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Introduction

• Collaboration between Telecom Bretagne and IFREMER for sonar image analysis of  
seabed.
• Project REBENT (Ifremer) on benthic habitats in a coastal area of ​​200km2 in 
Concarneau Bay in 2003.
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Introduction
Sonar texture database

• 6 classes of sonar images 
• Each class comprises 40 256 x 256 images

Mud
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Introduction
Sonar texture database

• 6 classes of sonar images 
• Each class comprises 40 256 x 256 images

Sandy mud
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Introduction
Sonar texture database

• 6 classes of sonar images 
• Each class comprises 40 256 x 256 images

Maerly and gravelly sand
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Introduction
Sonar texture database

• 6 classes of sonar images 
• Each class comprises 40 256 x 256 images

Mixed Sediment
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Introduction
Sonar texture database

• 6 classes of sonar images 
• Each class comprises 40 256 x 256 images

Rock
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Introduction
Sonar texture database

• 6 classes of sonar images 
• Each class comprises 40 256 x 256 images

Clearly sand

 
How to distinguish the different classes of sonar images?  

Cooccurrence matrix  [Haralick 73]

Gabor and wavelet [Daugman 88]

Multifractal [Kaplan 99]
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Introduction

Examples of di erent spatial distributions of two marked-pointsff

Detection

5

8

2

Codebook construction Descriptor vector calculation

[Bag of keypoints - Sivic 2003] 
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Outline

1. Spatial point statistics
• Multi-marked point process and associated descriptive statistic

• Log-Gaussian Cox model

2. Local signature detection and characterization in images 
• Keypoints
• Shapes

3. Experimental evaluation
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Outline
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Spatial pattern of local signatures in images

Each point {si} :

      Set of local signatures in image I Set of points {si}  in region B

• Spatial position si(x,y)

• Visual information Vsi(u1, …,un)
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Spatial point process

A spatial point process S is defined as a locally finite random subset of a given 

bounded region B R⊂ 2. A realization of such a process is a spatial point pattern 

{si} S ⊂ of n points contained in B. [Diggle83,Stoyan87]
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Marked point process 
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A marked point process is defined as a spatial point process for 
which a mark mi is associated to each point si in B.
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Marked point process 
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A marked point process is defined as a spatial point process for 
which a mark mi is associated to each point si in B.
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Second-order descriptive statistics
)()()( )2(1 rrK ijjiij αλλ −=  Ripley's K function : (Ripley81)

Proposed  descriptor vector : the second-order spatial cooccurrence statistics are used to 
measure the mean number of points of type j located in a study region of radius r centered at the 
points of type i (which itself is excluded). 

)()( rKr ijjij λ=Γ

 Where the mean density λ = μ(B)/ |B| 

ClusterPoisson : K(r) = πr2 
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Statistical model

Empirical description  Λ = f(Y(s))
Statistical model

Measure on random observations
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   log-Gaussian Cox model
(Moller98)

Definition  : A multivariate Cox process X={Xi} is conditionally independent 

w.r.t. a multivariate intensity field Λ={Λi(s):s∈R2}  such that Xi|Λi is a Poisson 

process with intensity measure Λi.

Λi(s)=exp(Yi(s)) :  log-Gaussian Cox process (LGCP)
where Yi(s) a multivariate Gaussian field.

Describe relationships between variables
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Estimation & simulation of log-Gaussian 
Cox model

 Order1 : )
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Gaussian : exp(-(r/β)2) Hyperbolic : (1+r/β)-1

 Simulation of LGCP with the different covariance model L(β,r) : 
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Proposed approach

Keypoint Shapes
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Statistical calculation of descriptor:
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Outline

1. Spatial point statistics 
• Multi-marked point process and associated descriptive statistic 
• Log-Gaussian Cox model

2. Local signature detection and characterization in images 
• Keypoints
• Shapes

3. Experimental evaluation



Detector Coin  Region Rotation    Scale     Affine Ref.

Harris    x           x Harris88

Harris-Laplacian    x           (x)       x               x Mikolajczyk01

Hessian-Laplacian   (x)           x       x               x

Harris-Affine    x           (x)       x               x           x Mikolajczyk05

Fast Hessian   (x)           x       x               x Bay06

DoG   (x)           x       x               x Lowe04page 22

Keypoint detection

Harris Harris-Affine DoGHarris-Laplacian
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Keypoint’s description

Scale-invariant feature transform- 
DoG+SIFT (Lowe 04)
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Keypoint’s description

Scale-invariant feature transform- 
DoG+SIFT (Lowe 04)

Rotation
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Keypoint’s description

Scale-invariant feature transform- 
DoG+SIFT (Lowe 04)

Contrast
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Keypoint’s description

Scale-invariant feature transform- 
DoG+SIFT (Lowe 04)

Scale
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Keypoint’s description

Scale-invariant feature transform- 
DoG+SIFT (Lowe 04)

Detector DoG Fast-Hes Fast-Hes Hes-Lap Har-Lap

Descriptor Sift Surf Brief Daisy Sift-Spin

Ref. Lowe04 Bay 06 Calonder10 Tola10 Zhang07
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Shape detector

Level-line representation

Upper and lower level set Upper level set tree 
Fast Level-Set Transform -FLST (Caselles99)  
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Shape’s description

Inner-distance shape context  descriptor (Ling05):

{ })(),(),,(:)( kbinxxxxdxEkh ijijjiji ∈= ≠ θ

inner-distance d(xj,x i)
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Outline

1. Spatial point statistics 
• Multi-marked point process and associated descriptive statistic 

• Log-Gaussian Cox model 

2. Local signature detection and characterization in images  

• Keypoints 

• Shapes 

3. Experimental evaluation
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Supervisor classification
              

k-NN SVM

Distance : Euclidiean, χ2  and Jensen-Shannon divergence

1/|w|

Optimal 
hyperplane

Support vectorMaximum-margin
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Supervisor classification

Binary Decision Tree

Random forest (RF): 
• Choose a training set with n samples of  N training cases, and m variables from M  
variables of sample to determine the decision at a node of the tree.
The class of new sample is the major vote of all trees. 
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Sonar texture classification

Classification rates and standard deviations over 50 random 
selections



page 34

Natural texture classification
25 classes of UIUC textures [Lazebnik05]; 40 640x480 images/class.

Classification rates and standard deviations over 50 random selections
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Natural scene classification
 15 classes of natural scene

Spatial pyramid of keypoint (Lazebnik06)                   81,4%
Spatial concept correlogram (Liu 07)                          81,72%

Bayesian hierarchical model (Fei-Fei 05)                    74,8%

log-Gaussian Cox  model                                           82,9%

[Lazebnik06]
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