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Abstract

Building on the work of Bedford, Cooke and Joe, we show how multivariate data, which exhibit complex patterns of dependence in the tails,
can be modelled using a cascade of pair-copulae, acting on two variables at a time. We use the pair-copula decomposition of a general multivariate
distribution and propose a method for performing inference. The model construction is hierarchical in nature, the various levels corresponding to
the incorporation of more variables in the conditioning sets, using pair-copulae as simple building blocks. Pair-copula decomposed models also
represent a very flexible way to construct higher-dimensional copulae. We apply the methodology to a financial data set. Our approach represents
the first step towards the development of an unsupervised algorithm that explores the space of possible pair-copula models, that also can be applied
to huge data sets automatically.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Inspired by the work of Joe (1996), Bedford and Cooke
(2001b, 2002), and Kurowicka and Cooke (2006), we show
how multivariate data can be modelled using a cascade of
simple building blocks called pair-copulae. This probabilistic
construction represents a radically new way of constructing
complex multivariate highly dependent models, which parallels
classical hierarchical modelling (Green et al., 2003). There, the
principle is to model dependency using simple local building
blocks based on conditional independence, e.g., cliques in
random fields. Here, the building blocks are pair-copulae.
The modelling scheme is based on a decomposition of a
multivariate density into a cascade of pair copulae, applied on
original variables and on their conditional and unconditional
distribution functions.

In this paper, we show that the pair-copula decomposition
of Bedford and Cooke (2002) can be a simple and powerful
tool for model building. While it maintains the logic of
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building complexity using simple elementary bricks, it does
not require conditional independence assumptions when these
are not natural. We present some of the theory of Bedford
and Cooke (2001b, 2002) from a practical point of view, as a
general modelling approach, concentrating on likelihood-based
inference based on n variables repeatedly observed, say over
time.

Kurowicka and Cooke (2006) approach model inference
using partial correlations and the determinant of the correlation
matrix as a measure of linear dependence. As an alternative,
we propose to rely on a maximum pseudo-likelihood approach
for parameter estimation of the pair-copula decomposition.
An algorithm is given for evaluating the pseudo-likelihood
efficiently based on any combination of pair-copulae. This
pseudo-likelihood is based on the ranks of the observations. We
illustrate this approach for a four-dimensional financial data set
for bivariate Student and/or Clayton copulae as building blocks.

Building higher-dimensional copulae is generally recog-
nised as a difficult problem. There are a huge number of para-
metric bivariate copulas, but the set of higher-dimensional cop-
ulae is rather limited. There have been some attempts to con-
struct multivariate extensions of Archimedean bivariate copu-
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lae; see, e.g., Bandeen-Roche and Liang (1996), Joe (1997),
Embrechts et al. (2003), Whelan (2004), Savu and Trede (2006)
and McNeil (in press). Meta-elliptical copulae (Fang et al.,
2002) also offer some flexibility for multivariate modelling.
However, it is our opinion that the pair-copula decomposition
treated in this paper represents a more flexible and intuitive way
of extending bivariate copulae to higher dimensions.

The paper is organised as follows. In Section 2 we introduce
the pair-copula decomposition of a general multivariate
distribution and illustrate this with some simple examples. In
Section 3 we see the effect of the conditional independence
assumption on the pair-copula construction. Section 4 describes
how to simulate from pair-copula decomposed models. In
Section 5 we describe our estimation procedure, while in
Section 6 we discuss aspects of the model selection process.
In Section 7 we apply the methodology and discuss limitations
and difficulties in the context of a financial data set. Finally,
Section 8 contains some concluding remarks.

2. A pair-copula decomposition of a general multivariate
distribution

Consider a vector X = (X1, . . . , Xn) of random variables
with a joint density function f (x1, . . . , xn). This density can be
factorised as

f (x1, . . . , xn) = fn(xn) · f (xn−1|xn)

· f (xn−2|xn−1, xn) · · · f (x1|x2, . . . , xn), (1)

and this decomposition is unique up to a re-labelling of the
variables.

In a sense every joint distribution function implicitly
contains both a description of the marginal behaviour of
individual variables and a description of their dependency
structure. Copulae provide a way of isolating the description
of their dependency structure. A copula is a multivariate
distribution, C , with uniformly distributed marginals U (0, 1)
on [0, 1]. Sklar’s theorem (Sklar, 1959) states that every
multivariate distribution F with marginals F1(x1), . . . , Fn(xn)

can be written as

F(x1, . . . , xn) = C{F1(x1), . . . , Fn(xn)}, (2)

for some appropriate n-dimensional copula C . In fact, the
copula from (2) has the expression

C(u1, . . . , un) = F{F−1
1 (u1), . . . , F−1

n (un)},

where the F−1
i (ui )’s are the inverse distribution functions of the

marginals.
Passing to the joint density function f , for an absolutely

continuous F with strictly increasing, continuous marginal
densities F1, . . . , Fn using the chain rule we have

f (x1, . . . , xn) = c1···n{F1(x1), . . . , Fn(xn)}

· f1(x1) · · · fn(xn) (3)

for some (uniquely identified) n-variate copula density c1···n(·).
In the bivariate case (3) simplifies to

f (x1, x2) = c12{F1(x1), F2(x2)} · f1(x1) · f2(x2),
where c12(·, ·) is the appropriate pair-copula density for the pair
of transformed variables F1(x1) and F2(x2). For a conditional
density it easily follows that

f (x1|x2) = c12{F1(x1), F2(x2)} · f1(x1),

for the same pair-copula. For example, the second factor,
f (xn−1|xn), in the right-hand side of (1) can be decomposed
into the pair-copula c(n−1)n{Fn−1(xn−1), Fn(xn)} and a
marginal density fn−1(xn−1). For three random variables
X1, X2 and X3 we have that

f (x1|x2, x3) = c12|3{F(x1|x3), F(x2|x3)} · f (x1|x3), (4)

for the appropriate pair-copula c12|3, applied to the transformed
variables F(x1|x3) and F(x2|x3). An alternative decomposition
is

f (x1|x2, x3) = c13|2{F(x1|x2), F(x3|x2)} · f (x1|x2), (5)

where c13|2 is different from the pair-copula in (4). Decompos-
ing f (x1|x2) in (5) further, leads to

f (x1|x2, x3) = c13|2{F(x1|x2), F(x3|x2)}

· c12{F(x1), F(x2)} · f1(x1),

where two pair-copulae are present.
It is now clear that each term in (1) can be decomposed

into the appropriate pair-copula times a conditional marginal
density, using the general formula

f (x |v) = cxv j |v− j {F(x |v− j ), F(v j |v− j )} · f (x |v− j ),

for a d-dimensional vector v. Here v j is one arbitrarily chosen
component of v and v− j denotes the v-vector, excluding
this component. In conclusion, under appropriate regularity
conditions, a multivariate density can be expressed as a
product of pair-copulae, acting on several different conditional
probability distributions. It is also clear that the construction is
iterative by nature, and that given a specific factorisation, there
are still many different re-parametrisations.

The pair-copula construction involves marginal conditional
distributions of the form F(x |v). Joe (1996) showed that, for
every j ,

F(x |v) =
∂ Cx,v j |v− j {F(x |v− j ), F(v j |v− j )}

∂F(v j |v− j )
, (6)

where Ci j |k is a bivariate copula distribution function. For the
special case where v is univariate, we have

F(x |v) =
∂ Cxv{F(x), F(v)}

∂F(v)
.

In Sections 4–6 we will use the function h(x, v,Θ) to represent
this conditional distribution function when x and v are uniform,
i.e., f (x) = f (v) = 1, F(x) = x and F(v) = v. That is,

h(x, v,Θ) = F(x |v) =
∂ Cx,v(x, v,Θ)

∂v
, (7)

where the second parameter of h(·) always corresponds to the
conditioning variable and Θ denotes the set of parameters for
the copula of the joint distribution function of x and v. Further,
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Fig. 1. A D-vine with 5 variables, 4 trees and 10 edges. Each edge may be may
be associated with a pair-copula.

let h−1(u, v,Θ) be the inverse of the h-function with respect to
the first variable u, or equivalently the inverse of the conditional
distribution function.

2.1. Vines

For high-dimensional distributions, there are a significant
number of possible pair-copulae constructions. For example,
as will be shown in Section 2.4, there are 240 different
constructions for a five-dimensional density. To help organising
them, Bedford and Cooke (2001b, 2002) have introduced a
graphical model denoted as the regular vine. The class of
regular vines is still very general and embraces a large number
of possible pair-copula decompositions. Here, we concentrate
on two special cases of regular vines; the canonical vine and
the D-vine (Kurowicka and Cooke, 2004). Each model gives a
specific way of decomposing the density. The specification may
be given in the form, e.g., of a nested set of trees. Fig. 1 shows
the specification corresponding to a five-dimensional D-vine.
It consists of four trees T j , j = 1, . . . , 4. Tree T j has 6 − j
nodes and 5− j edges. Each edge corresponds to a pair-copula
density and the edge label corresponds to the subscript of the
pair-copula density, e.g. edge 14|23 corresponds to the copula
density c14|23(·). The whole decomposition is defined by the
n(n − 1)/2 edges and the marginal densities of each variable.
The nodes in tree T j are only necessary for determining the
labels of the edges in tree T j+1. As can be seen from Fig. 1, two
edges in T j , which become nodes in T j+1, are joined by an edge
in T j+1 only if these edges in T j share a common node. Note
that the tree structure is not strictly necessary for applying the
pair-copula methodology, but it helps identifying the different
pair-copula decompositions.

Bedford and Cooke (2001b) give the density of an n-
dimensional distribution in terms of a regular vine, which
we specialise to a D-vine and a canonical vine. The density
f (x1, . . . , xn) corresponding to a D-vine may be written as

n∏
k=1

f (xk)

n−1∏
j=1

n− j∏
i=1

ci,i+ j |i+1,...,i+ j−1{
F(xi |xi+1, . . . , xi+ j−1), F(xi+ j |xi+1, . . . , xi+ j−1)

}
,

(8)

where index j identifies the trees, while i runs over the edges
in each tree.
Fig. 2. A canonical vine with 5 variables, 4 trees and 10 edges.

In a D-vine, no node in any tree T j is connected to more than
two edges. In a canonical vine, each tree T j has a unique node
that is connected to n − j edges. Fig. 2 shows a canonical vine
with five variables. The n-dimensional density corresponding
to a canonical vine is given by

n∏
k=1

f (xk)

n−1∏
j=1

n− j∏
i=1

c j, j+i |1,..., j−1

{
F(x j |x1, . . . , x j−1), F(x j+i |x1, . . . , x j−1)

}
. (9)

Fitting a canonical vine might be advantageous when a
particular variable is known to be a key variable that governs
interactions in the data set. In such a situation one may decide
to locate this variable at the root of the canonical vine, as we
have done with variable 1 in Fig. 2. The notation of D-vines
resembles independence graphs more than that of canonical
vines.

2.2. Three variables

The general expression for both the canonical and the D-vine
structures in the three-dimensional case is

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3)

· c12 {F1(x1), F2(x2)} · c23 {F2(x2), F3(x3)}

· c13|2 {F(x1|x2), F(x3|x2)} . (10)

There are six ways of permuting x1, x2 and x3, in (10), but only
three give different decompositions. Moreover, each of the three
decompositions is both a canonical vine and a D-vine.

2.3. Four variables

The four-dimensional canonical vine structure is generally
expressed as

f (x1, x2, x3, x4) = f1(x1) · f2(x2) · f3(x3) · f4(x4)

· c12 {F1(x1), F2(x2)} · c13 {F1(x1), F3(x3)}

· c14 {F1(x1), F4(x4)}

· c23|1 {F(x2|x1), F(x3|x1)} · c24|1 {F(x2|x1), F(x4|x1)}

· c34|12 {F(x3|x1, x2), F(x4|x1, x2)} ,
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and the D-vine structure as

f (x1, x2, x3, x4) = f1(x1) · f2(x2) · f3(x3) · f4(x4)

· c12 {F1(x1), F2(x2)} · c23 {F2(x2), F3(x3)}

· c34 {F3(x3), F4(x4)}

· c13|2 {F(x1|x2), F(x3|x2)} · c24|3 {F(x2|x3), F(x4|x3)}

· c14|23 {F(x1|x2, x3), F(x4|x2, x3)} . (11)

In Appendix A we derive these expressions.
In total, there are 12 different D-vine decompositions and

12 different canonical vine decompositions, and none of the
D-vine decompositions are equal to any of the canonical
vine decompositions. There are no other possible regular vine
decompositions. Hence, in the four-dimensional case there are
24 different possible pair-copula decompositions, 12 canonical
vines and 12 D-vines.

2.4. Five variables

The general expression for the five-dimensional canonical
vine structure is

f (x1, x2, x3, x4, x5) = f1(x1) · f2(x2) · f3(x3) · f4(x4)

· f5(x5) · c12 {F1(x1), F2(x2)} · c13 {F1(x1), F3(x3)}

· c14 {F1(x1), F4(x4)}

· c15 {F1(x1), F5(x5)} · c23|1 {F(x2|x1), F(x3|x1)}

· c24|1 {F(x2|x1), F(x4|x1)} · c25|1 {F(x2|x1), F(x5|x1)}

· c34|12 {F(x3|x1, x2), F(x4|x1, x2)}

· c35|12 {F(x3|x1, x2), F(x5|x1, x2)}

· c45|123 {F(x4|x1, x2, x3), F(x5|x1, x2, x3)} ,

and the general expression for the D-vine structure is

f (x1, x2, x3, x4, x5) = f1(x1) · f2(x2) · f3(x3)

· f4(x4) · f5(x5)

· c12 {F1(x1), F2(x2)} · c23 {F2(x2), F3(x3)}

· c34 {F3(x3), F4(x4)}

· c45 {F4(x4), F5(x5)} · c13|2 {F(x1|x2), F(x3|x2)}

· c24|3 {F(x2|x3), F(x4|x3)} · c35|4 {F(x3|x4), F(x5|x4)}

· c14|23 {F(x1|x2, x3), F(x4|x2, x3)}

· c25|34 {F(x2|x3, x4), F(x5|x3, x4)}

· c15|234 {F(x1|x2, x4, x3), F(x5|x2, x4, x3)} .

In the five-dimensional case there are regular vines that are
neither canonical nor D-vines. One example is the following:

f (x1, x2, x3, x4, x5) = f1(x1) · f2(x2) · f3(x3)

· f4(x4) · f5(x5)

· c12 {F1(x1), F2(x2)} · c23 {F2(x2), F3(x3)}

· c34 {F3(x3), F4(x4)} · c35 {F3(x3), F5(x5)}

· c13|2 {F(x1|x2), F(x3|x2)} · c24|3 {F(x2|x3), F(x4|x3)}

· c45|3 {F(x4|x3), F(x5|x3)}

· c14|23 {F(x1|x2, x3), F(x4|x2, x3)}
Fig. 3. A regular vine with 5 variables, 4 trees and 10 edges.

· c25|34 {F(x2|x3, x4), F(x5|x3, x4)}

· c15|234 {F(x1|x2, x3, x4), F(x5|x2, x3, x4)} .

The corresponding structure is shown in Fig. 3. In tree T1, node
3 has three neighbours; 2, 4 and 5. Hence, this is not a D-vine,
for which no node in any tree is connected to more than two
edges. Moreover, it is not a canonical vine, since node 3 in T1
is connected to three edges instead of four.

In total there are 60 different D-vines and 60 different
canonical vines in the five-dimensional case, and none of the D-
vines is equal to any of the canonical vines. In addition to the
canonical and D-vines, there are also 120 other regular vines.
Hence, in the five-dimensional case there are 240 different
possible pair-copula decompositions, 60 canonical vines, 60 D-
vines, and 120 other types of decompositions.

2.5. n variables

Considering Fig. 2 we see that the conditioning sets of the
edges in each of the trees T2, T3 and T4 are the same. For
example in T3 the conditioning set is always {12}. Extending
this idea to n nodes, we see that there are n choices for the
conditioning set {i2} in T2, n − 1 choices for the conditioning
set {i2, i3} in T3 once i2 is chosen in T2. Finally, we have
three choices for the conditioning set {in−1, in−2, . . . , i2} when
i2, . . . , in−2 are chosen before. So altogether we have n(n −
1) · · · 3 = n!/2 different canonical vines on n nodes.

For an n-dimensional D-vine, there are n! possible ways of
ordering the variables in the tree T1. Since we have undirected
edges, i.e., ci j |D = c j i |D for all pairs i, j and arbitrary
conditioning sets for D-vines, we can reverse the order in
the tree T1 for a D-vine without changing the corresponding
vine. Therefore we have only n!/2 different trees on the first
level. Given a such a tree T1, the trees T2, T3, . . . , Tn−1 are
completely determined. This implies that the number of distinct
D-vines on n nodes is given by n!/2.

2.6. Multivariate Gaussian distribution

If the marginal distributions fi (xi ) in (10) are standard
normal, and c12(·), c23(·) and c13|2(·) are bivariate Gaussian
copula densities (see Appendix C.1) the resulting distribution is
trivariate standard normal with the positive definite correlation
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matrix 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 .
Here ρ12 and ρ23 are the correlation parameters of copulae
c12(·) and c23(·), respectively, while ρ13 is given by

ρ13 = ρ13|2

√
1− ρ2

12

√
1− ρ2

23 + ρ12ρ23.

The correlation parameter of copula c13|2(·), ρ13|2, is called
partial correlation; see, e.g., Kendall and Stuart (1967) for
a definition. In general partial correlation is not equal
to conditional correlation, however, for the joint normal
distribution the partial and conditional correlations are equal.

3. Conditional independence and the pair-copula decompo-
sition

Assuming conditional independence may reduce the number
of levels of the pair-copula decomposition, and hence simplify
the construction. Let us first consider the three-dimensional
case again with the pair-copula decomposition in (10). If we
assume that X1 and X3 are independent given X2, we have
that c13|2 (F(x1|x2), F(x3|x2)) = 1. Hence, the pair-copula
decomposition in (10) simplifies to

f (x1, x2, x3) = f1(x1) · f2(x2) · f3(x3) · c12 {F1(x1), F2(x2)}

· c23 {F2(x2), F3(x3)} .

In general, for any vector of variables V and two variables X ,
Y , the latter are conditionally independent given V if and only
if

cxy|v {F(x |v), F(y|v)} = 1.

As usual in hierarchical modelling, a model simplifies only
if the initial factorisation of the joint density takes advantage of
assumed conditional independence. For instance, if we use the
decomposition f (x1, x2, x3) = f (x2|x1, x3) f (x1|x3) f3(x3) in
the case when X1 and X3 are conditionally independent given
X2, all pair-copulae are needed.

If the conditional independence assumption is only made
to simplify the model construction, we may use the pair-
copula decomposition to measure the approximation error
introduced by this assumption. For example, take a four-
variable model, and assume conditional independence as
expressed by the four variables in the conditional independence
graph given in Fig. 4. That is, variables X1 and X4 are
assumed to be conditionally independent given X3 and X2,
and variables X2 and X3 are assumed to be conditionally
independent given X1 and X4. If we choose the decomposition
in (11), the term c14|23 {F(x1|x2, x3), F(x4|x2, x3)} should be
equal to 1, and the approximation error introduced by the
conditional independence assumption is given by the difference
c14|23 {F(x1|x2, x3), F(x4|x2, x3)} − 1.
Fig. 4. A conditional independence graph with 4 variables.

4. Simulation from a pair-copulae decomposed model

Simulation from vines is briefly discussed in Bedford and
Cooke (2001a), Bedford and Cooke (2001b), and Kurowicka
and Cooke (2007). In this section we show that the simulation
algorithms for canonical vines and D-vines are straightforward
and simple to implement. In the rest of this section we assume
for simplicity that the margins of the distribution of interest are
uniform.

The general algorithm for sampling n dependent uniform
[0,1] variables is common for the canonical and the D-vine:
First, sample w1, . . . , wn independent uniform on [0,1]. Then,
set

x1 = w1,

x2 = F−1(w2|x1),

x3 = F−1(w3|x1, x2),

· · · = · · ·

xn = F−1(wn|x1, . . . , xn−1).

To determine F(x j |x1, x2, . . . , x j−1) for each j , we use the
definition of the h-function in (7) and the relationship in (6),
recursively for both vine structures. However, choice of the v j
variable in (6) is different for the canonical vines and D-vines.
For the canonical vine we always choose

F(x j |x1, . . . , x j−1)

=
∂ C j, j−1|1,..., j−2

{
F(x j |x1, . . . , x j−2), F(x j−1|x1, . . . , x j−2)

}
∂F(x j−1|x1, . . . , x j−2)

,

while for the D-vine we choose

F(x j |x1, . . . , x j−1)

=
∂ C j,1|2,..., j−1

{
F(x j |x2, . . . , x j−1), F(x1|x2, . . . , x j−1)

}
∂F(x1|x2, . . . , x j−1)

.

4.1. Sampling a canonical vine

Algorithm 1 gives the procedure for sampling from a
canonical vine. The outer for-loop runs over the variables
to be sampled. This loop consists of two other for-loops.
In the first, the i th variable is sampled, while in the other,
the conditional distribution functions needed for sampling the
(i + 1)th variable are computed. To compute these conditional
distribution functions, we repeatedly use the h-function defined
by (7) in Section 2, with previously computed conditional
distribution functions, vi, j = F(xi |x1, . . . , x j−1), as the first
two arguments. The last argument of the h-function, Θ j,i ,
is the set of parameters of the corresponding copula density
c j, j+i |1,..., j−1(·, ·).
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Algorithm 1 Simulation algorithm for a canonical vine.
Generates one sample x1, . . . , xn from the vine.

Sample w1, . . . , wn independent uniform on [0,1].
x1 = v1,1 = w1
for i ← 2, . . . , n

vi,1 = wi
for k ← i − 1, i − 2, . . . , 1

vi,1 = h−1(vi,1, vk,k,Θk,i−k)

end for
xi = vi,1
if i == n then

Stop
end if
for j ← 1, . . . , i − 1

vi, j+1 = h(vi, j , v j, j ,Θ j,i− j )

end for
end for

4.2. Sampling a D-vine

Algorithm 2 gives the procedure for sampling from the D-
vine. It also consists of one main for-loop containing one for-
loop for sampling the variables and one for-loop for computing
the needed conditional distribution functions. However, this
algorithm is computationally less efficient than that for the
canonical vine, as the number of conditional distribution
functions to be computed when simulating n variables is (n −
2)2 for the D-vine, while it is (n−2)(n−1)/2 for the canonical
vine. Again the h-function is defined by (7) in Section 2,
but here Θ j,i is the set of parameters of the copula density
ci,i+ j |i+1,...,i+ j−1(·, ·).

4.3. Sampling a three-dimensional vine

In this section, we describe how to sample from a three-
dimensional canonical vine. Since all decompositions in the
three-dimensional case are both a canonical vine and a D-
vine, the resulting sample will also be a sample from a D-
vine. First, sample w1, w2, w3 independent uniform on [0,1].
Then, x1 = w1. Further, we have F(x2|x1) = h(x2, x1,Θ11)

giving x2 = h−1(w2, x1,Θ11). Finally, F(x3|x1, x2) =

h {h(x3, x1,Θ12), h(x2, x1,Θ11),Θ21}, meaning that x3 =

h−1
[
h−1 {w3, h(x2, x1,Θ11),Θ21} , x1,Θ12

]
.

5. Inference for a specified pair-copula decomposition

In this section we describe how the parameters of the
canonical vine density given by (9) or D-vine density given by
(8) can be estimated. Inference for a general regular vine (like
the one in Fig. 3) is also feasible, but the algorithm is not as
straightforward.

Assume that we observe n variables at T time points. Let
xi = (xi,1, . . . , xi,T ); i = 1, . . . , n, denote the data set.
First, we assume for simplicity that the T observations of
each variable are independent over time. This is not a limiting
assumption, since in the presence of temporal dependence,
univariate time-series models can be fitted to the margins
Algorithm 2 Simulation algorithm for D-vine.
Generates one sample x1, . . . , xn from the vine.

Sample w1, . . . , wn independent uniform on [0,1].
x1 = v1,1 = w1
x2 = v2,1 = h−1(w2, v1,1,Θ1,1)

v2,2 = h(v1,1, v2,1,Θ1,1)

for i ← 3, . . . , n
vi,1 = wi
for k ← i − 1, i − 2, . . . , 2

vi,1 = h−1(vi,1, vi−1,2k−2,Θk,i−k)

end for
vi,1 = h−1(vi,1, vi−1,1,Θ1,i−1)

xi = vi,1
if i == n then

Stop
end if
vi,2 = h(vi−1,1, vi,1,Θ1,i−1)

vi,3 = h(vi,1, vi−1,1,Θ1,i−1)

if i > 3 then
for j ← 2, . . . , i − 2

vi,2 j = h(vi−1,2 j−2, vi,2 j−1,Θ j,i− j )

vi,2 j+1 = h(vi,2 j−1, vi−1,2 j−2,Θ j,i− j )

end for
end if
vi,2i−2 = h(vi−1,2i−4, vi,2i−3,Θi−1,1)

end for

and the analysis could henceforth proceed with the residuals.
Second, it is pedagogically easier to present the algorithm if
each random variable X i,t is assumed to be uniform in [0, 1].

It is important to emphasise that unless the margins are
known (which they never are in practice), the estimation
method presented below then must rely on the normalised
ranks of the data. These are only approximately uniform
and independent, meaning that what is being maximised is
a pseudo-likelihood. Our proposal extends the method of
maximum pseudo-likelihood originally proposed for copulae
by Oakes (1994), and later shown to be asymptotically normal
and consistent both by Genest et al. (1995) and Shih and Louis
(1995). Moreover, recently Kim et al. (2007) have showed by
simulation studies that the maximum pseudo-likelihood method
performs better than the maximum likelihood method when the
marginal distributions are unknown, which is almost always
the case in practice. Our model differs from all the above
in that a cascade of pair-copulae is modelled instead of one
multivariate copula. Hence, the asymptotic properties of the
procedure described in this section are yet to be explored.

5.1. Inference for a canonical vine

For the canonical vine, the log-likelihood is given by

n−1∑
j=1

n− j∑
i=1

T∑
t=1

log
[
c j, j+i |1,..., j−1

{
F(x j,t |x1,t , . . . , x j−1,t ),

F(x j+i,t |x1,t , . . . , x j−1,t )
}]
. (12)
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For each copula in the sum (12) there is at least one
parameter to be determined. The number depends on which
copula type is used. As before, the conditional distributions
F(x j,t |x1,t , . . . , x j−1,t ) and F(x j+i,t |x1,t , . . . , x j−1,t ) are
determined using the relationship in (6) and the definition of
the h-function in (7). The log-likelihood must be numerically
maximised over all parameters.

Algorithm 3 evaluates the likelihood for the canonical vine.
The outer for-loop corresponds to the outer sum in (12).
This for-loop consists in turn of two other for-loops. The
first of these corresponds to the sum over i in (12). In the
other, the conditional distribution functions needed for the
next run of the outer for-loop are computed. Here Θ j,i is
the set of parameters of the corresponding copula density
c j, j+i |1,..., j−1(·, ·), h(·) is given by (7), and element t of v j,i
is v j,i,t = F(xi+ j,t |x1,t , . . . , x j,t ). Further, L(x, v,Θ) is the
log-likelihood of the chosen bivariate copula with parameters
Θ given the data vectors x and v. That is,

L(x, v,Θ) =
T∑

t=1

log {c(xt , vt ,Θ)} , (13)

where c(u, v,Θ) is the density of the bivariate copula with
parameters Θ .

Algorithm 3 Likelihood evaluation for canonical vine
log-likelihood = 0
for i ← 1, . . . , n

v0,i = xi .
end for
for j ← 1, . . . , n − 1

for i ← 1, . . . , n − j
log-likelihood = log-likelihood

+ L(v j−1,1, v j−1,i+1,Θ j,i )

end for
if j == n − 1 then

Stop
end if
for i ← 1, . . . , n − j

v j,i = h(v j−1,i+1, v j−1,1,Θ j,i )

end for
end for

Starting values of the parameters needed in the numerical
maximisation of the log-likelihood may be determined as
follows:

(a) Estimate the parameters of the copulae in tree 1 from the
original data.

(b) Compute observations (i.e., conditional distribution func-
tions) for tree 2 using the copula parameters from tree 1
and the h-function.

(c) Estimate the parameters of the copulae in tree 2 using the
observations from (b).

(d) Compute observations for tree 3 using the copula
parameters at level 2 and the h-function.

(e) Estimate the parameters of the copulae in tree 3 using the
observations from (d).

(f) etc.
Note that each estimation here is easy to perform, since the data
set is only of dimension 2.

5.2. Inference for a D-vine

For the D-vine, the log-likelihood is given by

n−1∑
j=1

n− j∑
i=1

T∑
t=1

log
[
ci,i+ j |i+1,...,i+ j−1{

F(xi,t |xi+1,t , . . . , xi+ j−1,t ), F(xi+ j,t |xi+1,t , . . . , xi+ j−1,t )
}]
.

The D-vine log-likelihood must also be numerically optimised.
Algorithm 4 evaluates the likelihood. Θ j,i is the set of
parameters of copula density ci,i+ j |i+1,...,i+ j−1(·, ·).

Algorithm 4 Likelihood evaluation for a D-vine
log-likelihood = 0
for i = 1, . . . , n

v0,i = xi .
end for
for i = 1, . . . , n − 1

log-likelihood = log-likelihood + L(v0,i , v0,i+1,Θ1,i )

end for
v1,1 = h(v0,1, v0,2,Θ1,1)

for k = 1, . . . , n − 3
v1,2k = h(v0,k+2, v0,k+1,Θ1,k+1)

v1,2k+1 = h(v0,k+1, v0,k+2,Θ1,k+1)

end for
v1,2n−4 = h(v0,n, v0,n−1,Θ1,n−1)

for j = 2, . . . , n − 1
for i = 1, . . . , n − j

log-likelihood = log-likelihood
+ L(v j−1,2i−1, v j−1,2i ,Θ j,i )

end for
if j == n − 1 then

Stop
end if
v j,1 = h(v j−1,1, v j−1,2,Θ j,1)

if n > 4 then
for i = 1, 2, . . . , n − j − 2

v j,2i = h(v j−1,2i+2, v j−1,2i+1,Θ j,i+1)

v j,2i+1 = h(v j−1,2i+1, v j−1,2i+2,Θ j,i+1)

end for
end if
v j,2n−2 j−2 = h(v j−1,2n−2 j , v j−1,2n−2 j−1,Θ j,n− j )

end for

5.3. Inference for a three-variable model

In the special case of a three-dimensional data set with
U [0, 1] distributed variables, (12) reduces to

T∑
t=1

{
log c12(x1,t , x2,t ,Θ11)+ log c23(x2,t , x3,t ,Θ12)

+ log c13|2
(
v1,t , v2,t ,Θ21

)}
,
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where

v1,t = F(x1,t |x2,t ) = h(x1,t , x2,t ,Θ11)

and

v2,t = F(x3,t |x2,t ) = h(x3,t , x2,t ,Θ12).

The parameters to be estimated are Θ = (Θ11,Θ12,Θ21),
where Θ j,i is the set of parameters of the corresponding
copula density ci,i+ j |i+1,...,i+ j−1(·, ·). Following the procedure
described in Section 5.1, we first estimate the parameters of the
three copulae involved by a sequential procedure, and then we
maximise the full log-likelihood using the parameters obtained
from the stepwise procedure as starting values. A numerical
example is given in Appendix B.

6. Model selection

In Section 5 we described how to do inference for a specific
pair-copula decomposition. However, this is only a part of
the full estimation problem. Full inference for a pair-copula
decomposition should in principle consider (a) the selection
of a specific factorisation, (b) the choice of pair-copula types,
and (c) the estimation of the copula parameters. For smaller
dimensions (say 3 and 4), one may estimate the parameters
of all possible decompositions using the procedure described
in Section 5 and compare the resulting log-likelihoods. This
is in practice infeasible for higher dimensions, since the
number of possible decompositions increases very rapidly with
the dimension of the data set, as shown in Section 2. One
should instead determine which bivariate relationships are most
important to model correctly, and let this determine which
decomposition(s) to estimate. D-vines are more flexible than
canonical vines, since for the canonical vines we specify the
relationships between one specific pilot variable and the others,
while in the D-vine structure we can select more freely which
pairs to model.

Given data and an assumed pair-copula decomposition, it
is necessary to specify the parametric shape of each pair-
copula. For example, for the decomposition in Section 5.3
we need to decide which copula type to use for C12(·, ·),
C23(·, ·) and C13|2(·, ·) (for instance among the ones described
in Section 7.1). The pair-copulae do not have to belong to
the same family. The resulting multivariate distribution will be
valid if we choose for each pair of variables the parametric
copula that best fits the data. If we choose not to stay in one
predefined class, we need a way of determining which copula
to use for each pair of (transformed) observations. We propose
to use a modified version of the sequential estimation procedure
outlined in Section 5.1:

(a) Determine which copula types to use in tree 1 by plotting
the original data, or by applying a goodness-of-fit (GoF)
test; see Section 6.1.

(b) Estimate the parameters of the selected copulae using the
original data.

(c) Transform observations as required for tree 2, using the
copula parameters from tree 1 and the h(·) function as
shown in Sections 5.1 and 5.2.
(d) Determine which copula types to use in tree 2 in the same
way as in tree 1.

(e) Iterate.

The observations used to select the copulae at a specific level
depend on the specific pair-copulae chosen upstream in the
decomposition. This selection mechanism does not guarantee
a globally optimal fit. Having determined the appropriate
parametric shapes for each copulae, one may use the procedures
in Section 5 to estimate their parameters.

6.1. Goodness-of-fit

To verify whether the dependency structure of a data set is
appropriately modelled by a chosen pair-copula decomposition,
we need a goodness-of-fit (GOF) test. GOF tests for
dependency structures are basically special cases of the more
general problem of testing multivariate densities. However, it
is more technically complicated as the univariate distribution
functions are unknown. Hence, despite an obvious need for
such tests in applied work, relatively little is known about
their properties, and there is still no recommended method
agreed upon. For the same reason, there is no demonstrated
goodness-of-fit technique currently available for validating our
pair-copula decomposition.

Of the tests that have been proposed for copulae (see Genest
et al. (2007) for a review of omnibus goodness-of-fit tests for
copulae), quite a few are based on the probability integral
transform (PIT) of Rosenblatt (1952); see, e.g., Breymann et al.
(2003) and Dobrić and Schmid (in press). We propose to use the
PIT also for the pair-copula decomposition. The PIT converts
a set of dependent variables into a new set of variables that are
independent and uniform under the null hypothesis that the data
originate from a given multivariate distribution. The technique,
which may be viewed as the inverse of simulation, is defined as
follows.

Let X = (X1, . . . , Xn) denote a random vector with
marginal distributions F(xi ) and conditional distributions
F(xi |x1, . . . , xi−1), for i = 1, . . . , n. The PIT of X is defined
as T (X) = {T (X1), . . . , T (Xn)}, where T (X i ) is given by

T (X1) = F(x1)

T (X2) = F(x2|x1)

· = ·

· = ·

T (Xn) = F(xn|x1, . . . , xn−1).

The random variables Zi = T (X i ), i = 1, . . . , n, are
independent and uniformly distributed on [0, 1]n under the null
hypothesis that X comes from the multivariate model used to
compute the PIT of X. It is relatively easy to specialise the PIT
to the pair-copula decomposition. Algorithms 5 and 6 give the
procedures for a canonical vine and a D-vine, respectively.

Having performed the probability integral transform, the
next step is to verify whether the resulting variables really are
independent and uniform in [0,1]. The most common approach

is to compute S =
∑n

i=1

{
Φ−1(Zi )

}2
, and test whether the

observed values of S come from a chi-square distribution
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Algorithm 5 PIT algorithm for a canonical vine
for t ← 1, . . . , T

z1,t = x1,t
for i ← 2, . . . , n

zi,t = xi,t
for j ← 1, . . . , i − 1

zi,t = h(zi,t , z j,t ,Θ j,i− j )

end for
end for

end for

Algorithm 6 PIT algorithm for a D-vine
for t ← 1, . . . , T

z1,t = x1,t
z2,t = h(x2,t , x1,t ,Θ1,1)

v2,1 = x2,t
v2,2 = h(x1,t , x2,t ,Θ1,1)

for i ← 3, . . . , n
zi,t = h(xi,t , xi−1,t ,Θ1,i−1)

for j ← 2, . . . , i − 1
zi,t = h(zi,t , vi−1,2( j−1),Θ j,i− j )

end for
if i == n then

Stop
end if
vi,1 = xi,t
vi,2 = h(vi−1,1, vi,1,Θ1,i−1)

vi,3 = h(vi,1, vi−1,1,Θ1,i−1)

for j ← 1, 2, . . . , i − 3
vi,2 j+2 = h(vi−1,2 j , vi,2 j+1,Θ j+1,i− j−1)

vi,2 j+3 = h(vi,2 j+1, vi−1,2 j ,Θ j+1,i− j−1)

end for
vi,2i−2 = h(vi−1,2i−4, vi,2i−3,Θi−1,1)

end for
end for

with n degrees of freedom. The Anderson–Darling goodness-
of-fit test may be applied for the latter. It should be noted
that using the empirical distribution functions to convert the
original data vectors to uniform variables before fitting the
dependency structure will affect the critical values of this test
in a complicated, non-trivial way. This is still an unsolved
problem, not only for a pair-copula decomposition, but also
for copulae in general. We follow the procedure suggested by
Dobrić and Schmid (in press) and use parametric bootstrap
to determine critical values. This procedure is shown by
simulation studies to perform well.

7. Application: Financial returns

7.1. Tail dependence

Tail dependence properties are particularly important in
many applications that rely on non-normal multivariate
families (Joe, 1996). This is especially the case for financial
applications. Tail dependence in a bivariate distribution can be
represented by the probability that the first variable exceeds
its q-quantile, given that the other exceeds its own q-quantile.
The limiting probability, as q goes to infinity, is called the
upper-tail dependence coefficient (Sibuya, 1960), and a copula
is said to be upper-tail dependent if this limit is not zero. In
this section we present four pair-copulae that have different
strength of dependence in the tails of the bivariate distribution;
the Gaussian, the Student, the Clayton and the Gumbel copulae.
See Joe (1997) for an overview of other copulae. The first
two are copulae of normal mixture distributions. They are so-
called implicit copulae because they do not have a simple
closed form. Clayton and Gumbel are Archimedean copulae,
for which the distribution function has a simple closed form.
The Clayton copula is lower-tail dependent, but not upper. The
Gumbel copula is upper-tail dependent, but not lower. The
Student copula is both lower- and upper-tail dependent, while
the Gaussian is neither lower- nor upper-tail dependent.

In Appendix C we give three important formulas for each
of these four pair-copulae; the density, the h-function and the
inverse of the h-function. The Gaussian, Clayton and Gumbel
pair-copulae have one parameter, while the Student pair-copula
has two. The additional parameter of the latter is the degrees of
freedom, controlling the strength of dependence in the tails of
the bivariate distribution. The Student copula allows for joint
extreme events, either in both bivariate tails or none of them. If
one believes that the variables are only lower-tail dependent, a
better choice might be the Clayton copula, because it exhibits
greater dependence in the negative tail than in the positive. The
Gumbel copula is also an asymmetric copula, but it exhibits
greater dependence in the positive tail than in the negative.
Fig. 5 shows the densities of the four copulae for three different
parameter settings.

For all these four pair-copulae the h-function is given
by an explicit analytical expression; see Appendix C. This
expression can be analytically inverted for all pair-copulae
except for the Gumbel, where numerical inversion is necessary.
Explicit availability of the h-functions and their inverse is very
important for the efficiency of our estimation procedures.

7.2. Data set

In this section, we study four time series of daily data: the
Norwegian stock index (TOTX), the MSCI world stock index,
the Norwegian bond index (BRIX) and the SSBWG hedged
bond index, for the period from 04.01.1999 to 08.07.2003.
Fig. 6 shows the log-returns of each pair of assets. The four
variables are denoted as T , M , B and S.

We want to compare a four-dimensional pair-copula
decomposition with Student copulae for all pairs with the four-
dimensional Student copula. The n-dimensional Student copula
has been used repeatedly for modelling multivariate financial
return data. A number of papers, such as Mashal and Zeevi
(2002), have shown that the fit of this copula is generally
superior to that of other n-dimensional copulae for such data.
However, the Student copula has only one parameter for
modelling tail dependence, independent of dimension. Hence,
if the tail dependences of different pairs of risk factors in a
portfolio are very different, we believe that a better description
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Fig. 5. 3D surface plot of bivariate density for Gaussian, Student, Clayton and Gumbel copulae, with three different parameter settings.
Fig. 6. Log-returns for pairs of assets during the period from 04.01.1999 to 08.07.2003.
of the dependence structure can be achieved with the pair-
copula decomposition with Student copulae for each pair.

As stated in Section 5, the observations of each variable
must be independent over time. Hence, the serial correlation in
the conditional mean and the conditional variance are modelled
by an AR(1)- and a GARCH(1, 1)-model (Bollerslev, 1986),
respectively. That is, for series i , we have the following model
for log-return xi :
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xi,t = ci + αi xi,t−1 + σi,t zi,t ,

E[zt,i ] = 0 and Var[zt,i ] = 1,

σ 2
i,t = ai,0 + ai ε

2
i,t−1 + bi σ

2
i,t−1,

(14)

where εi,t−1 = σi,t zi,t . The further analysis is performed
on the standardised residuals zi . If the AR(1)–GARCH(1, 1)
models are successful at modelling the serial correlation in the
conditional mean and the conditional variance, there should
be no autocorrelation left in the standardised residuals and
squared standardised residuals. We use the modified Q-statistic
(Ljung and Box, 1979) and the Lagrange Multiplier Test (LM)
Engle (1982), respectively, to check this. For all series and
both tests, the null hypothesis that there is no autocorrelation
left cannot be rejected at the 5% level. Since we are mainly
interested in estimating the dependence structure of the risk
factors, the standardised residual vectors are converted to
uniform variables using the empirical distribution functions
before further modelling. In the light of recent results due
to Chen and Fan (2006), the method of maximum pseudo-
likelihood is consistent even when time-series models are fitted
to the margins.

7.3. Selecting an appropriate pair-copula decomposition

Having decided to use Student copulae for all pairs of the
decomposition, the next step is to choose the most appropriate
ordering of the risk factors. This is done by first fitting a
bivariate Student copula to each pair of risk factors, obtaining
estimated degrees of freedom for each pair. For this we use the
two-step maximum likelihood method described in broad terms
by Oakes (1994) and later formalised and studied by Genest
et al. (1995) and Shih and Louis (1995). The estimation of the
Student copula parameters requires numerical optimisation of
the log-likelihood function; see for instance Mashal and Zeevi
(2002) or Demarta and McNeil (2005).

Having fitted a bivariate Student copula to each pair, the risk
factors are ordered such that the three copulae to be fitted in
tree 1 in the pair-copula decomposition are those corresponding
to the three smallest numbers of degrees of freedom. A low
number of degrees of freedom indicates strong dependence.
The numbers of degrees of freedom from our case are shown
in Table 1. The dependence is strongest between international
bonds and stocks (S and M), international and Norwegian
stocks (M and T ), and Norwegian stocks and bonds (T and
B). Hence, we want to fit the copulae CS,M , CM,T and CT,B in
tree 1 of the vine. This means that we cannot use a canonical
vine, since there is no pilot variable. However, using a D-vine
specification with the nodes S, M , T , and B, in the listed order,
gives the three above-mentioned copulae at level 1. See Fig. 7
for the whole D-vine structure in this case.

7.4. Inference

The parameters of the D-vine are estimated using the
algorithm in Section 5.2. For each pair-copula, the log-
likelihood is computed using (13) and the density and the h-
function for the Student copula given in Appendix C.2.
Table 1
Estimated numbers of degrees of freedom for bivariate Student copulae for pairs
of variables

Between M T B

S 4.21 34.16 14.47
M 8.03 15.48
T 12.60

Fig. 7. Selected D-vine structure for the data set in Section 7.2.

Table 2
Estimated parameters for four-dimensional pair-copula decomposition

Param Start Final

ρSM −0.25 −0.25
ρMT 0.47 0.47
ρT B −0.17 −0.17
ρST |M −0.11 −0.11
ρM B|T 0.02 0.03
ρSB|MT 0.29 0.28
νSM 4.21 4.34
νMT 16.65 16.26
νT B 12.60 13.17
νST |M 300.00 300.00
νM B|T 130.33 45.59
νSB|MT 15.58 15.04

log-likelih. 267.86 268.17

Table 2 shows the starting values obtained using the
sequential estimation procedure (left column), and the final
parameter values together with the corresponding log-
likelihood values. In the numerical search for the degrees of
freedom parameter we have used 300 as the maximum value.
As can be seen from the table, the likelihood slightly increases
when estimating all parameters simultaneously. The Akaike
Information Criterion (AIC) for the final model is −512.33.
The p-value for the goodness-of-fit test described in Section 6.1
was 0.98 (computed by the procedure in Dobrić and Schmid (in
press)), meaning that we cannot reject the null hypothesis of a
D-vine composed of Student copulae.

7.5. Validation by simulation

Having estimated the pair-copula decomposition, it is
interesting to investigate the bivariate distributions of the
pairs of variables which were not explicitly modelled in the
decomposition. We sample from the estimated pair-copula
decomposed model, with estimated parameters as above, and
check whether simulated values and observed data have similar
features.
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Table 3
Estimated numbers of degrees of freedom for bivariate Student copulae for pairs
of simulated variables

Between M T B

S 4.19 17.29 19.49
M 14.82 19.28
T 11.71

We used the simulation procedure described in Section 4.2
and the h-function and its inverse given in Appendix C.2 to
generate a set of 10,000 samples from the estimated pair-
copula decomposition. Then, we estimated pairwise Student
copulae for all bivariate margins. The results are shown in
Table 3. Comparing these to the ones in Table 1 we see that
all dependencies are quite well captured, including those that
are not directly modelled.

7.6. Comparison with the four-dimensional Student copula

In this section we compare the results obtained with the pair-
copula decomposition from Section 7.4 with those obtained
with a four-dimensional Student copula. The parameters of
the Student copula are shown in Table 4. The AIC for
this model is −487.42, i.e., higher than that for the pair-
copulae decomposition. Further, all conditional distributions
of a multivariate Student distribution are Student distributions.
Hence, the n-dimensional Student copula is a special case of
an n-dimensional D-vine with the needed pairwise copulae
in the D-vine structure set to the corresponding conditional
bivariate distributions of the multivariate Student distribution.
Therefore, the four-dimensional Student copula is nested within
the considered D-vine structure and the likelihood ratio test
statistic is 2 (268.17 − 250.71) = 34.92 with 12 − 7 = 5
degrees of freedom. This yields a p-value of 1.56e−006 and
shows that the four-dimensional Student copula can be rejected
in favour of the D-vine.

To illustrate the difference between the four-dimensional
Student copula and the four-dimensional pair-copula decom-
position, we computed the tail dependence coefficients for the
three bivariate margins SM , MT and T B for both structures.
See Section 7.1 for the definition of the upper- and lower-tail
dependence coefficients. For the Student copula, the two coef-
ficients are equal and given by Embrechts et al. (2001):

λl(X, Y ) = λu(X, Y ) = 2 tν+1

(
−
√
ν + 1

√
1− ρ
1+ ρ

)
,

where tν+1 denotes the distribution function of a univariate
Student t-distribution with ν + 1 degrees of freedom. Table 5
shows the tail dependency coefficients for the three margins
and both structures. For the bivariate margin SM , the value
for the pair-copula distribution is 279 times higher than the
corresponding one for the Student copula. For a trader holding
a portfolio of international stocks and bonds, the practical
implication of this difference in tail dependence is that the
probability of observing a large portfolio loss is much higher
for the four-dimensional pair-copula decomposition that it is
for the four-dimensional Student copula.
Table 4
Estimated parameters for four-dimensional Student copulae

Param Value

ρSM −0.25
ρST −0.20
ρSB 0.30
ρMT 0.47
ρM B −0.06
ρT B −0.17
νST M B 14.56

log-likelih. 250.71

Table 5
Tail dependence coefficients

Margin Pair-copula decomp. Student copula

SM 0.0279 0.0001
MT 0.0229 0.0317
T B 0.0005 0.0003

7.7. Pair-copula decomposition with copulae from different
families

In this section we investigate whether we would get an even
better fit for our data set if we allowed the pair-copulae in
the decomposition defined by Fig. 7 to come from different
families. Fig. 8 shows the data sets used to estimate the six pair-
copulae in the decomposition described in Sections 7.3 and
7.4. The three scatter plots in the upper row correspond to the
three bivariate margins SM , MT and T B. The data clustering
in the two opposite corners of these plots is a strong indication
of both upper- and lower-tail dependence, meaning that the
Student copula is an appropriate choice. In the two leftmost
scatter plots in the lower row, the data seem to have no tail
dependence and the two margins also appear to be uncorrelated.
This is in accordance with the parameters estimated for these
data sets, ρST |M , ρM B|T , νST |M , νM B|T , shown in Table 2.
The correlation parameters are close to 0 and the degrees
of freedom parameters are very large, meaning that the two
variables constituting each pair are close to being independent.
If this is so, cST |M (·) and cM B|T (·) are both 1, which means that
the pair-copula construction defined by Fig. 7 may be simplified
to

cSM (xS, xM ) cMT (xM , xT ) cT B(xT , xB) cSB|MT

× {F(xS|xM ), F(xB |xT )} .

If we estimate this model instead, the parameters of copula
cSB|MT (·, ·) are slightly altered to ρSB|MT = 0.28 and
νSB|MT = 15.22. The log-likelihood for this reduced structure
is 261.6 compared to 268.17 for the full one. The corresponding
AIC values are −507.20 and −512.33, meaning that the full
model is slightly better than the reduced one. This is also
verified by the likelihood ratio statistic, which is 2 (261.6 −
268.17) = 13.14. With 12 − 8 = 4 degrees of freedom this
gives a p-value of 0.01 and shows that the reduced structure is
rejected in favour of the full one.
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Fig. 8. The data sets used to estimate the six pair-copulae in the decomposition described in Sections 7.3 and 7.4.
Turning to the pair-copula cSB|MT (·), there seems to be
data clustering in the lower left corner of the scatter plot to
the bottom right of Fig. 8, but not in the upper right. This
indicates that the Clayton copula might be a better choice than
the Student copula, since it has lower-tail dependence, but not
upper. Hence, we have fitted the Clayton copula to this data set.
The parameter was estimated to δ = 0.34. The likelihood of the
Clayton copula is lower than that of the Student copula (39.72
versus 47.81). However, since the two copulae are non-nested
we cannot really compare the likelihoods. Instead we have
used the procedure suggested by Genest and Rivest (1993) for
identifying the appropriate copula. According to this procedure,
we examine the degree of closeness of the function λ(z), given
by

λ(z) = z − K (z).

Here K (z) is the copula distribution function K (z), defined by

K (z) = P(C(u1, u2) ≤ z).

For Archimedean copulae, K (z) is given by an explicit
expression, while for the Student copula it has to be numerically
derived. In Fig. 9 the empirical lambda function and its
confidence bands, computed as described in Genest and Rivest
(1993), are presented together with the fitted lambda functions
for the Clayton copula and the Student copula. As can be seen
from this figure, the Student copula fits the empirical data
remarkably well. This may be more formally verified by a
goodness-of-fit test; see, e.g., Chen and Fan (2005).

8. Conclusions

We have shown how multivariate data exhibiting complex
patterns of dependence in the tails can be modelled using
Fig. 9. The empirical lambda function (solid line) and its confidence bands
(dotted lines) are presented together with the fitted lambda functions for the
Clayton copula (dashed line) and the Student copula (dotted line which hardly
can be distinguished from the solid line).

pair-copulae. We have developed algorithms that allow
inference on the parameters of the pair-copulae on the
various levels of the construction. This construction is
hierarchical in nature, the various levels standing for growing
conditioning sets, incorporating more variables. This differs
from traditional hierarchical models, where levels depict
conditional independence. Pair-copulae are simple building
blocks, which can be compared to pairwise interaction
potentials or cliques in Gibbs fields.

When presenting the theory we have assumed that the
observations of each variable are independent over time.
However, this is not a limiting assumption. In our application
we have shown that in the presence of temporal dependence,
univariate time-series models can be fitted to the margins
and the analysis can henceforth proceed with the residuals.
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Missing values are acceptable, though likelihoods become more
complex, as in any other model. Bayesian versions of inference
are easy to imagine, as there is no difficulty in adding priors on
the parameters of the pair-copulae. One could also put priors
on the choice of pairs to match. Posterior estimates would then
substitute maximum likelihood ones.

Further research is needed to produce better comparison
methods between alternative pair-copulae and between alter-
native decompositions. More powerful goodness-of-fit tests for
bivariate models are crucial for the construction of an unsuper-
vised algorithm that explores the large space of possible pair-
copulae models. However, this remains a central aim, since
there is an increasing tendency to collect huge quantities of
multivariate and dense observations, requiring automatic infer-
ential methods.
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Appendix A. Four-dimensional pair-copula decompositions

Assume that we decompose a given four-dimensional
density f (x1, x2, x3, x4) as follows:

f (x1, x2, x3, x4) = f1(x1) · f (x2|x1) · f (x3|x1, x2)

· f (x4|x1, x3, x2). (15)

We have

f (x2|x1) = c12{F1(x1), F2(x2)} · f2(x2),

and

f (x3|x1, x2) =
f (x2, x3|x1)

f (x2|x1)

=
c23|1 (F(x2|x1), F(x3|x1)) · f (x3|x1) · f (x2|x1)

f (x2|x1)

= c23|1 {F(x2|x1), F(x3|x1)} · f (x3|x1)

= c23|1 {F(x2|x1), F(x3|x1)} · c13 {F1(x1), F3(x3)} · f3(x3).

Further,

f (x4|x1, x3, x2) =
f (x3, x4|x1, x2)

f (x3|x1, x2)

=
c34|12 {F(x3|x1, x2), F(x4|x1, x2)} · f (x3|x1, x2) · f (x4|x1, x2)

f (x3|x1, x2)

= c34|12 {F(x3|x1, x2), F(x4|x1, x2)} · f (x4|x1, x2)

= c34|12 {F(x3|x1, x2), F(x4|x1, x2)} ·
f (x2, x4|x1)

f (x2|x1)
= c34|12 {F(x3|x1, x2), F(x4|x1, x2)}

·
c24|1 {F(x2|x1), F(x4|x1)} · f (x2|x1) · f (x4|x1)

f (x2|x1)

= c34|12 {F(x3|x1, x2), F(x4|x1, x2)} · c24|1 {F(x2|x1), F(x4|x1)}

· f (x4|x1)

= c34|12 {F(x3|x1, x2), F(x4|x1, x2)} · c24|1 {F(x2|x1), F(x4|x1)}

· c14 {F1(x1), F4(x4)} · f4(x4).

Inserting these expressions into (15) gives

f (x1, x2, x3, x4) = f1(x1) · f2(x2) · f3(x3) · f4(x4)

· c12 {F1(x1), F2(x2)} · c13 {F1(x1), F3(x3)}

· c14 {F1(x1), F4(x4)}

· c23|1 {F(x2|x1), F(x3|x1)} · c24|1 {F(x2|x1), F(x4|x1)}

· c34|12 {F(x3|x1, x2), F(x4|x1, x2)} ,

which may be recognised as a canonical vine decomposition.
The decomposition includes three pair-copulae acting on
marginal univariate distributions, two pair-copulae acting on
conditional distribution functions with only one conditioning
variable, and one pair-copula acting on conditional distribution
functions with two conditioning variables.

We can obtain different pair-copula decompositions by
changing the conditioning cascade in (15). Assume for example

f (x1, x2, x3, x4) = f2(x2) · f (x3|x2) · f (x1|x3, x2)

· f (x4|x1, x3, x2).

We have

f (x3|x2) = c23 {F2(x2), F3(x3)} · f3(x3),

and

f (x1|x3, x2) =
f (x1, x3|x2)

f (x3|x2)

=
c13|2 {F(x1|x2), F(x3|x2)} · f (x1|x2) · f (x3|x2)

f (x3|x2)

= c13|2 {F(x1|x2), F(x3|x2)} · f (x1|x2)

= c13|2 {F(x1|x2), F(x3|x2)} · c12 {F1(x1), F2(x2)} · f1(x1).

Further, we decompose f (x4|x1, x3, x2) in another order to the
above and obtain

f (x4|x1, x3, x2) =
f (x1, x4|x2, x3)

f (x1|x2, x3)

=
c14|23 {F(x1|x2, x3), F(x4|x2, x3)} · f (x1|x2, x3) · f (x4|x2, x3)

f (x1|x2, x3)

= c14|23 {F(x1|x2, x3), F(x4|x2, x3)} · f (x4|x2, x3)

= c14|23 {F(x1|x2, x3), F(x4|x2, x3)} ·
f (x4, x2|x3)

f (x2|x3)

= c14|23 {F(x1|x2, x3), F(x4|x2, x3)}

·
c24|3 {F(x2|x3), F(x4|x3)} · f (x2|x3) · f (x4|x3)

f (x2|x3)

= c14|23 {F(x1|x2, x3), F(x4|x2, x3)}

· c24|3 {F(x2|x3), F(x4|x3)} · f (x4|x3)

= c14|23 {F(x1|x2, x3), F(x4|x2, x3)} · c24|3 {F(x2|x3), F(x4|x3)}

· c34 {F3(x3), F4(x4)} · f4(x4).
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Finally we obtain

f (x1, x2, x3, x4) = f1(x1) · f2(x2) · f3(x3) · f4(x4)

· c12 {F1(x1), F2(x2)} · c23 {F2(x2), F3(x3)}

· c34 {F3(x3), F4(x4)}

· c13|2 {F(x1|x2), F(x3|x2)} · c24|3 {F(x2|x3), F(x4|x3)}

· c14|23 {F(x1|x2, x3), F(x4|x2, x3)} ,

which can be recognised as a D-vine.

Appendix B. Numerical example of likelihood evaluation

In this section we illustrate the inference for a three-
dimensional data set with a numerical example. Assume that
we have the following data set:

y1 = (4.9, 4.4, 5.1, 4.3, 4.7),

y2 = (9.9, 8.5, 9.6, 8.8, 9.1),

y3 = (7.0, 6.2, 6.9, 6.0, 7.7),

and that we want to fit a three-dimensional D-vine specification
with Clayton copulae for all pairs. In Section 5.3 we assume
that the three vectors have been transformed into normalised
ranks, i.e.,

x1 = (0.8, 0.4, 1.0, 0.2, 0.6),

x2 = (1.0, 0.2, 0.8, 0.4, 0.6),

x3 = (0.8, 0.4, 0.6, 0.2, 1.0),

before the parameters of the D-vine specification are estimated.
In our numerical maximisation of the log-likelihood, the log-
likelihood

T∑
t=1

{
log c12(x1,t , x2,t ,Θ11)+ log c23(x2,t , x3,t ,Θ12)

+ log c13|2
(
v1,t , v2,t ,Θ21

)}
,

is computed for every possible value of the triplet (Θ11,Θ12,Θ21),
and the value that maximises the log-likelihood is chosen as
the maximum likelihood estimate. Here, we show how to com-
pute the log-likelihood for the triplet (3.0, 1.3, 0.5). Using the
h-function for the Clayton copula (see Appendix C), we first
compute the observations v1 and v2 as

v1,t = h(x1,t , x2,t , 3.0)

and

v2,t = h(x3,t , x2,t , 1.3).

The result is

v1 = (0.41, 0.86, 1.00, 0.05, 0.46)

v2 = (0.60, 0.64, 0.39, 0.13, 1.00).

Then, using the density for the Clayton copula (see
Appendix C), and plugging in the values of x1, x2, x3, v1, v2,
Θ11, Θ12 and Θ21, we compute the log-likelihood of the D-
vine specification as the sum of the log-likelihoods of the three
Clayton copulae, i.e., 1.91+ 1.27+ 0.79 = 3.97.
Appendix C. Pair-copulae

C.1. The bivariate Gaussian copula

The density of the bivariate Gaussian copula is given by

c(u1, u2) =
1√

1− ρ2
12

exp

{
−
ρ2

12(x
2
1 + x2

2)− 2ρ12 x1 x2

2(1− ρ2
12)

}

where ρ12 is the parameter of the copula, x1 = Φ−1(u1), x2 =

Φ−1(u2) and Φ−1(·) is the inverse of the standard univariate
Gaussian distribution function.

For this copula the h-function is given by

h(u1, u2, ρ12) = Φ

Φ−1(u1)− ρ12 Φ−1(u2)√
1− ρ2

12


and the inverse of the h-function is given by

h−1
12 (u1, u2, ρ12) = Φ

{
Φ−1(u1)

√
1− ρ2

12 + ρ12 Φ−1(u2)

}
.

C.2. The bivariate Student copula

The density of the bivariate Student copula is given by

c(u1, u2) =
Γ ( ν12+2

2 )/Γ ( ν12
2 )

ν12 π dt (x1, ν12) dt (x2, ν12)

√
1− ρ2

12

×

{
1+

x2
1 + x2

2 − 2ρ12 x1 x2

ν12(1− ρ2
12)

}− ν12+1
2

where ν12 and ρ12 are the parameters of the copula, x1 =

t−1
ν12
(u1), x2 = t−1

ν12
(u2), and dt (·, ν12) and t−1

ν12
(·) are the

probability density and the quantile function, respectively, for
the standard univariate Student t-distribution with ν12 degrees
of freedom, expectation 0 and variance ν12

ν12−2 .
For this copula the h-function is given by

h(u1, u2, ρ12, ν12) = tν12+1


t−1
ν12
(u1)− ρ12 t−1

ν12
(u2)√(

ν12+
(

t−1
ν12 (u2)

)2
)(

1−ρ2
12

)
ν12+1


and the inverse of the h-function is given by

h−1
12 (u1, u2, ρ12, ν12) = tν12

×

t−1
ν12+1(u1)

√√√√√
(
ν12 +

(
t−1
ν12 (u2)

)2
) (

1− ρ2
12

)
ν12 + 1

+ ρ12 t−1
ν12
(u2)

 .

C.3. The bivariate Clayton copula

The density of the bivariate Clayton copula is given by
Venter (2001)
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c(u1, u2) = (1+ δ12)(u1 · u2)
−1−δ12

×

(
u−δ12

1 + u−δ12
2 − 1

)−1/δ12−2
,

where 0 < δ12 <∞ is a parameter controlling the dependence.
Perfect dependence is obtained when δ12 →∞, while δ12 → 0
implies independence.

For this copula the h-function is given by

h(u1, u2, δ12) = u−δ12−1
2

(
u−δ12

1 + u−δ12
2 − 1

)−1−1/δ12

and the inverse of the h-function is given by

h−1
12 (u1, u2, δ12) =

{(
u1 · u

δ12+1
2

)− δ12
δ12+1
+ 1− v−δ12

}−1/δ12

.

C.4. The bivariate Gumbel copula

The density of the bivariate Gumbel copula is given by
Venter (2001):

c(u1, u2) = C12(u1, u2) (u1 u2)
−1

×
{
(− log u1)

δ12 + (− log u2)
δ12
}−2+2/δ12

× (log u1 log u2)
δ12−1

×

{
1+ (δ12 − 1)((− log u1)

δ12 + (− log u2)
δ12)−1/δ12

}
,

where C12(u1, u2) is the copula given by

C12(u1, u2) = exp
[
−
{
(− log u1)

δ12 + (− log u2)
δ12
}1/δ12

]
,

and δ12 ≥ 1 is a parameter controlling the dependence. Perfect
dependence is obtained when δ12 →∞, while δ12 = 1 implies
independence.

For this copula the h-function is given by

h(u1, u2, δ12) = C12(u1, u2) ·
1
u2
· (− log u2)

δ12−1

×
{
(− log u1)

δ12 + (− log u2)
δ12
}1/δ12−1

.

In this case, the inverse of the h-function must be obtained
numerically using for instance the Newton–Raphson method.
Hence, for large-dimensional problems, it might be better to use
the Clayton survival copula; see, e.g., Joe (1997), which also is
a heavy right tail copula.
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