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Introduction

Testing biological hypothesis concerning demographic properties of
plants entities using MTBP and model selection approaches

1 Plant as multiscale tree graphs,

2 MTBP as parsimonious models for tree graphs data structure,

3 Generation distributions and interaction modelling as
Graphical Model structure learning,

4 MTBP for Apple Trees Architecture example
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Plant as multiscale tree graphs
Axes Apical Bud

Figure: Apical Bud cross section
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Plant as multiscale tree graphs
Plant polycyclic growth example : poplar

Figure: A 2 years old poplar
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Plant as multiscale tree graphs
Plant polycyclic growth example : poplar

Figure: Graph representation of the 2 years old poplar [Godin and Costes,
1996]
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Plant as multiscale tree graphs
Plant polycyclic growth example : poplar

Figure: Colored graph for the 2 years old poplar : giving a shoot a state
[Durand et al, 2005]

Scale choice : type of growth, pattern to study...
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Plant as multiscale tree graphs
Apple Tree example

We consider now 4 states :

”Long and vegetative” (0).

”Long and floral” (1).

”Short and vegetative” (2).

”Short and floral” (3).

Figure: Considered states in Apple Trees and their significance
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MTBP
A parsimonious model for tree structured data

Tree process distribution :

P [S = s]

With some limitation to local dependencies considering biological
process :

Figure: Mother/Daughters relationships among GU

Daughter shoots are independent from their ancestors knowing
only their mother :

P [S = s] = P [S0 = s0]
∏

u∈V(T )

P
[
Sc(u) = sc(u)

∣∣Su = su
]
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MTBP
A parsimonious model for tree structured data

P [S = s] = P [S0 = s0]
∏

u∈V(T )

P
[
Sc(u) = sc(u)

∣∣Su = su
]

Is considering order between descendants but :

Order not always present in data,

Order can be really hard to determine,

Is order really important ?

MTBP are assuming that order is not relevant :

P [S = s] ∝ P [S0 = s0]
∏

u∈V(T )

P [Nu = nu|Su = su]
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MTBP
Generation distributions and interactions among children

A MTBP distribution :

P [S = s] ∝ P [S0 = s0]
∏

u∈V(T )

P [Nu = nu|Su = su]

needs the specification of [Haccou et al., 2005] :

1 Initial distribution

K generation distributions

In each generation distribution is a multivariate discrete
distribution of K dimensions :

P [Nu = nu|Su = su]

Interaction modeling can be seen as a distribution factorization :

No Interaction All Interactions∏K−1
k=0 P [Nu,k = nu,k |Su = su] ↔ P [Nu = nu|Su = su]

Covariances = 0 Covariances < 0, > 0
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MTBP
Some restrictions for generation distributions

nu,k ∈ N⇒ A parsimonious model : Parametric distributions

Environnement, Species ... have an influence on number of
children ⇒ MGLMM approach

MGLMM :

φ (E [N|Su = su,X = x,T = t]) = α+ < x,β > +ζT

LM : Covariates
G + LM : LG distribution → Count distributions
M + GLM : Multivariate count distributions
MGLM + M : Random effects ζT realization of LG distribution
N (0, τ)
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MTBP
Some limitations

MTBP : No distinction between ramification r(u) and
succession s(u)
← partial order :

P
[
Sch(u) = sch(u)

∣∣Su = su
]

=

P
[
Ss(u) = s

∣∣Su = su
]
P
[
Nr(u) = nr(u)

∣∣Su = su,Ss(u) = s
]

Dependences pattern research is complex : does not depends
on covariates.
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Generation distributions and interaction modelling
Introduction

No interaction ↔ All interactions∏K−1
k=0 P [Nu,k = nu,k |Su = su] P [Nu = nu|Su = su]

Guided by graphs encoding distribution factorization

Different approach to build the graph of factorization :

Contingency tables and loglinear models one
Information theory one
Combinatorial optimization one
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Generation distributions and interaction modelling
Probabilistic Graphical Models

Figure: Graphical models

Independencies using separation properties [Lauritzen, 1996] :

Undirected Graph

0 ⊥⊥ 2|1, 3 1 ⊥⊥ 3|2, 0

Directed Acyclic Graph
0 ⊥⊥ 2

Partially Directed Acyclic Graph

0 ⊥⊥ 2|1, 3 1 ⊥⊥ 3|2, 0
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Generation distributions and interaction modelling
Probabilistic Graphical Models

Figure: Graphical models

Factorizations [Lauritzen, 1996] :

Undirected Graph

P [N = n] =
1

Z

∏
c∈C(G)

φNc (nc)

P [N = n] =
1

Z
φN0,1 (n0,1)φN1,2 (n1,2)φN2,3 (n2,3)φN3,1 (n3,1)
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Generation distributions and interaction modelling
Probabilistic Graphical Models

Figure: Graphical models

Factorizations [Lauritzen, 1996] :

Directed Acyclic Graph

P [N = n] =
∏
v∈V

P
[
Nv = nv

∣∣Npa(v) = npa(v)

]
P [N = n] = P [N0 = n0]P [N2 = n2]

P [N1 = n1|N0,2 = n0,2]P [N3 = n3|N0,2 = n0,2]
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Generation distributions and interaction modelling
Probabilistic Graphical Models

Figure: Graphical models

Factorizations [Lauritzen, 1996] :

Partially Directed Acyclic Graph

P [N = n] =
∏

c∈C(G)

P
[
Nc = nc

∣∣Npa(c) = npa(c)

]
P [N = n] = P [N0,3 = n0,3]P [N1,2 = n1,2|N0,3 = n0,3]
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Generation distributions and interaction modelling
Probabilistic Graphical Models

Figure: Different I-equivalent graphical models

Figure: From undirected graphical models to mixed graphical models
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Generation distributions and interaction modelling
Probabilistic Graphical Models

Number of vertices 1 2 3 4 5 6

Number of DAG 1 3 25 543 29,281 3,781,503

Number of UG 1 2 8 64 1,024 32,768

Table: Number of possible graphs when vertices number is increasing
[Robinson, 1973]

Structure Learning :

Restricted Family of graphs for which solutions can be easily
found : Tree Graphs [Chow and Liu, 1968]

Stepwise research with restricted search space by choice of a
heuristic [Agresti, 2002; Koller, 2009].

Fernique Pierre, Durand Jean-Baptiste, Guédon Yann Plant Architecture and interaction : MTBP



Generation distributions and interaction modelling
Contingency tables and loglinear models

N2 = 0 N2 = 1

N0 = 0 N1 = 0 5 10

N0 = 0 N1 = 1 4 2

N0 = 1 N1 = 0 6 10

N0 = 1 N1 = 1 20 0

Table: A contingency table

Loglinear model [Agresti, 2002]:

log
(
µ(i0,i1,i2)

)
= β + β0

i0 + β1
i1 + β2

i2 + β0,1
i0,i1

+ β0,2
i0,i2

+ β1,2
i1,i2

+ β0,1,2
i0,i1,i2

When β0,2
i0,i2

= β0,1,2
i0,i1,i2

= 0, following independency model : 2 ⊥⊥ 0|1
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Generation distributions and interaction modelling
Contingency tables and loglinear models

Figure: Loglinear models choice

The weakest p-value if p − value > 0.05
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Generation distributions and interaction modelling
Information theory [Cover, 1991]

Entropy :

H(Ni ,Nj) = −
∑
ni ,nj

P [Ni = ni ,Nj = nj ] log (P [Ni = ni ,Nj = nj ])

If Ni ⊥⊥ Nj , H(Ni ,Nj) = H(Ni ) + H(Nj)

Mutual Information :

I (Ni ,Nj) = −
∑
ni ,nj

P [Ni = ni ,Nj = nj ] log

(
P [Ni = ni ,Nj = nj ]

P [Ni = ni ]P [Nj = nj ]

)
If Ni ⊥⊥ Nj , I (Ni ,Nj) = 0

Kullback divergence :

KL (P0,P1) =
∑
n

P0 (N = n) log

(
P0 (N = n)

P1 (N = n)

)
If P0 = P1, KL (P0,P1) = 0
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Generation distributions and interaction modelling
Information theory

With fixed structure [Chow and Liu, 1968] :

P [N = n] = P
[
N(0) = n(0)

] K−1∏
i=1

P
[
N(i) = n(i)

∣∣Npa(i) = npa(i)

]
Minimize KL (Pf ,P)⇒ Maximum spanning tree with mutual
information as edge weight

MIM =


∗ . . .
1 ∗ . .
4 3 ∗ .
6 2 5 ∗


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Generation distributions and interaction modelling
Information theory

With no fixed structure :
Theoretically

I (Ni ,Nj) = 0

If Ni ⊥⊥ Nj but,
I (Ni ,Nj) ≈ 0

with frequencies.

Calculate an Information derived score for each edge,
Fixing a threshold,
Add every edge such as its score is superior to the threshold

Figure: Threshold Algorithms
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Generation distributions and interaction modelling
Information theory

I (Ni ,Nj) do not take into account (Nk)k 6={i ,j} (Relevance
algorithm [Butte, 2000])
So some other scores were considered :

CLR Algorithm [Faith, 2007],

Z (Ni ,Nj) =

√(
I (Ni ,Nj)− µi

σi

)2

+

(
I (Ni ,Nj)− µj

σj

)2

ARACNE [Margolin, 2006], if i ⊥⊥ j |k :

I (Ni ,Nj) ≤ min (I (Ni ,Nk) , I (Nk ,Nj))⇒ New threshold

MRNET [Meyer, 2009],
Each step : Optimal pairwise approximation of
I
(
Ni ,Nj

∣∣S (t) (Ni ,Nj)
)
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Generation distributions and interaction modelling
Combinatorial optimization

Edges : Present or Absent
⇒ Finite number of possible graphs for a given number of vertices
but exhaustive research not feasible
For each graph : possible scoring (likelihood, BIC, AIC...)
⇒ Structure learning as optimization of score function with finite
number of solutions : Combinatorial optimization
Greedy Algorithms :

Starting point

Score Function

Search Operators
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Generation distributions and interaction modelling
Combinatorial optimization

Figure: Search operators for undirected graphs [Koller, 2009]
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Generation distributions and interaction modelling
Combinatorial optimization

Figure: Search operators for directed graphs [Koller, 2009]
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Generation distributions and interaction modelling
Combinatorial optimization

Mixed graphs : complex and not well documented
2 examples :

From DAG to PDAG : clique operator

From UG to PDAG : v-shape operator

2 approachs : parametric estimation and non-parametric then
parametric one.
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Generation distributions and interaction modelling
Discrete Distributions

Partially Directed Acyclic Graph

P [N = n] =
∏

c∈C(G)

P
[
Nc = nc

∣∣Npa(c) = npa(c)

]
Discrete Distributions to consider :

Univariate

Univariate Conditional

Multivariate

Multivariate Conditional
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Generation distributions and interaction modelling
Parametric Univariate Discrete Distributions [Johnson, 1997]

Figure: Univariate Distribution subgraph

Binomial distribution

Negative Binomial distribution

Poisson distribution
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Generation distributions and interaction modelling
Parametric Univariate Discrete Conditional Distributions [Agresti, 2002]

Figure: Univariate Conditional Distribution subgraph

φ (E [Ni |Nj = nj ]) = α+ < f (nj) , β >

link function : identity, log, logit...

family : Binomial, Poisson, Negative Binomial
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Generation distributions and interaction modelling
Parametric Multivariate Discrete Distributions

Figure: Multivariate Distribution subgraph

Univariate distribution generalization [Johnson, 1997; Karlis, 2003]:

Binomial → Multinomial (-)

Negative Binomial → Negative Multinomial (+)

Poisson → Multivariate Poisson (+)

Multinomial → Compound Multinomial (+ : Negative Binomial, -
: Binomial, 0 : Poisson)
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Generation distributions and interaction modelling
Parametric Multivariate Discrete Distributions problems

Only one sign for covariances !

Figure: Multivariate Distribution subgraph
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Generation distributions and interaction modelling
Parametric Multivariate Discrete Conditional Distributions

Figure: Multivariate Conditional Distribution subgraph

Compound Multinomial :

Ni + Nk ∼ Pθ

Ni ,k |Ni + Nk = n ∼M (n,p)

Multivariate Conditional Distribution :

Ni + Nk |Nj = nj ∼ Pθ(nj)
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PBMT for Apple Trees Architecture example
States

4 states :

”Long and vegetative” (0).

”Long and floral” (1).

”Short and vegetative” (2).

”Short and floral” (3).

Figure: Considered states in Apple Trees and their significance
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PBMT for Apple Trees Architecture example
Generation distributions

Figure: Generation distributions for Apple Trees
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Conclusion
OpenAlea and VPlants

OpenAlea :

Open source project for plant research community.

Collaborative effort to develop Python libraries and tools for
Plant Architecture modeling.

VPlants modules developped by Virtual Plants team (INRIA :
Chistophe Godin, CIRAD : Yann Guedon)
Our work :

Structure Analysis (statistic tools)

Tree Analysis

With : Yann Guedon, Jean-Baptiste Durand, Jean Peyhardi (PhD
Std 2nd year), Me (PhD Std 1rst year).
C++ programming with Python wrappers
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Conclusion
Already setted

Discrete Distributions :

Univariate [Yann Guedon]
Univariate conditional
Multivariate [Jean-Baptiste Durand]
Multivariate conditional
Graphical

Probabilistic Graphical Models structure learning :

CT and loglinear models (Apple Tree)
Information Theory algorithms
Greedy algorithm (UG adding edges)

MTBP [Jean-Baptiste Durand]
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Conclusion
In a short while ?

Discrete Distributions :

Multivariate Conditional (with Jean Peyhardi)
Inheritance between C++ classes (and then python)
Random effects (with Jean Peyhardi)

Probabilistic Graphical Models :

Greedy algorithms (DAG and PDAG)
PDAG Learing approaches comparison
PDAG : LWF and AMP factorization properties
Incremental (or not) algorithms → Dynamic algorithms
(strictly connected components, maximum clique, vertices
ordering)

MTBP :

Hidden MTBP [Jean Baptiste Durand]
MTBP with partial order [Jean Baptiste Durand]
Model discussion
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