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Abstract

Atmospheric observations from space often result in spectral data of large dimensions. To allow an
optimal inversion of the observed spectra it can be necessary to map the data into a space of smaller
dimension. Here several data reduction techniques based on eigenvector expansions of the spectral space
are compared. The comparison is done by inverting simulated observations from a microwave limb
sounder, the Odin-SMR. For the examples tested, reductions exceeding two orders of magnitude with
no negative in=uence on the retrieval performance are demonstrated. The techniques compared include a
novel method developed especially for atmospheric inversions, based on the weighting functions of the
variables to be retrieved. The new method shows an excellent performance in practical tests and is both
computationally more e>ective and more =exible than the standard Hotelling transformation. ? 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

Observations from space are becoming more and more important for investigations of our
atmosphere. The sensors are normally placed on-board satellites [1], but the space shuttle has
also been used [2] and the international space station can become another relevant platform
in the future [3]. The atmospheric sensors are becoming more numerous, using both new
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and broader wavelength regions, and measuring with better frequency resolution and lower
noise. As the data analysis methods mature at the same time, there is a parallel shift toward
more complex calculation approaches for the inversion, the process of extracting the infor-
mation from the observed spectra. All this results in much larger data amounts that must
be handled during the inversions and e>ective means of reducing the data sizes would be
advantageous.

Especially occultation and emission measurements performed in limb sounding mode give
rise to large scale inversion problems. Particulary as it is normal practice to treat all spectra
from a scan sequence as a single observation and to invert them simultaneously. Accordingly,
the length of the measurement vector is n=mp, where m is the number of spectrometer chan-
nels and p the number of spectra in a scan. In addition, for some sensors it is planned to
invert jointly several scans, or even the scans from a total orbit [4,5], increasing the data size
even further with about 1–2 magnitudes. The normal strategies to handle these inversions are
to invert parts of the total spectra separately and to handle the spectral uncertainties in a sim-
pliKed manner, what can result in that the full capability of the measurements may not be
reached.

For most traditional inversion methods, such as the optimal estimation method [6], the critical
step is to calculate the inverse of the covariance matrix describing the uncertainties of observed
spectra, Se. The general cost for inverting this matrix is proportional to n3, which puts severe
limitations on n. To avoid this problem the matrix Se is in general set to be diagonal, modeling
only errors uncorrelated between the spectrometer channels, that is, thermal noise. Inclusions of
other error sources in Se can improve the inversion accuracy and helps to stabilize the inversion
problem [7]. To allow Se to have o>-diagonal elements is especially important for cases where
the magnitude of the thermal noise is low [8], a situation becoming more common with newer,
less noisy, receivers.

Inversion approaches exist that do not require the inverse of Se, one example is the use of
neural networks (e.g. [9]). Reducing the dimension of the input data to the neural network is a
common procedure in order to reduce the computational burden and enhance the generalization
properties of the neural network, so a reduction technique is normally an essential component
of the required pre-processing of the spectral data.

Accordingly, methods to reduce the size of the measured data without information loss could
enable more detailed treatments of observation uncertainties, more large scale inversions and
the application of novel inversion approaches, that should result in improved accuracy of the
retrieved atmospheric data. Several data reduction methods based on eigenvector expansions,
here called Hotelling transformations, are compared. This includes a novel approach, designed
especially for the purpose of atmospheric inversions, that has advantages regarding performance,
calculation eLciency and =exibility.

The next section gives a more detailed discussion about the limitations set by the inver-
sion methods on the data size. Section 3 describes the Hotelling transformations that
have been considered. The data reduction approaches have been compared by simulating
observations of the Odin sub-mm radiometer, and the simulation conditions are given
in Section 4. The results are found in Section 5 and Knally Section 6 gives the
conclusions.
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2. Retrieval theory and methods

Following Rodgers [10], a forward model, F , is introduced to describe the relationship be-
tween the various in=uential variables and the observed spectra, y:

y=F(x; b) + U; (1)

where x is the state vector representing the variables to be retrieved from the observation, b
contains additional atmospheric and sensor variables, and U represents measurement errors such
as thermal noise. It will be assumed here that the forward model is suLciently linear to allow
a linearization around an a priori state (xa; ba):

y=F(xa; ba) +Kx(x − xa) +Kb(b− ba) + U; (2)

where Kx= @F=@x and Kb= @F=@b are the state and model parameter weighting function matrix,
respectively. The a priori state is our best beforehand estimate of (x; b). Two inversion methods
to retrieve the wanted information (x) from the observed spectra (y) are presented below, with
focus on the importance of the length of y.

2.1. The optimal estimation method, OEM

The most commonly applied retrieval method for atmospheric passive observations is the
optimal estimation method [6]. Other plausible names for this method are the minimum variance
method (e.g. [11]) and statistical regularization (e.g. [7]). If the forward model is linear with
respect to x, the OEM solution can be written as

x̂=xa + (KT
xS

−1
e Kx + S

−1
x )−1KT

xS
−1
e [y − F(xa; ba)]; (3)

where Sx is a covariance matrix re=ecting our knowledge of x and Se is the covariance matrix
for the observation uncertainties:

Se=KbSbKT
b + SU; (4)

where Sb and SU are the covariance matrix for b and U, respectively. The expected error can
be estimated as

S	=(KT
xS

−1
e Kx + S

−1
x )−1: (5)

Other forms of the OEM solution exist but when the length of y exceeds that of x, which
should normally be the case, Eq. (3) is the most computationally e>ective expression. The
computational cost of Eq. (3) depends greatly on the size and structure of Se. This matrix is
often set to be diagonal and models only thermal noise (SU), then the calculation of S−1

e is a
simple operation. However, to improve the retrieval accuracy and to decrease the sensitivity to
the assumptions connected to Sx, forward model uncertainties (KbSbKT

b ) should also be included
in Se [7] and the inversion of Se becomes a crucial step. The computational cost to invert Se
is proportional to n3, where n is the length of y. In other words, if Se is set to be diagonal,
OEM allows basically any length of y, but if Se has o>-diagonal elements the data size is a
crucial factor.
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2.2. Neural networks, NNs

A more novel approach for inversion of passive atmospheric observations is the application
of neural networks (NNs) (e.g. [12–14,9]). NNs perform non-linear mappings between sets
of variables. They can be regarded as functions with a set of adjustable parameters that are
determined during a training phase. In this case, the training set consists of pairs of spectra and
the corresponding atmospheric variables. After training, inverting an atmospheric observation is
reduced to the computation of a function, typically involving a few simple matrix operations.
Traditional approaches, such as OEM, require much more lengthy iterative calculations for
non-linear inversions, involving for example the recalculation of Kx, so the main advantage of
NNs is that they allow comparably fast calculations for non-linear cases.

If there is no loss of essential information, reducing the dimension of the input space to a
NN a>ects positively its mapping ability and computational eLciency. The larger the dimension
of the input data, the larger the number of adjustable parameters, and the larger the training set
needed to properly constrain them, phenomenon known as the “curse of dimensionality” [15].
A smaller number of parameters also contributes to enhancing the generalization properties of
the NN, as NNs with a small number of parameters provide smoother mappings. A lower
dimensional space is also beneKcial for the representation of the underlying function generating
the mapping, because it helps to discard the undesired features of the mapping introduced by
the limitations of the training set. All these beneKts make the reduction in the dimension of
the input data a normal procedure when designing NNs, even for a relatively low dimensional
input space.

3. Hotelling transformations

3.1. Standard formulation

A very common approach for compression of geophysical data is the Hotelling transformation.
The method is also known under the names: principal component analysis, Karhunen–Loeve
transformation and empirical orthogonal function analysis. The Hotelling transformation is based
on a decomposition of the covariance matrix describing the variability of the observed quantity:

Sy=E ET; (6)

where E is an orthogonal unitary matrix (ETE= I, where I is the identity matrix) and  is a
diagonal matrix with non-negative values. The columns of E are denoted as eigenvectors and the
diagonal elements of  , the eigenvalues, are ordered in non-increasing order. The eigenvalues
express the fraction of the total variance that is associated with the corresponding eigenvector.
With these deKnitions, the transformation, for a given dimension k, minimizing the mean-square
error between original (y) and transformed ( Sy) vectors is

Sy=ET
k y (7)

where Sy has length k and Ek is the part of E holding the Krst k eigenvectors.
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The standard Hotelling transformation has some drawbacks that should be considered. The
matrix Sy is determined empirically from a set of measurements and during the preparatory
phase of a project Sy cannot be calculated as relevant data do not exist. The transformation
only considers the variability in the data, independently of whether it is noise or interesting
information, and there is no mechanism for putting emphasis on special features in the data.
If the length of y is large it can even be impossible to handle Sy practically due to limited
computer memory. However, it should be noted that it is not needed to calculate Sy explicitly
to determine the eigenvectors. If Y is an ensemble with n measurements where the mean values
have been subtracted, the covariance matrix can be estimated as

Sy=
1

n− 1
YYT: (8)

The eigenvectors are then obtained by a singular value decomposition (SVD) of Y:

U#VT =Y; (9)

as the properties of SVD give that (VTV= I)

1
n− 1

YYT =U
#2

n− 1
UT: (10)

By comparing Eqs. (6) and (10) we see that

E=U: (11)

3.2. Correlation formulation

Another common procedure is to base the Hotelling transformation on the correlation coeL-
cient matrix, Ry, instead of Sy:

Ry=E ET: (12)

The correlation coeLcient matrix is the covariance matrix obtained when the data are normalized
with the standard deviations. If the covariance matrix is decomposed, most emphasis will be
put on the data points with the largest variance, while if the correlation matrix is used all the
data will be weighted equally. This fact can be of importance if the species of interest give
emission of very di>erent magnitudes, as investigated below.

3.3. Formulation based on Kx

Passive atmospheric observations are normally very well characterized as this is necessary
for the retrieval process. If Eq. (2) is valid, the matrix Sy can be expressed analytically as

Sy=KxSxKT
x +KbSbK

T
b + SU: (13)

The Hotelling transformation aims at maintaining a maximum fraction of the variability of y,
but Eq. (13) shows that this variability consists partly of noise (KbSbKT

b + SU), that is only a
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disturbing factor for the retrieval. To optimize the data reduction for the retrieval, the reduction
should only be based on the part of Sy containing the interesting information:

E ET =KxSxKT
x : (14)

If the Cholesky decomposition of Sx is calculated,

LLT =Sx; (15)

we have that KxSxKT
x =KxL(KxL)T and the matrix E can be determined by a SVD of the

product KxL (cf. Eqs. (10) and (11)). For further details of the Cholesky decomposition and
SVD, see e.g. [16].

These calculations are simpliKed if the matrix Sx is set to be diagonal. The Cholesky decom-
position is then simply obtained by taking the square root of the diagonal elements, di=

√
Siix.

In general, it is not possible to set Sx= I as the weighting functions can correspond to di>erent
units, etc. The scaling by di is needed to put all weighting functions on the same scale. Even if
only species are retrieved and the same unit, for example the volume mixing ratio (VMR), is
used throughout, a scaling is needed as the species abundance is not constant, neither between
the species or as a function of altitude. However, as only species are retrieved here and the
retrievals are performed in relative units (with respect to the a priori proKles), all diagonal
elements of Sx will be of the same order (see Eq. (18)) and it is possible to set Sx to equal
I. The implications of using a diagonal Sx are further discussed in Section 5.1.
The scheme based on Kx requires in most cases less computations and computer storage than

the standard Hotelling transformation. The calculations are especially simple when Sx is set
to be diagonal. The Kx scheme has also the potential of being more e>ective as it is based
directly on the weighting function matrix of the variables to be retrieved. As shown below, it
gives a further possibility to control the data reduction to ensure that the information needed
to retrieve variables causing only a low variability in the observations is not lost. However,
Eq. (14) assumes linearity (for x) and the performance of the scheme in non-linear cases must
be tested for each individual retrieval situation.

It is worth noting that this Kx reduction approach has similarities with the truncated SVD
(TSVD) retrieval method [17,18]. In fact, the TSVD solution is obtained by OEM if the Kx
data reduction is applied and S−1

x is set to zero, but there is a crucial di>erence. The eigenvector
expansion is here used to Knd an e>ective data reduction, that is, no information shall be lost,
and there is no risk connected with using a too high value for k. The situation is di>erent for
TSVD as the variable k is used to regularize the solution, thus replaces Sx in OEM, and a too
high value for k is disastrous. With other words, in TSVD the eigenvector expansion is used
to Klter the data and make the inversion problem well-posed.

A Knal remark is that the Kx from Eqs. (3) and (14) do not have to be the same. For
instance, if the species retrieval is performed on a coarse grid it can be justiKed to make a
special calculation of Kx, using a Kner grid, when determining E.

3.4. Truncation issues

There is no general criteria for deciding how many eigenvectors should be retained in Ek . The
simplest tests are based on dominant variance approaches, for instance, the scree test [19], that
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consists of plot eigenvalues versus the corresponding eigenvector numbers to Knd the location
of a breaking point, or the Kaiser criterion [20], that consists in retaining only eigenvectors
with eigenvalues larger than the average amount of variance.

The criteria suggested here is based on the information content of the retrieval. The retrieval
error S	 (Eq. (5)) can be estimated for di>erent Ek and expressed in terms of information
content as [21]

H = 1
2 log2 |S−1

	 |; (16)

where |S−1
	 | is the matrix determinant. The information content gained by the retrieval is

TH = 1
2 log2 |S−1

	 | − 1
2 log2 |S−1

x |: (17)

The information content increases with the number of eigenvectors retained until it reaches a
maximum level that shall coincide with the information content obtained when no data reduction
is applied.

4. Simulation conditions

4.1. Odin-SMR

Simulations of observations by the Odin sub-mm radiometer (Odin-SMR) were selected to
exemplify the di>erent data reduction approaches. Odin-SMR observations will result in large,
high-resolution, data sets, so there is a clear need for a data reduction technique.

Odin is a small, low cost, satellite, build as a collaboration between Sweden, Canada, Finland
and France, that will perform the Krst space based sub-mm observations of the atmosphere.
The launch of Odin is scheduled for the year 2001. Technical details and the expected retrieval
performance of Odin-SMR are presented by [22] and the Odin-SMR forward model, that is also
used here, is described in [23]. The most important technical characteristics (in this context)
are described below.

Odin-SMR has four sub-mm front-ends, tunable inside the frequency ranges 486.1–503.9 and
541.0–581:4 GHz. Three spectrometers can be connected to any of the front-ends. The four parts
of the two hybrid autocorrelators (ACs) have around 420 channels each. The third spectrometer
(an AOS with 1720 channel) is not considered here as it is only used during parts of the mission
due to power limitations. Spectra will be recorded every 2 s, separated 1:5 km in tangent altitude.
During a scan through the atmosphere, Odin-SMR will record about 35–45 spectra depending

on which of the four observation modes is used. The normal approach for limb sounding is to
append all spectra from a scan and perform a joint inversion. The narrowest frequency range
that will be considered for inversions corresponds to one AC part and accordingly 14 700 is
the minimum length of y for Odin-SMR retrievals. When the frequency bands of an AC are
adjacent, it is justiKed to invert simultaneously all data from an AC, corresponding to a length
of y of 37,800 for the largest scan range.

Fig. 1 shows examples of noise free spectra from the three frequency bands considered in
this study. All bands have two dominating features caused by a single or a cluster of transitions.
Band 576:4 GHz covers also interesting transitions of BrO, NO2 and ClO with weak emission.
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Fig. 1. Simulated noise-free spectra for the 501.4, 544.6 and 576:4 GHz Odin-SMR bands. The spectra correspond
to a tangent altitude of 35 km. Unlabelled transitions correspond to O3 isotopes. The vertical mark indicates the
magnitude of the thermal noise (±1�).

The magnitude of the thermal noise is also indicated in the Kgure, about 8 K (±1�) for an
integration time of 0:875 s and a channel bandwidth of 1:16 MHz.

4.2. The atmosphere

The mean atmospheric conditions were taken from the data set REFMOD92, based on various
measurements and models. For example, the pressure and temperature proKles are taken from
the 1976 US Standard Atmosphere and the ozone proKle from [24]. Atmospheric proKles were
generated randomly by applying the Cholesky decomposition method [25]. Gaussian statistics
and hydrostatic equilibrium were assumed throughout. Following [7,26], the variability of all
species was modeled as

S(i; j)=�2e−|z(i)−z( j)|=lc ; (18)

where z is the vertical altitude, i and j are altitude indices, � is the standard deviation, set
to 30%, and lc is the correlation length, set to 4 km. The temperature variability was modeled
following Eq. (18) with �=4 K and lc = 6 km, but with a correlation linearly decreasing down
to zero.
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4.3. Retrieval approach

The inversions were performed by OEM where no other variables beside species proKles were
retrieved. A perfect knowledge of the species variability was assumed. In other words, the Sx
matrix is given by Eq. (18). The matrix Se was set to only include thermal noise, this to enable
retrievals without any data reduction. The retrievals are thus not “optimal” as no information
on the temperature variability is provided to OEM.

5. Results

5.1. A linear retrieval case

The retrieval of O3 and ClO from Odin-SMR observations around 501:4 GHz was chosen as
a Krst test. The emissions of O3 and ClO in this band have similar magnitudes (Fig. 1), and the
retrieval problem can be handled by assuming linearity [27]. Information content as a function
of k is plotted in Fig. 2, while Fig. 3 shows the practical retrieval error for 500 inversions
where k was set to 50 for the reduction techniques considered. The most prominent result of
these Kgures is the poor performance of the standard Hotelling transformation.

If the noise has zero mean, is uncorrelated and has the same magnitude for all measurement
channels (SU=�2I), it can be shown that the same eigenvectors are obtained with and without
noise (e.g. [28]). Althought these criteria are fulKlled during the simulations, close inspection
of the SU derived from simulated noise shows a covariance matrix with o>-diagonal elements
having random numbers around zero, resulting from having a limited data set. This deviation
from perfect statistics causes the noise to have a practical in=uence on the data reduction,
despite the high number of 1000 spectra used to calculate the eigenvectors of Sy. A decrease
of the number of spectra used gives a further deterioration of the retrieval performance. To
illustrate this negative e>ect of the thermal noise, Ek was calculated from noise-free spectra.
These results are indicated as Sy−U in Figs. 2 and 3, and a clear improvement compared to
the noisy case is seen. Notice that this latter approach is included mainly as a reference as it
cannot be based on, always noisy, measurement data. Note also that the thermal noise caused
by the sub-mm receiver considered in this study has a high magnitude (�=4 K) compared to,
for example, infrared instruments, and the negative practical in=uence on the data reduction
seen here can be considerably smaller for other sensors.

The results for KxKT
x and KxSxKT

x are very similar and just marginally poorer than when
using noise-free spectra (Sy−U). For the reductions based on Kx it is important to notice that the
exact variability of the retrieved variables was not needed to obtain good performance, setting
Sx to be diagonal did not deteriorate the results. This fact has positive practical consequences,
such as a decrease in the computational burden. More important, the matrix Sx is usually very
diLcult to estimate and, when lacking relevant data, the safest approach is to neglect all possible
correlations for x, thus giving a diagonal Sx. This is the case as correlation for x results in
a higher correlation in the spectral data. Hence, overestimating the correlation for x can result
in that not all features of measured spectra can be captured by the data reduction, while with
a diagonal Sx all possible spectral patterns can be resolved, but at a plausible cost of needing
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Fig. 2. Information content versus number of eigenvec-
tors k for the retrieval of ClO and O3 in the 501:4 GHz
band. The results for Ek derived from KxKT

x are plot-
ted as ——, from KxSxKT

x as – – –, from Sy as – · –,
and from Sy−U as · · ·. The horizontal marks show the
information content when no reduction is applied.

Fig. 3. Retrieval error for ClO and O3 in the 501:4 GHz
band. The mean (bias) and standard deviation (std) of
the retrieval error for the di>erent Ek , k =50, are plot-
ted. The results without any reduction are plotted as a
solid thick line, the remaining curves are labelled as in
Fig. 2.

a slightly higher k, as can be observed in Fig. 2. Following this discussion and the results
found in this section, of the two approaches for Kx only the one with a diagonal Sx matrix is
considered below.

The information content has basically reached the maximum level already at k=50 for all
methods apart from when using Sy. The worst retrieval performance in Fig. 3 corresponds to Sy,
while all the other reduction strategies give a similar performance to the case without reduction.
These facts indicate that the information content works very well as a practical criterion to select
the value of k.

5.2. A non-linear retrieval case

The derivation of Ek based on Kx assumes a linear inversion problem (Kx is valid for all
x), so it is interesting to see the performance of this reduction technique for non-linear cases.
As an example, information content and inversions of 100 spectra in the 544:6 GHz band were
calculated (Figs. 4 and 5). The 544:6 GHz band presents an inversion problem that can be
described as moderately non-linear [27], and the inversions were done by using the Marquardt–
Levenberg technique [8,21].

In contrast to Fig. 2, the approach based on Kx shows for band 544:6 GHz a somehow faster
increase, as a function of k, in information content than when using Sy−U. According to Fig. 4
the maximum level of information content is reached for a value of k around 50 for the Kx
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Fig. 4. Information content versus number of eigen-
vectors k for the retrieval of HNO3 and O3 in the
544:6 GHz band. The results for Ek derived from KxKT

x
are plotted as ——, from Sy as – · –, and from Sy−U as
· · ·. The horizontal marks show the information content
when no reduction is applied.

Fig. 5. Retrieval error for HNO3 and O3 in the
544:6 GHz band. The mean (bias) and standard de-
viation (std) of the retrieval error for the di>erent
Ek ; k =50 for Kx and k =100 for Sy and Sy−U, are
plotted. The results without any reduction are plotted
as a solid thick line, the remaining curves are labelled
as in Fig. 4. The curves are not as smooth as in Fig. 3
due to the smaller number of inversions.

reduction, while k around 100 is needed for the Sy−U reduction. Fig. 5 shows the retrieval error
for these reductions and k values. For Sy k was set to 100 also, with the reduction performing
poorly, for similar reasons as in the band 501:4 GHz.

Fig. 4 indicates the same relative performance between Sy and the other two methods for
O3 and HNO3 but the practical inversions using Sy for HNO3 show notably large errors. The
emission of HNO3 originates from a cluster transitions giving ragged spectra, while all other
species have separated transitions, and a plausible cause to the poor HNO3 inversions is that
the presence of noise in Sy makes the non-linear inversions especially hard to handle for this
particular case.

The example here for 544:6 GHz shows that, for moderately non-linear situations, the reduc-
tion based on Kx with a selection criteria for k based on the information content works well,
but the more non-linear the problem, the more cautiously this approach has to be used. This is
the case as a basic assumption for the Kx method is that a linear inversion problem is at hand
(Eq. (13)) and for more non-linear inversion problems the reduction based on Kx is expected
to be less optimal. The information content is also based on an assumption of linearity, that
the retrieval error can be calculated by Eq. (5), and the more non-linear the inversion problem
is, the more likely it is that the information content misrepresents the information gain, making
the selection of k more diLcult.
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Fig. 6. Information content versus number of eigenvectors k for the retrieval of CO, O3, and BrO in the 576:4 GHz
band. The results for Ek derived from KxKT

x are plotted as ——, from KxKT
x for each species individually as – – –,

from Sy as – · –, and from Ry as · · ·. The horizontal marks show the information content when no reduction is
applied.

5.3. Handling weak emissions

A reduction technique has sometimes to deal with variability of very di>erent ranges. The
Odin-SMR band 576:4 GHz is an example of such a situation. The chemistry involving BrO
is of high importance for ozone depletion [29], but no global vertically resolved observations
of this species exist, and Odin will o>er several ways to determine proKles of BrO. The 576.4
band o>ers one of the possibilities (but not the best) to measure BrO. The BrO emission is
found on the wing of a CO line and is relatively close to a strong ozone transition (Fig. 1).
The BrO emission is around two orders of magnitude smaller than the CO emission. As the
emission of BrO is very weak, spectra have to be averaged in order to get useful results and
here averages of 500 scans have been used.

Fig. 6 gives the information content for O3, CO and BrO when retrieved from the band
576:4 GHz by using di>erent reduction schemes. The reductions based on Kx and Sy show
clearly how the reduction put more weight in the information coming from the species with
the strongest emission, O3, CO and BrO in decreasing order. The Sy reduction performs more
poorly, although it should be noted that, as the noise is reduced due to the averaging of scans,
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the in=uence is smaller compared with the previous cases. For instance, for O3 the combination
of a high emission and reduced noise makes the Sy reduction to work nearly as well as the Kx
reduction. The results when the reduction is based on correlation (Ry) instead of covariance
(Sy) does not work for this simulation. The problem is that a considerable number of spectral
channels have very little information from the species, so their variability is mainly due to the
thermal noise. As the correlation approach put the same weight on all the channels, there is an
evident deterioration of the reduction performance as the noise features becomes more relevant.

The method based on Kx can be modiKed to Knd a better way to assure that information
from species giving rise to only small variations in the spectra is not lost. The modiKed ap-
proach consists of deriving eigenvectors from the weighting functions of the di>erent species
individually, in contrast to using the whole of Kx, and appending them to construct Ek (Krst the
most representative eigenvector for each species, then the second most, and so on). It can be
seen in Fig. 6 that this approach indeed results in a more e>ective reduction for BrO, but the
price to pay is the resulting lower eLciency for the other species. If the constrain to select k is
that the information content shall have reached its maximum for all species, this approach does
not result in an improvement, but for a dedicated retrieval of BrO (in this case) this method
has some potential. It should be noted that Ek is not orthogonal when constructed in this way.

6. Conclusions

Several Hotelling transformation approaches for data reduction have been compared and tested
practically by simulating the retrieval of atmospheric species from the sub-mm limb sounding
observations of the Odin-SMR. The term Hotelling transformation covers here any method that
uses some eigenvector expansion of observed spectra.

The simulated observations have a high magnitude of thermal noise and basing the reduction
on the complete covariance matrix for the spectra (Sy) gives, for the methods tested, the poorest
performance. Theoretically the noise should not have this negative in=uence but the performance
is deteriorated in practice as perfect statistics never are obtained from a limited data set.

An alternative approach was to base the data reduction on the correlation matrix (Ry) in-
stead of the covariance matrix. The information from all the channels is then weighted equally,
independently of their variability. This is favorable when the species of interest give rise to
emissions of very di>erent magnitudes. The problem however is that the noise becomes more
relevant as it can be the major source of variability in some channels, variability that is now
highly weighted. This is the case for these simulations, so the approach worked very poorly.
Another drawback, shared with the Sy reduction, is that the schemes are computational demand-
ing due to the large size of the matrix in question or the large measurement ensemble needed
to obtain good statistics.

Beside these standard Hotelling transformations, a novel approach based on the weighting
functions of the species to be retrieved (Kx) was introduced. This new method gave in the
test cases the same general performance as using noise-free simulated spectra (Sy−U), but at
a much lower computational burden. It was further shown that the method does not require
detailed information on the species variability, and that it can be applied for, at least, moderately
non-linear inversion problems. The proposed technique also gives =exibility in controling the
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data reduction, for instance, it was demonstrated how the method can be used to ensure that the
same emphasis is put on all the species to be retrieved. Summarizing, the proposed reduction
technique has a high computational eLciency, is =exible and showed in the test simulations an
excellent performance.
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