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Hyperspectral Data

Spectral resolution

Spatial resolution

• Spatial resolution: up to 1m by pixel,
• Spectral resolution: up to 200 bands.
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Hyperspectral Data

For a classification attempt:

• High spectral resolution: increases the separability of the
classes

• Fine spatial resolution: allows a new definition of classes

but:

• Spatial features need to be extracted

• Curse of dimensionality: statistical estimation is difficult

• Hughes phenomenon

• How to use both the spatial and the spectral information?
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Hyperspectral Data

Geometrical approach for the classification:

• Support Vector Machines (SVMs)

• Kernel Methods

Decision Fusion:

• Decision rule should use SVMs’ output particularities

• Confidence of each classifier should drive the fusion
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Support Vector Machines

• Geometrical approach: Find the optimal hyperplane which
separates samples.

• Hyperplane parameters: (w, b) which is found by solving,

min

[
‖w‖2

2
+ C

N∑
i=1

ξi

]
,

subject to yi (〈w, xi 〉 + b) ≥ 1 − ξi , ξi ≥ 0, ∀i ∈ [1, . . . ,N].
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Support Vector Machines

• The resulting classification rule is:

yu = sgn

(
N∑

i=1

yiαi 〈xi , xu〉 + b

)

• Multiclass problems are solved by combining several binary
classifiers

• Kernel methods increase the classification capability:

〈Φ(xi ),Φ(xj)〉 = k(xi , xj)
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Data Fusion

Decision rules should take into account:

• the SVMs’ output characteristics (distance to the hyperplane):
• signed numbers
• not bounded

• the agreement of the classifier:
• seen as a probability

Fusion Rule

Fusion Rule
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Data Fusion

Absolute maximum decision fusion rule:

d f
ij = AbsMax(d1

ij , d
2
ij )

where AbsMax is the set of logical rules:

if(|d1
ij | > |d2

ij |) then d1
ij

else if(|d2
ij | > |d1

ij |) then d2
ij

The probability is computed by:

p1
i =

2

m(m − 1)

m∑
j=0,j 6=i

I (d1
ij )

Final fusion rule:

d f
ij = AbsMax

(
max(p1

i , p
1
j )d

1
ij ,max(p2

i , p
2
j )d

2
ij

)
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Experiment

Real hyperspectral data (ROSIS sensor):

• Spectral data, 103 bands

• Extended morphological profile, 63 bands

Three combination scheme were investigated:

• Our proposed fusion rule

• The AbsMax rule, without probability

• Majority voting
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Experiment

Classification accuracies:

Spect. PCA+EMP Abs. Max. A.M.+Prob. Maj. Vot.

OA 80.99 85.22 89.56 89.65 86.07
AA 88.28 90.76 93.61 93.70 88.49

Kappa 76.16 80.86 86.57 86.68 81.77

Classes description: asphalt, meadow, gravel, tree, metal sheet,
bare soil, bitumen, brick, shadow.
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Conclusions

Some Conclusions:

• Decision fusion for SVMs classifier has been discussed

• The absolute maximum perform well

• Unsupervised fusion scheme

Some perspectives:

• Test the method on other data

• Include some information about the generalization ability of
the SVMs classifiers
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