1)k−1.

I Deduce last µ · ,k from �rst ones: no more constraints !
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Bayesian model

I New parameter : θk = (µ · ,1:k−1, e1:k−1, ν1:k)

I Unconstrained parameter space : union of product spaces
(`rectangles')

Θ =
∞∐
k=1

Θk ; Θk =
{

(Sd )k−1 × [0, 1)k−1 × (0,∞]k−1
}

I Inference: Gibbs + Reversible-jumps.

I Restriction (numerical convenience) : k ≤ 15, ν < νmax, etc ...

I `Reasonable' prior ' `�at' and rotation invariant.
Balanced weight and uniformly scattered centers.
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Resuts in the re-parametrized version
I asymptotics:

I Posterior consistency : ∀U weakly open in Θ, containing θ0,
πn(U) = π(U|data1:n) −−−→

n→∞
1 .

I Markov chain's ergodicity:
∑T

t=1 g(θt) −−−−→
T→∞

Eπn (g)

I empirical convergence checks:
Better mixing :

15



Resuts in the re-parametrized version
I asymptotics:

I Posterior consistency : ∀U weakly open in Θ, containing θ0,
πn(U) = π(U|data1:n) −−−→

n→∞
1 .

I Markov chain's ergodicity:
∑T

t=1 g(θt) −−−−→
T→∞

Eπn (g)

I empirical convergence checks:
Better coverage of credible sets (d=5, bivariate margins,
simulated data)

X2/(X2+X5)

0 1

0.
0

1.
8

X2/(X2+X5)
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Outline

Multivariate extremes and model uncertainty

Dirichlet mixture model: a reparameterization

Historical, censored data in the Dirichlet model
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Multivariate extremes for regional analysis in hydrology

I Many sites, many parameters for marginal distributions, short
observation period.

I `Regional analysis': replace time with space.
Assume some parameters constant over the region and use
extreme data from all sites.

I Independence between extremes at neighbouring sites ?
Dependence structure ?

I Idea: use multivariate extreme value models

18



Censored data: univariate and pairwise plots

Univariate time series:
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Censored data: univariate and pairwise plots

Bivariate plots:
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Data overlapping threshold and Poisson model

How to include the rectangles overlapping threshold in the likelihood ?{(
t

n
,
Xt

n

)
, 1 ≤ t ≤ n

}
∼ Poisson Process (Leb×λ) on [0, 1]×Au,n

λ: ` exponent measure', with Dirichlet Mixture angular component

dλ

dr × dw
(r ,w) =

d

r2
h(w) .

Overlapping events appear in Poisson likelihood as

P

[
N

{
(
t2

n
− t1

n
)× 1

n
Ai

}
= 0

]
= exp [−(t2 − t1)λ(Ai )]

20



`Censored' likelihood: density integrated over boxes
I Ledford & Tawn, 1996: partially extreme data censored at

threshold,
I GEV models
I Explicit expression for censored likelihood.

I Here: idem + natural censoring
I Poisson model (Threshold excesses)
I No closed form expression for integrated likelihood.

I Two terms without closed form:
I Censored regions Ai overlapping threshold:

exp {−(t2 − t1)λ(Ai )}

I Classical censoring above threshold∫
censored region

dλ

dx
.

21



Data augmentation
One more Gibbs step, no more numerical integration.

I Objective: sample [θ|Obs] ∝ likelihood (censored obs)

I Additional variables (replace missing data component): Z.
Full conditionals [θ|Z,Obs], [Zi |Zj 6=j , θ,Obs], . . . explicit
(Thanks Dirichlet): → Gibbs sampling.

I Consistency condition:∫
[z , θ|Obs]+ dz = [θ|Obs]

I Sample [z , θ|Obs]+ (augmented distribution) on Θ×Z.
22



Censored regions above threshold∫
Censored region

dλ

dx
dxj1:jr :

Generate missing components under univariate conditional
distributions

Z
j
1:r ∼ [Xmissing|Xobs, θ]

u
1 
/n x1

x2

u
2
/n

Censored interval

Augmentation data
 Zj  = [X

censored
 | X

observed
, θ]

Extremal region

Dirichlet ⇒ Explicit univariate conditionals

Exact sampling of censored data on censored interval 23



Censored regions overlapping threshold

e−(t2,i−t1,i )λ(Ai ) ⇔


augmentation Poisson process Ni on Ei ⊃ Ai .

+

Functional ϕ(Ni )

u
1 
/n X1

X2

u
2
/n

U'
1

U'
2

A
iE

i

Censored region

Augmentation 
 Zi = PP(τ.λ) 

on E
i 

 φ(#{points in Ai})

[z , θ|Obs] ∝ . . .︸︷︷︸
density terms, prior, augmented missing components

[Ni ]ϕ(Ni )
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Simulated data (Dirichlet, d = 4, k = 3 components),
same censoring as real data

Pairwise plot and angular measure density
(true/ posterior predictive)
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Simulated data (Dirichlet, d = 4, k = 3 components),
same censoring as real data

Marginal quantile curves: better in joint model.
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Angular predictive density for Gardons data
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Conditional exceedance probability
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Conclusion

I Building Bayesian multivariate models for excesses:
I Dirichlet mixture family: `non' parametric, Bayesian inference

possible up to re-parametrization

I Censoring → data augmenting (Dirichlet conditioning
properies)

I Two packages R:
I DiriXtremes, MCMC algorithm for Dirichlet mixtures,
I DiriCens, implementation with censored data.

I High dimensional sample space (GCM grid, spatial �elds) ?
I Impose reasonable structure (sparse) on Dirichlet parameters
I Dirichlet Process ? Challenges :

Discrete random measure 6= continuous framework

28
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