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Abstract

On the basis of simulated data, this study compares the relative performances of the
Bayesian clustering computer programs 

 

STRUCTURE

 

, 

 

GENELAND

 

, 

 

GENECLUST

 

 and a new
program named 

 

TESS

 

. While these four programs can detect population genetic structure
from multilocus genotypes, only the last three ones include simultaneous analysis from
geographical data. The programs are compared with respect to their abilities to infer the
number of populations, to estimate membership probabilities, and to detect genetic discon-
tinuities and clinal variation. The results suggest that combining analyses using 

 

TESS

 

 and

 

STRUCTURE

 

 offers a convenient way to address inference of spatial population structure.
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Introduction

 

Bayesian clustering algorithms have recently emerged as a
prominent computational tool for inferring population
structure in population genetics and in molecular ecology
(Beaumont & Rannala 2004). Bayesian clustering methods
use genetic information to ascertain population membership
of individuals without assuming predefined populations.
They can assign either the individuals or a fraction of their
genome to a number of clusters based on multilocus genotypes.
The methods operate by minimizing Hardy–Weinberg
and linkage disequilibria, and the assignment of each indi-
vidual genotype to its population of origin is carried out
probabilistically. The assignment can generally be achieved
by using Markov chain Monte Carlo (MCMC) approaches.
These particular assignment methods are useful when
genetic data for potential source populations are not available,
and they offer a powerful tool to answer questions of
ecological, evolutionary, or conservation relevance (Manel

 

et al

 

. 2005).

A recent study by Latch 

 

et al

 

. (2006) compared the
relative performance of three nonspatial Bayesian clustering
programs, 

 

structure

 

 (Pritchard 

 

et al

 

. 2000), 

 

baps

 

 (Corander

 

et al

 

. 2003) and 

 

partition

 

 (Dawson & Belkhir 2001). Latch

 

et al

 

. (2006) provided evidence that the three algorithms
generally perform well at low levels of genetic differentia-
tion (i.e. 

 

F

 

ST

 

 levels around 0.03–0.05). However, current
developments of Bayesian clustering methods explicitly
address the spatial nature of the problem of locating
genetic discontinuities by including the geographical
coordinates of individuals in their prior distributions
(Wasser 

 

et al

 

. 2004; Guillot 

 

et al

 

. 2005; François 

 

et al

 

. 2006).
But comparative studies that evaluate the relative performance
of these spatial algorithms are still lacking. In addition,
neither the power to delineate population boundaries, nor
the benefit of the inclusion of spatial coordinates into
classical analyses has been explored systematically.

This study evaluates the relative performance of three
spatial Bayesian clustering programs, namely 

 

geneland

 

(Guillot 

 

et al

 

. 2005), 

 

geneclust

 

 (François 

 

et al

 

. 2006) and a
new software named 

 

tess

 

. In order to assess the benefit
of including geographical coordinates into more classical
analyses, the performances of these programs are also
compared to those of 

 

structure

 

.
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The algorithms were originally described as follows.

 

geneland

 

 is an 

 

r

 

 package, which estimates the number of
populations in a study area, assigns individuals to their
population of origin, and potentially detects immigrants,
while taking into account uncertainty on the location of
sampled individuals. It is based on a hidden partition
model, in which the study area is divided into polygonal
regions. The number of these regions, 

 

λ

 

, controls the
amount of spatial dependencies within the hidden
partition. Low values of 

 

λ

 

 correspond to long-range depend-
encies and to the existence of a few clusters, whereas
large values of 

 

λ

 

 correspond to weak spatial dependencies
and fragmented populations.

 

geneclust

 

 is based on the concept of Hidden Markov
Random Field (HMRF), which models the spatial depend-
encies at the cluster membership level. HMRF’s are
statistical models that can account for the fact that
individuals from spatially continuous populations are
more likely to share cluster membership with their close
neighbours than with distant representatives. 

 

geneclust

 

can detect significant geographical discontinuities in allele
frequencies, and it can regulate the number of clusters. It
can also reduce the number of loci required to obtain
accurate assignments. 

 

geneclust

 

 uses a specific HMRF
model which accounts for the dependencies at the cluster
label level: the so-called Potts model, whose parameter

 

ψ

 

 controls the importance given to spatial interactions. In
general, the interaction parameter 

 

ψ

 

 is non-negative.
For less than 10 populations (a common number),
François 

 

et al

 

. (2006) suggested to use values of 

 

ψ

 

 in the
interval (0.5, 1). Values less than 0.5 often lead to the same
output as obtained with 

 

ψ

 

 = 0, for which the statistical
model used by 

 

structure

 

 is recovered. 

 

geneclust

 

 is
distributed as an 

 

r

 

 package running a 

 

fortran-

 

coded
MCMC algorithm.

This study includes a new computer program, called

 

tess

 

, which mainly implements the same statistical model
as 

 

geneclust

 

. Nevertheless, the algorithm used by 

 

tess

 

differs from 

 

geneclust

 

 in many regards, like data structures,
Monte Carlo proposal kernels, and other numerical options
which contribute to optimize program significantly (see
the program documentation for details). 

 

tess

 

 uses an input
format compatible with the one used by 

 

structure

 

, and it
contains an intuitive graphical user interface shell and a
command-line engine. 

 

tess

 

 provides facilities for creating
and managing projects, which are coherent units grouping
the input data, the algorithmic parameter settings, and the
output results altogether. By interacting with the graphical
interface, users can check their data, specify the parameter
settings, run the MCMC algorithm, and visualize the results.
In addition to the MCMC program, 

 

tess

 

 includes an 

 

em

 

solver designed in the same spirit as the software 

 

fastruct

 

which is also able to compete with 

 

structure

 

 favourably
(Chen 

 

et al

 

. 2006).

Although 

 

baps

 

 newest version (Corander 

 

et al

 

. 2003) also
enables the analysis of spatial data, this program is not
compared to the three others here. Yet there is no pub-
lished description of the spatial model used by 

 

baps

 

. A fair
comparison would require information about model
details and internal settings. To be consistent with Latch

 

et al.,

 

 we used 

 

structure

 

 version 2.1 admixture model
with correlated allele frequency (F-model). We used 

 

gene-
land

 

 version 1.0.5 correlated allele frequency model
(

 

geneland

 

 has no admixture model). We used 

 

geneclust

 

version 0.1 (model without inbreeding) and with fixed val-
ues of the interaction parameter 

 

ψ

 

. We used both 

 

tess

 

admixture and no-admixture models (

 

tess

 

 has no F-
model). All simulations were performed using a 3.2GHz
Xeon Intel processor with 2GB memory.

 

Methods

 

We compared spatial Bayesian clustering programs on the
basis of three simulated scenarios: (i) five ‘overlapping’
islands, (ii) two islands with various geographical con-
nectivity levels, and (iii) continuous variation in allele
frequencies. The simulated scenarios were designed to
evaluate the programs’ abilities to correctly infer population
structure and clinal variation in allele frequencies. These
scenarios typically involved no genetic admixture, which
translated into very similar behaviours of the admixture
and no-admixture models of 

 

structure

 

 and 

 

tess

 

. Therefore,
the interpretation of 

 

Q

 

 coefficients as probabilities that a
genome is correctly assigned to its population of origin
may be better than an interpretation as the proportion
of genome correctly assigned to its population of origin.
However, distinguishing between the two concepts is
generally subtle (and ambiguous), especially here because
the admixture and no-admixture results agreed perfectly.

 

Finite island model

 

These simulations were based on previously published
data by Latch 

 

et al

 

. (2006) who used them for measuring
the relative performance of nonspatial Bayesian clustering
programs. Each simulated data set consisted of one
population structured into five subpopulations differentiated
at one of five 

 

F

 

ST

 

 levels from 0.01 to 0.05. Five hundred
multilocus genotypes (100 per subpopulation) were ran-
domly drawn from the five subpopulation allele frequency
distributions across 10 codominant unlinked loci to form a
single data set. Spatial coordinates were simulated using
two-dimensional Gaussian distributions, so that the five
subpopulations were organized in a star shape on a ring.
The regions occupied by each subpopulation overlapped
with the other regions geographically, so that these regions
shared their adjacent areas. This process mimicked an
instantaneous expansion to a large size following a
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bottleneck, such that the range of each subpopulation
suddenly increased and gave rise to recent contact zones.
The contact zones contained around 20% of all individuals,
10% of which could be considered as migrants because
they lied within the range of a foreign island. A picture of
the ground truth for one typical spatial pattern used in this
simulation scenario is displayed in the Supplementary
material (Fig. S1).

The programs 

 

structure

 

, 

 

geneland

 

, 

 

geneclust

 

 and

 

tess

 

 provide estimates for the number of genetic clusters 

 

K

 

and for individual assignment probabilities. 

 

structure

 

and 

 

tess

 

 admixture model can also compute the propor-
tion of the genome of each individual that can be assigned
to the inferred clusters. This quantity was very close to the
individual assignment probabilities in the simulated
scenarios. To infer the number of populations, 

 

structure

 

’s
users usually proceed with successive runs by increasing
the number of clusters, and they select the number of
clusters with the highest likelihood. Because this method
might not be always accurate, the 

 

∆

 

K 

 

measure was proposed
to provide a better estimate of the true 

 

K 

 

(Evanno 

 

et al

 

.
2005). 

 

geneland

 

 uses a Reversible Jump (RJ) MCMC
algorithm that computes posterior probabilities for various

 

K 

 

and that estimates 

 

K

 

 as the most likely value obtained at
the end of the program run (Guillot 

 

et al

 

. 2005). 

 

geneclust

 

and 

 

tess

 

 procedure is similar to 

 

structure

 

 but these
programs use an additional regularization feature which
generally leads to a less ambiguous determination of 

 

K

 

(François 

 

et al

 

. 2006).
To evaluate the ability of the programs to correctly

estimate the number of populations, we used 25 data sets
with 

 

F

 

ST

 

’s ranging from .01 to .05 (5 of each). For each data
set, 

 

geneland

 

, 

 

geneclust

 

 and 

 

tess

 

 runs were performed
for 12 000 sweeps (burn-in period: 2000 sweeps) with the
maximum number of clusters fixed to 

 

K

 

max

 

 = 6. 

 

geneland

 

initial number of nuclei was fixed to 

 

λ

 

 = 100 (

 

λ

 

max 

 

= 300).

 

tess

 

 and 

 

geneclust

 

 interaction parameter was set to

 

ψ

 

 = 0.6. The three programs were run 10 times for each
data set, and the run with the highest likelihood was stored
as the final result. 

 

structure

 

 was also run for checking
that 

 

tess

 

 produced the same results when the parameter

 

ψ

 

 = 0 was used. The average runtime of 

 

geneland

 

 for a
single data set (consisting of 10 runs) was approximately
5 h. The average runtime for 

 

geneclust

 

 was approximately
3 h, and the runtime dropped to less than 15 min for 

 

tess

 

.
Assuming that the number of populations was correctly

inferred, the relative performance of each program to
correctly assign individuals to their population of origin
was assessed from the same 25 data sets. All programs
were started with 

 

K

 

max

 

 = 5, and they were run for 1200
sweeps each, including a 200 sweeps burn-in period. As
recommended by its authors, 

 

geneland

 

 was run with
fixed 

 

K

 

. For 

 

tess

 

 and 

 

geneclust,

 

 four values of the
interaction parameter ranging from 

 

ψ

 

 = 0.3 to 

 

ψ

 

 = 1.2 were

experimented. Misassignment rates and average membership
probabilities (or proportions of genome belonging to the
‘correct’ subpopulation for 

 

tess

 

) were computed from the
highest likelihood run over 10 runs. The average runtime
of geneland for a single data set (including 10 runs) was
around 33 min. The average runtime for geneclust was
about 11 min, and the runtime dropped to less than 1 min
and a half for tess.

The role of spatial data

A spatial variant of the island model was used in order to
assess the sensitivity of Bayesian spatial clustering algorithms
to simultaneous variation of genetic differentiation and
spatial density within the data. Two hundred diploid
genotypes were sampled at 20 unlinked loci from two
subpopulations of equal effective size N. Alleles were
simulated according to the infinite allele model with
constant mutation rate θ = 4 µN = 1 at each locus (µ is the
mutation rate per generation). Spatial coordinates were
simulated from a geographical mixture of two independent
two-dimensional Gaussian distributions. In subpopulation
1, the spatial data were sampled according to the standard
Gaussian distribution centred at the origin N [(0, 0) Id)],
while for population 2, the distribution was centred
at distance D from the origin. The parameter D also
measured the degree of population connectivity. In the
simulations, D was increased from D = 0.5 (40% overlap) to
D = 4 (2.2% overlap). For each D value, five data sets were
created with levels of differentiation around FST ≈ 0.02, and
the parameter settings described in the previous paragraphs
were applied without change to the three algorithms
structure, geneland and tess. The scenario is relevant to
two weakly differentiated subpopulations one of which
underwent very recent massive migration resulting into
a spatial contact zone. A second possible interpretation
could be that the population underwent a recent fission
resulting in two subpopulations which are now diverging
both geographically and genetically. F-statistics were
computed using Weir and Cockerham estimates (Weir
& Cockerham 1984). geneclust was checked to perform
similarly as tess, but with runtimes significantly longer.

Discontinuous sampling along a directional cline

A frequently reported issue in the recent literature is
that (nonspatial) Bayesian algorithms may be confounded
by discontinuous spatial sampling (Serre & Pääbo 2004;
Rosenberg et al. 2005). Because structure puts a strong
prior on the existence of clusters, it may be prone to errors
when geographical sampling is discrete along clines.
François et al. (2006) argued that geneclust (and tess) can
help dealing with the sampling issue by checking which
clusters are robust to the inclusion of a spatially continuous
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prior distribution. We simulated clinal variation at 20
unlinked biallelic loci along one direction, for which the
coordinate x varied from 0 to 2, and the allele frequencies
at each locus varied linearly from 0.3 to 0.7 as a function of
x. Three hundred genotypes were sampled from three
geographical sites with individual coordinates around
x = 0.5, 1, 1.5 (100 individuals at each site, s.d. ≈ 0.1) so that
the spatial coordinates formed three nonoverlapping geograph-
ical clusters. This process was replicated to produce
10 data sets. Program runs of structure, geneland (λ =
100), and tess (ψ = 0.6) were performed using 1000 sweeps
preceeded by 200 burn-in sweeps with Kmax = 3 first and
then with Kmax = 2.

Large samples and starting configurations

Bayesian software practioners privilege the use of repeated
short runs instead of long runs, although long runs are
more consistent with the theory of Markov chains (Gelman
et al. 1995). Short runs may be a reasonable strategy when
parameter dimension is high because they provide a mean
to explore a larger number of local optima. With short runs,
the program outputs may be sensitive to the initial start-
ing points. This is particularly true when the sample
size increases as the programs need to compute an in-
creased number of membership coefficients. To evaluate
the impact of the starting configuration, we simulated
genotypes at 20 biallelic loci (a/A), with the frequency of
allele A equal to 0.4 in one subpopulation and equal to 0.6
in the other subpopulation (two subpopulations, FST  ≈  0.04).
The sample sizes were increased from 500 to 1000 and 2000
individuals. Spatial coordinates in population 1 were sampled
from a uniform distribution over the square (0, 1) × (0, 1).
Spatial coordinates in population 2 were sampled from
a uniform distribution over the square (0.8, 1.8) × (0, 1).
We generated five data sets using this model. tess pro-
vides three options: pure MCMC runs, em runs, and the
possibility to combine both. We ran the tess MCMC
program for 2200 sweeps (including 200 sweeps as a burn-
in period). These results were then compared to those
obtained after 10 iterations of the em algorithm (Dempster
et al. 1977; Celeux et al. 2003) followed by 2000 sweeps of
the MCMC algorithm. tess was run with Kmax = 3, and the
interaction parameter was set to ψ = 1.0.

Results

Five-island model

Table 1 reports the average probability that an individual
genome is correctly assigned to its population of origin for
geneland, geneclust and tess (total correct membership
probability) when estimating the true number of populations.
The results for tess could also be interpreted as the average

proportion of an individual genome correctly assigned to
its population of origin by the admixture version. The
programs could not discern five populations at an FST
of 0.01, as they generally ended with a single cluster.
geneclust and tess (ψ = 0.6) detected the five populations
at an FST of 0.02, and the correct number of populations
was retrieved in each of the 10 runs. geneland was able to
detect population structure at FST’s greater or equal than
0.05. For FST’s within the interval 0.02–0.04, 28% of the runs
were successful at detecting the number of populations.
The total correct membership probabilities were lower for
geneland than for geneclust and tess. Results for
structure can be found in Latch et al. (2006).

Assuming that K was correctly estimated (K = 5), gene-
clust and tess performed extremely well at low levels of
genetic differentiation, and reached misassignment rates
lower than 3.5% for FST’s greater or equal than 0.03. The
rates decreased as FST’s increased (Fig. 1). Regarding
missassignment scores, geneland was less efficient than
geneclust and tess, and reached a value around 9%. The
misassignment value did not decrease for the highest FST
levels, perhaps because geneland was unable to ascertain
the complex boundaries that delineate the adjacent islands.
In these simulations, about 10% of all individuals were
geographically farther from their population of origin than
from a foreign population. geneclust and tess were
particularly efficient at locating these migrants and reas-
signing them to the correct population whereas the
performances of geneland were poorer in this respect. For
tess (and geneclust), the probability of an individual
genome assigned to its correct population reached over
94% for an FST of 0.03 (see Fig. 2).

The ratio of success over 10 runs for geneland,
geneclust and tess is reported in Fig. S2 (Supplementary
material). Further results for ψ = 0.3–1.2 are reported in a
text file available from the Supplementary material. tess
performances were slighlty lower for ψ = 0.3 or ψ = 1.2
than for ψ = 0.6–0.9, suggesting that the latter range is
better appropriate to deal with K ≈ 5 populations. Tables
S1–S4 (Supplementary material) give detailed results for
all data sets and programs for Kmax = 5 and Kmax = 6.

Table 1 Five-island simulation. Probability that an individual
genome is correctly assigned to its population of origin when the
programs are started with an incorrect number of populations
(Kmax = 6). FST varies in the range (0.02, 0.04)

FST

0.02 0.03 0.04

geneland 0.47 0.39 0.59
geneclust 0.82 0.91 0.96
tess 0.83 0.92 0.96
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Considering that geneclust and tess performed similarly,
and that tess is approximately 10-fold faster than geneclust,
no further results of the latter will be reported afterwards.

Sensitivity to spatial density

tess provided the lowest rates of misassignment for distances
between D = 1 and D = 4. This range corresponded to

spatial overlap (or geographical admixture) varying from
2% to 30% (Fig. 3). tess reached misassignment rates lower
than 3.5% for overlaps less than 30%. structure performed
better than tess when the percentage of overlap was equal
to 40%. geneland was not able to detect population
structure when the overlap was greater than 30%. For
overlap levels around 20%, the average misassignment rate
over geneland successful runs was around 9%. Like the
five-island simulation, tess was significantly better than
geneland at detecting individuals that did not lie close
to their origin centre. The performances of geneland
increased from an error rate of 9% to an error rate of 1%
as the degree of connectivity decreased to its minimum.
In this case, geneland performed similarly as tess did.
Figure 4, which displays the average probability that a
genome is correctly assigned to its original cluster, supports
the previous findings. geneland contrasting results for
the largest D values were due to the fact that this program
assigned a fraction of genome to a third inconsistent
cluster. Detailed results are reported in Tables S5–S8
(Supplementary material).

Discontinuous sampling along a cline

For the three programs, runs performed with K = 3 led to
inconsistent results across successive replicates. structure
produced estimates of membership coefficients around 1/
3 for all individuals. geneland and tess split the population
into two groups, but the location of the boundary between
the two clusters exhibited significant spatial variation
from one run to another. For K = 2, Figs 5, 6 and 7 display
estimates of the membership probabilities along the cline

Fig. 1 Five-island model simulation results (500 individuals, 20%
spatial overlap, 10 unliked codominant loci, FST ranging from 0.01
to 0.10). Misassignment rates (percentage) for geneland, filled
triangles; tess, filled squares; geneclust, empty squares (hidden
by the filled squares). The results are for Kmax = K = 5, that is the
number of populations is assumed to be correct. Results for
geneclust are indistinguishable from those of tess.

Fig. 2 Five-island model simulation results (500 individuals, 20%
spatial overlap, 10 unliked codominant loci, FST ranging from 0.01
to 0.10). Probability that a genome is correctly assigned to its
population of origin by geneland, filled triangles; tess, filled squares;
geneclust, empty squares. The results are for Kmax = K = 5, that is
the number of populations is assumed to be correct.

Fig. 3 Two-island model simulation results (200 individuals, 20
unliked codominant loci, FST around 0.02). The geographical
overlap between the two subpopulations varies from 2% to 40%.
Misassignment rates (percentage) for geneland, filled triangles;
tess, filled squares; structure, empty squares as a function of
density overlap. The results are for Kmax = 3, that is the number of
populations is unknown.
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for one typical data set over 10 replicated runs after
correcting for label switching. A nonlinear regression
curve provided a quasi-linear estimate for the coefficient
membership of structure, while these curves provided
an exaggerated variation around the central cluster for
tess and geneland. The same kinds of results were
obtained for all simulated data sets (not reported). These
curves provide evidence that the three programs were able

to detect clinal variation even when the level of differentation
was low. structure yielded the best performance when
ascertaining clinal variation.

Starting values

For the largest sizes (2000 individuals), the 20 preliminary
em steps increased the number of successful runs of tess
MCMC program significantly. Table 2 reports the ratio of
successful runs for the five simulated data sets. This ratio
increased from 28% to 66% when the em steps were used
beforehand. For these runs, the misassignment rate was
lower than 10%, and the average proportion of genome
correctly assigned to its cluster of origin was greater than
90%. Surprisingly, the em steps did not provide obvious
benefit unless the sample size was increased to 2000
individuals. These results and others that were reported in
the Supplementary materials (Tables SM2 and SM4)
suggest that the em steps should be used in combination to
MCMC runs preferentially.

Discussion

This study compared three distinct Bayesian assignment
approaches corresponding to four computer programs
which all compute probabilities that each individual
genome originates from one of K populations. The three
approaches could be classified according to their distinctive
specificities as follows. The first one (structure) is a
nonspatial clustering method. The second one (geneland)

Fig. 4 Two-island model simulation results (200 individuals, 20
unliked codominant loci, FST around 0.02). The geographical
overlap between the two subpopulations varies from 2% to 40%.
Probability that a genome is correctly assigned by geneland,
filled triangles; tess, filled squares; structure, empty squares as
a function of density overlap. The results are for Kmax = 3, that is
the number of populations is unknown.

Fig. 5 Clinal variation simulation results for
structure. Three nonoverlapping samples
(300 individuals) were simulated with indi-
viduals genotyped at 20 unlinked biallelic
markers. Allele frequencies were varied from
0.3 to 0.7 linearly along the cline. Membership
probability in one population as a function of
the location along the cline (x).

Fig. 6 Clinal variation simulation results for
geneland. Three nonoverlapping samples
(300 individuals) were simulated with indi-
viduals genotyped at 20 unlinked biallelic
markers. Allele frequencies were varied from
0.3 to 0.7 linearly along the cline. Membership
probability in one population as a function of
the location along the cline (x).
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attempts to group individuals in geographical components
within a partition model. The third one (tess/geneclust)
assumes proximate interactions between individuals, and
spatial dependencies are prescribed at the individual level
directly. Manel et al. (2005) claimed that for species in
which individuals are continuously distributed, methods
other than assignments methods are more appropriate
to address questions such as the location of genetic
discontinuities or the detection of geographical barriers.
For example they referred to nonparametric approaches
like spatial autocorrelation methods (Epperson 2003). This
study provided evidence that assignment methods are
actually well-suited to deal with the identification of
genetic discontinuities and migrant individuals. Spatial
Bayesian clustering is as reliable as nonspatial Bayesian
clustering programs are, and this is particularly true when
the number of polymorphic loci available to the study is
limited.

Number of populations

The ability of structure to correctly infer the number
of subpopulations has been previously investigated by
Evanno et al. (2005) and Latch et al. (2006). The additional
simulations carried out here provided evidence that the
current practice (e.g. Rosenberg et al. 2002), which iteratively
examines increasing values of the number of populations
unless the likelihood reaches a plateau, is generally
efficient. For the five-island model at levels of genetic
differentiation FST ≥ 0.03, Latch et al. (2006) reported that
structure correctly inferred K, but that this program
could not detect more than one population at an FST = 0.01,

and could not discern all five populations at an FST = 0.02.
The iterative examination of K’s applied to tess and
geneclust proved to be more efficient than for structure,
because both algorithms regulate the number of clusters
without the need of any additional statistical criterion (like
an information criterion for example). The situation was
less favourable to geneland which frequently overestimated
the true number of distinct clusters. This overestimation
issue seems an inherent drawback of the original RJMCMC
method (Richardson & Green 1997), which is believed to
exist even for lower dimensional search spaces. Although
the existence of ‘ghost’ clusters was reported by Guillot
et al. we were not able to correctly measure the impact of
these fictive clusters on the assignment results.

Detecting genetic discontinuities

Determining what constitutes a natural break in continuous
populations and delineating evolutionary significant units
that form population subdivision are major objectives
of population genetics and evolutionary biology. All
programs performed well in this respect, as they were able
to assign a large ratio of individuals to their population of
origin at extremely low FST values. For the five-island
simulations, the average proportion of an individual
genome for tess reached 98% for FST = 0.04. These results
compare favourably to the 92% obtained with structure
for FST = 0.05 (Latch et al. 2006). The average total correct
membership probability for geneland reached 91% for
FST = 0.04. For FST’s greater or equal than 0.04, the average
ratios of misassignment were lower than 1.1% for tess,
and lower than 8.5% for geneland. The spatial Bayesian
clustering programs achieved even better performances
when the five islands did not overlap spatially (not reported).

Individual-centred programs aim at detecting immigrants
among samples analysed at various multi-allelic markers,
using the fact that these immigrants will present different
multilocus genotypes than expected for native individuals
(Excoffier & Heckel 2006). A natural question is to know
under what realistic conditions can Bayesian methods
detect contemporary migration. The answer to this question
strongly depends on the level of geographical admixture

Fig. 7 Clinal variation simulation results
for tess-geneclust. Three nonoverlapping
samples (300 individuals) were simulated
with individuals genotyped at 20 unlinked
biallelic markers. Allele frequencies were
varied from 0.3 to 0.7 linearly along the cline.
Membership probability in one population as
a function of the location along the cline (x).

Table 2 The MCMC algorithm compared to the combination EM
+ MCMC in tess. Success rates over 10 runs for data sets with two
populations, 20% spatial overlap, 2000 individuals, FST ≈ 0.04

Data set 1. 2. 3. 4. 5.

mcmc 0.42 0.11 0.40 0.33 0.24
em + mcmc 0.74 0.67 0.71 0.62 0.73
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present in the population, that is the fact that individuals
from separate ancestral origins share a fraction of the
inhabited area.

When the degree of connectivity (spatial overlap) was
higher than 30% (D ≤ 1), the loss of spatial structure con-
founded geneland systematically. When the shape of the
contact zone became very irregular or inconsistent, tess
still performed well, but structure outperformed the
spatial algorithms. At the other extreme (D = 4), the
simulation study suggested that geneland performs well
with no migrants and when genetic discontinuities
correspond to crossing straight lines (see also Coulon et al.
2006). This can be seen in the case of maximal separation
between the two islands, where geneland provided
perfect assignment. Similar results were observed for the
five-island simulations (not reported). Hence the power of
geneland does not seem to rest on its ability to detect
recent immigrants as claimed in (Guillot et al. 2005) and
(Excoffier & Heckel 2006). Instead, the program seems
more efficient at detecting potential zones of contact
between populations without recent migrants, and living
in geographical territories separated by simply shaped
boundaries. In this case, geneland may be efficient even
when the loss of connectivity is recent. In addition, geneland
performances increased slightly when the F-model, which
assumes an instantaneous fission from an ancestral popu-
lation, was not used. This observation suggests that the
above-mentioned limitation might come from a conflict
between the spatial continuity assumption implemented
through the prior distributions of the program and the
fission model.

The island data with moderate levels of connectivity
supported the hypothesis that tess is superior to the other
Bayesian clustering programs to detect a very recent
contact zone between two weakly differentiated populations,
and to identify which individuals crossed the boundary.
For FST’s in the range (0.011, 0.018), tess produced error
rates twice lower than those produced by structure,
while geneland was hardly able to detect the correct
structure (10 data sets, not reported). In particular, these
results indicated that tess could find a higher ratio of
individuals from one population present into the second
population than the other programs could. In this respect,
tess may have a greater ability to detect migrants.

Detecting clinal variation

The three Bayesian assignment methods revealed themselves
efficient at detecting continuous variation in allele frequencies
although spatial sampling was not continuous. In this
respect, structure performed better than the spatial
algorithms, because it produced an estimation of the cline
closer to the actual variation in allele frequencies.
Nevertheless, we observed that tess produced the best-

estimated curve when using two loci instead of 10 (not
reported). Although the cline may not be apparent when
examining the results of a single run, averaging member-
ship coefficients over several (high likelihood) runs is an
efficient strategy to detect this type of variation. In general,
the label-switching issue can be solved using the software
clumpp (Jakobsson & Rosenberg 2006) before averaging.

The results presented here are consistent with those
presented by François et al. 2006) which suggested that the
degree of clustering might be diminished by use of higher
prior levels of spatial clustering (i.e. higher ψ or lower λ).
These results weakened some previous claims by Serre &
Pääbo (2004) which alerted users to re-examine structure
results because discrete sampling during the experimental
design might confound clustering algorithms. Although
this effect may exist, our experimental results suggested
that it actually has minor impact on dense regular sampling.

Program user interfaces

All programs have convenient user interfaces. Although
being familiar with the r language may be more
demanding than using the graphical interfaces of structure
and tess, r offers additional data analysis and graphical
functionalities that can facilitate the pre- and postprocessing
of MCMC outputs. In addition, r is perfectly adapted to
implement computational algorithms like MCMC, because
the language can interact with foreign languages like c
and fortran (see Excoffier & Heckel 2006 for a different
opinion). Nevertheless, the typical tess runtimes are about
30-fold shorter than the geneland runtimes, and they are
10-fold shorter than the geneclust runtimes for moderately
large data sets. In addition, running a few em steps before
starting the MCMC program can improve the final results
when the sample sizes are very large.

The discussion is summarized in Table 3, which presents
an objective ranking of the three Bayesian assignment
approaches based on simulated data. The performances
of geneclust were similar to tess but with a lower com-
putational speed. One may warn hurried readers that this
summary should not be taken too literally. For example,
the performance of spatial methods would increase if the
weight on the spatial data were adjusted from the data (i.e.
lower values of ψ when the connectivity is obviously high).
Nevertheless, this summary suggests that combining ana-
lyses using structure and tess, like recently carried out in
(Rosenberg et al. 2006), offers a convenient way to address
the issue of detecting spatial population structure and
locating discontinuities in allele frequencies.

Program availability

The tess program is available from the Internet at the following
URL: http://www-timc.imag.fr/Olivier.Francois/tess.html
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Table 3 Program performance ranking for standard questions addressed by the three programs structure, tess and geneland (1 means
best). The performances of geneclust were similar to tess but with a lower computational speed

Software ranking

1 2 3

Estimating the number of pop. tess structure geneland

Assignment
high geographical admixture structure tess geneland
moderate geographical admixture tess structure geneland
no geographical admixture geneland tess structure

Identifying recent migrants tess geneland structure

Detecting clinal variation structure tess geneland

Computational speed structure tess geneland
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Supplementary material

The following supplementary material is available for this article:

Figure S1. Ground truth for a typical 5 island data set (500 indi-
viduals, 20% spatial overlap). Spatial coordinates for each genetic
cluster were simulated from standard Gaussian distributions. Each
color represents a population of origin in the simulation.

Figure S2. Five island simulation results (500 individuals, 20%
spatial overlap, 10 unliked codominant loci, FST ranging from 0.01 to
0.10). Number of successes over ten replicated runs for geneland:
filled triangles, tess: filled squares, geneclust: empty squares
(hidden by the filled squares). The results are for Kmax = K = 5, which
means that the number of populations is assumed to be correct. 

Table S1. Five island model (500 individuals, 20% spatial overlap,
10 unliked codominant loci, FST ranging from 0.02 to 0.05). Individual
assignment data for geneland and geneclust. The results are for
Kmax = K = 5, which means that the number of populations is
assumed to be correct.

Table S2. Five island model (500 individuals, 20% spatial overlap,
10 unliked codominant loci, FST ranging from 0.02 to 0.05). Individual
assignment data for tess. The results are for Kmax = K = 5. The
number of populations is assumed to be correct.

Table S3. Five island model: Detecting the correct number
of populations (500 individuals, 20% spatial overlap, 10 unliked
codominant loci, FST ranging from 0.02 to 0.05). Individual assign-
ment data for geneland and geneclust. The results are for Kmax =
6, that is the number of populations is assumed to be unknown.

Table S4. Five island model: Detecting the correct number of
populations (500 individuals, 20% spatial overlap, 10 unliked
codominant loci, FST ranging from 0.02 to 0.05). Individual assign-
ment data for tess. The results are for Kmax = 6, that is the number
of populations is assumed to be unknown.

Table S5. Two island model: Individual assignment data for
structure obtained for various levels of geographical distance
(200 individuals, 20 unliked codominant loci, FST around 0.02).
The geographical connectivity between the two subpopulations
varies from 2% to 40%. The results are for Kmax = 3, that is the
number of populations is unknown.

Table S6. Two island model: Individual assignment data for
geneland obtained for various levels of geographical distance
(200 individuals, 20 unliked codominant loci, FST around 0.02).
The geographical connectivity between the two subpopulations
varies from 2% to 40%. The results are for Kmax = 3, that is the
number of populations is unknown.

Table S7. Two island model: Individual assignment data for tess
obtained for various levels of geographical distance (200 individuals,
20 unliked codominant loci, FST around 0.02). The geographical
connectivity between the two subpopulations varies from 2% to
40%. The results are for Kmax = 3, that is the number of populations
is unknown.

Table S8. Two island model: Summary. Individual assignment data
for structure, geneland and tess, averages obtained using 5 data
sets for various levels of geographical distance (200 individuals,
20 unliked codominant loci, FST around 0.02). The geographical
connectivity between the two subpopulations varies from 2% to
40%. The results are for Kmax = 3, that is the number of populations
is unknown.

This material is available as part of the online article from:
http://www.blackwell-synergy.com/doi/abs/
10.1111/j.1471-8286.2007.01769.x 
(This link will take you to the article abstract).
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material) should be directed to the corresponding author for
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