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Introduction

Testing biological hypothesis concerning demographic properties of
plants entities using MTBP and model selection approaches

@ Plant as multiscale tree graphs,

@ MTBP as parsimonious models for tree graphs data structure,

© Generation distributions and interaction modelling as
Graphical Model structure learning,

@ MTBP for Apple Trees Architecture example
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Plant as multiscale tree graphs
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Figure: Apical Bud cross section
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Plant as multiscale tree graphs

Plant polycyclic growth example : poplar

-
Coding the topological structure
of a two year poplar tree

Figure: A 2 years old poplar
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Plant as multiscale tree graphs

Plant polycyclic growth example : poplar
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a) tree graph at internode scale b) multiscale; ﬁ'e;e graph (MTG)

Figure: Graph representation of the 2 years old poplar [Godin and Costes,
1996]
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Plant as multiscale tree graphs

Plant polycyclic growth example : poplar
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Figure: Colored graph for the 2 years old poplar : giving a shoot a state
[Durand et al, 2005]

Scale choice : type of growth, pattern to study,..
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Plant as multiscale tree graphs
Apple Tree example

We consider now 4 states :
@ "Long and vegetative” (0).
@ "Long and floral” (1).
@ "Short and vegetative” (2).
@ "Short and floral” (3).

Vigor
+

®
® 5

No | Yes Specialization

Figure: Considered states in Apple Trees and their significance
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A parsimonious model for tree structured data

Tree process distribution :
P[S =s]

With some limitation to local dependencies considering biological
process :

Figure: Mother/Daughters relationships among GU

Daughter shoots are independent from their ancestors knowing
only their mother :

PIS=sl=PlSo=s] [ PI[Scw =scw|Su=5)]
uey(T)
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A parsimonious model for tree structured data

P[S = S] =P [50 = 50] H P [Sc(u) = Sc(u)}su = 5u]
ueV(T)

Is considering order between descendants but :
@ Order not always present in data,
@ Order can be really hard to determine,
@ Is order really important ?

MTBP are assuming that order is not relevant :

P[S =s] x P[Sy = so] H PNy, =ny|S, = s,
ueV(T)
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Generation distributions and interactions among children

A MTBP distribution :
PlS=slxP[So=s] [[ PINu=nulS,= s
ueV(T)
needs the specification of [Haccou et al., 2005] :
@ 1 Initial distribution

@ K generation distributions

In each generation distribution is a multivariate discrete
distribution of K dimensions :

P[N, =n,|S, = s]

Interaction modeling can be seen as a distribution factorization :

No Interaction All Interactions
K-1

I[Tizo PINuk = nui|Su=su] < PI[Ny,=n,|S, =s,]

Covariances = 0 Covariances < 0, >0
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Some restrictions for generation distributions

@ n,, € N = A parsimonious model : Parametric distributions

@ Environnement, Species ... have an influence on number of
children = MGLMM approach

MGLMM :
G(EINISy =5, X=x,T=t])=a+<x,8>+(T

LM : Covariates

G 4+ LM : LG distribution — Count distributions

M + GLM : Multivariate count distributions

MGLM + M : Random effects (7 realization of LG distribution
N(0,7)
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MTBP
Some limitations

e MTBP : No distinction between ramification r(v) and
succession s(u)
< partial order :

P [Sch(u) = Sch(u)| Su = su] =
P [Ss(u) = 5[Su = su] P [Ny(u) = 0| Su = S, Ss(u) = 3]

@ Dependences pattern research is complex : does not depends
on covariates.
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Generation distributions and interaction modelling

Introduction

No interaction > All interactions
Hf;ol P [Nu,k = nu,k‘su = Su] P [Nu — rlu‘Su — 5u]

@ Guided by graphs encoding distribution factorization
o Different approach to build the graph of factorization :

o Contingency tables and loglinear models one
e Information theory one
e Combinatorial optimization one
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Generation distributions and interaction modelling

Probabilistic Graphical Models

IOROSS

Figure: Graphical models

Independencies using separation properties [Lauritzen, 1996] :
@ Undirected Graph

0121,3 1L 3|2,0

@ Directed Acyclic Graph
012

@ Partially Directed Acyclic Graph

01L2/1,3 11L32,0
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Generation distributions and interaction modelling

Probabilistic Graphical Models

IOROPE:

Figure: Graphical models

Factorizations [Lauritzen, 1996] :
@ Undirected Graph

PIN=n=2 T] on.(n0)

ceC(G)

P[N =n] = %qﬁmo,l (no,1) #ny, (N12) N, 5 (M23) PN, (N31)
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Generation distributions and interaction modelling

Probabilistic Graphical Models

IR0 P

Figure: Graphical models

Factorizations [Lauritzen, 1996] :

@ Directed Acyclic Graph

P[N =n] = H P [Nv = nv‘Npa(v) = nPS(V)]
vey
P[N =n] =P [Ny = no] P[N> = ]
P [Ny = n1|No2 = ng2] P [N3 = n3|No2 = no 2]
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Generation distributions and interaction modelling

Probabilistic Graphical Models

IOROY

Figure: Graphical models

Factorizations [Lauritzen, 1996] :

@ Partially Directed Acyclic Graph

PIN=n]= ] P[Nc=nc|Np)=npa)]
ceC(G)

P[N =n] = P[Ng3 =no3] P[N12 = n12|Ng3 = ng3]
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Generation distributions and interaction modelling

Probabilistic Graphical Models

M &6 i

Figure: Different l-equivalent graphical models

Figure: From undirected graphical models to mixed graphical models

Fernique Pierre, Durand Jean-Baptiste, Guédon Yann Plant Architecture and interaction : MTBP



Generation distributions and interaction modelling

Probabilistic Graphical Models

Number of vertices | 1 | 2 | 3 4 5 6
Number of DAG 13|25 | 543 | 29,281 | 3,781,503
Number of UG 112 8 64 1,024 32,768

Table: Number of possible graphs when vertices number is increasing
[Robinson, 1973]

Structure Learning :

@ Restricted Family of graphs for which solutions can be easily
found : Tree Graphs [Chow and Liu, 1968]

@ Stepwise research with restricted search space by choice of a
heuristic [Agresti, 2002; Koller, 2009].
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Generation distributions and interaction modelling

Contingency tables and loglinear models

Ny=0] Np =
No=0| Ni=0] 5 10
No=0 | Ny = 4 2
No=1]| Ny = 6 10
No=1| Nj=1] 20 0

Table: A contingency table

Loglinear model [Agresti, 2002]:
o i1 0,1 0,2 1,2 0,1,2
log (a0 ™)) = 8+ B3 + B + B2 + By + B0, + By + B0

When ﬁo’z = ﬁ0’1’2 = 0, following independency model : 2 1l 0|1

o2 io,i1,02
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Generation distributions and interaction modelling

Contingency tables and loglinear models
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Figure: Loglinear models choice

The weakest p-value if p — value > 0.05
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Generation distributions and interaction modelling

Information theory [Cover, 1991]

o Entropy :
H(N;i, Nj) = =Y P[N; = ni, N = nj]log (P [N; = nj, N; = nj])
n,-,nj
If N; 1L Nj, H(N,’, Nj) = H(N,) + H(NJ)

@ Mutual Information :

I(Ni, Np) = = > P[N; = i, Nj = nj] log <PI?/\[II,-V:m,]7i;’A[I;Vj: =nj'11]>

nj,n;

If N; 1L N;, I(N;, N;) =0
@ Kullback divergence :

Po (
(Po, Py) EjP n)log [ = o——
0, P1) 0 Og(Pl(N:n)

If Py = Py, KL(Po, P1) =0

2

Il
=
~—
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Generation distributions and interaction modelling

Information theory

With fixed structure [Chow and Liu, 1968] :
K-1

PN =n] = P [No) = n)] [T P [Nu) = )| Npaiy = npa(i)]
i=1

Minimize KL (P¢, P) = Maximum spanning tree with mutual
information as edge weight

MIM =

O

(O
N W %

[©2 IS S
*
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Generation distributions and interaction modelling

Information theory

With no fixed structure :
Theoretically
I(N;j, N;) =0
If N; 1L Nj but,
/(N,', /VJ) ~0
with frequencies.
@ Calculate an Information derived score for each edge,
e Fixing a threshold,
@ Add every edge such as its score is superior to the threshold

© & © @ O @
© 06 O—G) 0‘9

Figure: Threshold Algorithms
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Generation distributions and interaction modelling

Information theory

I (N, Nj) do not take into account (Nk),.(;;; (Relevance
algorithm [Butte, 2000])
So some other scores were considered :

e CLR Algorithm [Faith, 2007],

Z(N;, Nj) = \/<W>2+ <,(N,;,j)_uj>z

e ARACNE [Margolin, 2006], if i 1L j|k :

I (N;, Nj) < min (I (N;j, Ng), I (Nk, N;j)) = New threshold

e MRNET [Meyer, 2009],
Each step : Optimal pairwise approximation of
I (N;, N;| SO (N, Nj))

Fernique Pierre, Durand Jean-Baptiste, Guédon Yann Plant Architecture and interaction : MTBP



Generation distributions and interaction modelling

Combinatorial optimization

Edges : Present or Absent

= Finite number of possible graphs for a given number of vertices
but exhaustive research not feasible

For each graph : possible scoring (likelihood, BIC, AIC...)

= Structure learning as optimization of score function with finite
number of solutions : Combinatorial optimization

Greedy Algorithms :

@ Starting point
@ Score Function

@ Search Operators
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Generation distributions and interaction modelling

Combinatorial optimization

Figure: Search operators for undirected graphs [Koller, 2009]
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Generation distributions and interaction modelling

Combinatorial optimization
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Figure: Search operators for directed graphs [Koller, 2009]
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Generation distributions and interaction modelling

Combinatorial optimization

Mixed graphs : complex and not well documented
2 examples :
@ From DAG to PDAG : clique operator
‘1)

T RN 09
02 ——> (0—2)
3) (3)

- N

2 approachs : parametric estimation and non-parametric then
parametric one.
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Generation distributions and interaction modelling

Discrete Distributions

Partially Directed Acyclic Graph

PIN=n]= [] P[Ne=nc|Npc) = npao]
ceC(G)

Discrete Distributions to consider :
@ Univariate
@ Univariate Conditional
@ Multivariate
°

Multivariate Conditional
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Generation distributions and interaction modelling

Parametric Univariate Discrete Distributions [Johnson, 1997]

0

Figure: Univariate Distribution subgraph

@ Binomial distribution
@ Negative Binomial distribution

@ Poisson distribution
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Generation distributions and interaction modelling

Parametric Univariate Discrete Conditional Distributions [Agresti, 2002]

Figure: Univariate Conditional Distribution subgraph
¢ (E[NiINj =nj]) = a+ < f(nj),3 >

@ link function : identity, log, logit...

o family : Binomial, Poisson, Negative Binomial
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Generation distributions and interaction modelling

Parametric Multivariate Discrete Distributions

Figure: Multivariate Distribution subgraph

Univariate distribution generalization [Johnson, 1997; Karlis, 2003]:

e Binomial — Multinomial (-)
e Negative Binomial — Negative Multinomial (+)
e Poisson — Multivariate Poisson (+)

Multinomial — Compound Multinomial (+ : Negative Binomial, -
: Binomial, 0 : Poisson)
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Generation distributions and interaction modelling

Parametric Multivariate Discrete Distributions problems

Only one sign for covariances !
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Figure: Multivariate Distribution subgraph
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Generation distributions and interaction modelling

Parametric Multivariate Discrete Conditional Distributions

Figure: Multivariate Conditional Distribution subgraph

Compound Multinomial :
Ni + Ny ~ P

Ni «|N;i + N = n~ M(n,p)

Multivariate Conditional Distribution :

N; + Nk’Nj =n;~ G(nj)
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PBMT for Apple Trees Architecture example
States

4 states :
@ "Long and vegetative” (0).
@ "Long and floral” (1).
@ "Short and vegetative” (2).
@ "Short and floral” (3).

Vigor
+

®
® 5

No | Yes Specialization

Figure: Considered states in Apple Trees and their significance
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PBMT for Apple Trees Architecture example

Generation distributions

(0.7,0.8) S.=1

(1,0.2)@ @ (0.001,0,04)

{1.7,2.2)

(0.02,0.2) @ @ (0.01,0.04)

o (0.1,0.4) 5,=3

(0.06,0.2) '
(0.3.0.4) "‘ .01,001 (0) @ (0,0)
(2)—3) ws.05
0.2 ® (0.01,0.03)

No | Yes Specialization

Figure: Generation distributions for Apple Trees
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Conclusion
OpenAlea and VPlants

OpenAlea :
@ Open source project for plant research community.

@ Collaborative effort to develop Python libraries and tools for
Plant Architecture modeling.

VPlants modules developped by Virtual Plants team (INRIA :
Chistophe Godin, CIRAD : Yann Guedon)
Our work :

@ Structure Analysis (statistic tools)
@ Tree Analysis

With : Yann Guedon, Jean-Baptiste Durand, Jean Peyhardi (PhD
Std 2nd year), Me (PhD Std 1rst year).
C++ programming with Python wrappers
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Conclusion
Already setted

@ Discrete Distributions :

Univariate [Yann Guedon]
Univariate conditional

Multivariate [Jean-Baptiste Durand]
Multivariate conditional

Graphical

@ Probabilistic Graphical Models structure learning :

o CT and loglinear models (Apple Tree)
o Information Theory algorithms
o Greedy algorithm (UG adding edges)

e MTBP [Jean-Baptiste Durand]
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Conclusion
In a short while ?

@ Discrete Distributions :
o Multivariate Conditional (with Jean Peyhardi)
o Inheritance between C++ classes (and then python)
o Random effects (with Jean Peyhardi)
@ Probabilistic Graphical Models :
o Greedy algorithms (DAG and PDAG)
o PDAG Learing approaches comparison
o PDAG : LWF and AMP factorization properties
o Incremental (or not) algorithms — Dynamic algorithms
(strictly connected components, maximum clique, vertices
ordering)
e MTBP :

o Hidden MTBP [Jean Baptiste Durand]
o MTBP with partial order [Jean Baptiste Durand]
o Model discussion

Fernique Pierre, Durand Jean-Baptiste, Guédon Yann Plant Architecture and interaction : MTBP



