Classification of Hyperspectral Data Using Support Vectors Machines and Data Fusion

Mathieu Fauvel, Jocelyn Chanussot and Jon Atli Benediktsson

LIS INPG, Iceland University

May 30, 2006

- 2 Support Vector Machines
- 3 Data Fusion

4 Experiment

- 2 Support Vector Machines
- 3 Data Fusion
- 4 Experiment
- **5** Conclusions

Spectral resolution

- Spatial resolution: up to 1m by pixel,
- Spectral resolution: up to 200 bands.

For a classification attempt:

- High spectral resolution: increases the separability of the classes
- Fine spatial resolution: allows a new definition of classes but:
 - Spatial features need to be extracted
 - Curse of dimensionality: statistical estimation is difficult
 - Hughes phenomenon
 - How to use both the spatial and the spectral information?

Geometrical approach for the classification:

- Support Vector Machines (SVMs)
- Kernel Methods

Decision Fusion:

- Decision rule should use SVMs' output particularities
- Confidence of each classifier should drive the fusion

3 Data Fusion

4 Experiment

- Geometrical approach: Find the optimal hyperplane which separates samples.
- Hyperplane parameters: (\mathbf{w}, b) which is found by solving,

$$\min\left[\frac{\|\mathbf{w}\|^2}{2} + C\sum_{i=1}^N \xi_i\right],$$

subject to $y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b) \geq 1 - \xi_i, \ \xi_i \geq 0, \ \forall i \in [1, \dots, N].$

• The resulting classification rule is:

$$y_u = sgn\left(\sum_{i=1}^N y_i \alpha_i \langle \mathbf{x}_i, \mathbf{x}_u \rangle + b\right)$$

- Multiclass problems are solved by combining several binary classifiers
- Kernel methods increase the classification capability:

$$\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \rangle = k(\mathbf{x}_i, \mathbf{x}_j)$$

- 2 Support Vector Machines
- 3 Data Fusion
- 4 Experiment
- **5** Conclusions

Decision rules should take into account:

- the SVMs' output characteristics (distance to the hyperplane):
 - signed numbers
 - not bounded
- the agreement of the classifier:
 - seen as a probability

Absolute maximum decision fusion rule:

$$d_{ij}^f = AbsMax(d_{ij}^1, d_{ij}^2)$$

where *AbsMax* is the set of logical rules:

$$\begin{array}{ll} \mathrm{if}(|d_{ij}^1|>|d_{ij}^2|) & \mathrm{then} & d_{ij}^1\\ \mathrm{else} \ \mathrm{if}(|d_{ij}^2|>|d_{ij}^1|) & \mathrm{then} & d_{ij}^2 \end{array}$$

The probability is computed by:

$$p_i^1 = rac{2}{m(m-1)} \sum_{j=0, j \neq i}^m I(d_{ij}^1)$$

Final fusion rule:

$$d_{ij}^f = AbsMax\left(\max(p_i^1, p_j^1)d_{ij}^1, \max(p_i^2, p_j^2)d_{ij}^2
ight)$$

- 2 Support Vector Machines
- 3 Data Fusion

5 Conclusions

Experiment

Real hyperspectral data (ROSIS sensor):

- Spectral data, 103 bands
- Extended morphological profile, 63 bands

Three combination scheme were investigated:

- Our proposed fusion rule
- The AbsMax rule, without probability
- Majority voting

Experiment

Classification accuracies:

	Spect.	PCA+EMP	Abs. Max.	A.M.+Prob.	Maj. Vot.
OA	80.99	85.22	89.56	89.65	86.07
AA	88.28	90.76	93.61	93.70	88.49
Kappa	76.16	80.86	86.57	86.68	81.77
					•=

Classes description: asphalt, meadow, gravel, tree, metal sheet, bare soil, bitumen, brick, shadow.

1 Hyperspectral Data

- 2 Support Vector Machines
- 3 Data Fusion

4 Experiment

Some Conclusions:

- Decision fusion for SVMs classifier has been discussed
- The absolute maximum perform well
- Unsupervised fusion scheme

Some perspectives:

- Test the method on other data
- Include some information about the generalization ability of the SVMs classifiers

Classification of Hyperspectral Data Using Support Vectors Machines and Data Fusion

Mathieu Fauvel, Jocelyn Chanussot and Jon Atli Benediktsson

LIS INPG, Iceland University

May 30, 2006