

Characterization and modeling of the spatial distribution of local signatures in images: Application to classification of seabed's sonar image.



H-G.Nguyen, R.Fablet, J-M.Boucher <sup>(1)</sup>Institut Telecom / Telecom Bretagne / LabSTICC CS 83818 - 29238 Brest Cedex 3 – France <sup>(2)</sup>Université européenne de Bretagne





# Introduction



- Collaboration between Telecom Bretagne and IFREMER for sonar image analysis of seabed.
- Project REBENT (Ifremer) on benthic habitats in a coastal area of 200km2 in Concarneau Bay in 2003.











### L. Hellequin 1998 & G. Le Chenadec 2004 & I.Karoui 2007



- 6 classes of sonar images
- Each class comprises 40 256 x 256 images



Mud



- 6 classes of sonar images
- Each class comprises 40 256 x 256 images



### Sandy mud



- 6 classes of sonar images
- Each class comprises 40 256 x 256 images



### Maerly and gravelly sand



- 6 classes of sonar images
- Each class comprises 40 256 x 256 images



### **Mixed Sediment**



- 6 classes of sonar images
- Each class comprises 40 256 x 256 images





Rock



- 6 classes of sonar images
- Each class comprises 40 256 x 256 images



### **Clearly sand**

### How to distinguish the different classes of sonar images?

Cooccurrence matrix [Haralick 73]

Gabor and wavelet [Daugman 88]

**Multifractal [Kaplan 99]** 





# Introduction





Examples of different spatial distributions of two marked-points





- **1.** Spatial point statistics
  - Multi-marked point process and associated descriptive statistic
  - Log-Gaussian Cox model
- 2. Local signature detection and characterization in images
  - Keypoints
  - Shapes
- 3. Experimental evaluation





### **1.** Spatial point statistics

- Multi-marked point process and associated descriptive statistic
- Log-Gaussian Cox model
- **2.** Local signature detection and characterization in images
  - Keypoints
  - Shapes
- **3.** Experimental evaluation



# Spatial pattern of local signatures in images



Set of local signatures in image |



Set of points  $\{s_i\}$  in region B





## Spatial point process

A spatial point process S is defined as a locally finite random subset of a given bounded region  $B \subset \mathbb{R}^2$ . A realization of such a process is a spatial point pattern  $\{s_i\} \subset S$  of n points contained in B. [Diggle83,Stoyan87]

$$\mathfrak{u}^{(p)}(B_1 \times \ldots \times B_p) = E[N(B_1) \ldots N(B_p)]$$

\* First-order moment(p=1):  $\mu(B) = E\left[\sum_{s \in S} I_B(s)\right]$ 

\* Second-order moment(p=2): 
$$\mu^{(2)}(B_1 \times B_2) = E\left[\sum_{s_1 \in S} \sum_{s_2 \in S} I_{B_1}(s_1) I_{B_2}(s_2)\right]$$



# Marked point process

A *marked point process* is defined as a spatial point process for which a mark  $m_i$  is associated to each point  $s_i$  in **B**.  $\mu_i(B) = E\left[\sum_{i} \delta_i(m_t)I_B(s_t)\right]$ 

**\*** First-order moment:

(Bag of keypoints)

Second-order moment:

$$\alpha_{ij}^{(2)}(r) = E\left[\sum_{h}\sum_{l\neq h}\delta_{i}(m_{h})\delta_{j}(m_{l})I(||s_{h}-s_{l}||\leq r)\right]$$



page 15

$$\begin{array}{lll} \mu_1 = 2 & ; & \mu_2 = 5 \\ \alpha_{11}^{(2)} = 0 & ; & \alpha_{12}^{(2)}(3) = 3 & ; & \alpha_{22}^{(2)}(3) = 4 \end{array}$$



# Marked point process

A *marked point process* is defined as a spatial point process for which a mark  $m_i$  is associated to each point  $s_i$  in **B**.  $\mu_i(B) = E\left[\sum \delta_i(m_t)I_B(s_t)\right]$ 

\* First-order moment:

(Bag of keypoints)

Second-order moment:

$$\alpha_{ij}^{(2)}(r) = E\left[\sum_{h}\sum_{l\neq h}\delta_{i}(m_{h})\delta_{j}(m_{l})I(||s_{h} - s_{l}|| \leq r)\right]$$



$$\begin{array}{lll} \mu_1 = 2 & ; & \mu_2 = 5 \\ \alpha_{11}^{(2)} = 2 & ; & \alpha_{12}^{(2)}(3) = 4 & ; & \alpha_{22}^{(2)}(3) = 8 \end{array}$$



### Second-order descriptive statistics

• Ripley's K function : (Ripley81)  $K_{ij}(r) = (\lambda_i \lambda_j)^{-1} \alpha_{ij}^{(2)}(r)$ Where the mean density  $\lambda = \mu(B)/|B|$ 



<u>Proposed descriptor vector</u>: the second-order spatial cooccurrence statistics are used to measure the mean number of points of type j located in a study region of radius r centered at the points of type i (which itself is excluded).

$$\Gamma_{ij}(r) = \lambda_j K_{ij}(r)$$



# Statistical model



<u>Definition</u> : A multivariate Cox process  $X=\{X_i\}$  is conditionally independent w.r.t. a multivariate intensity field  $\Lambda=\{\Lambda_i(s):s\in \mathbb{R}^2\}$  such that  $X_i|\Lambda_i$  is a Poisson process with intensity measure  $\Lambda_i$ .

 $\Lambda_i(s)=exp(Y_i(s))$ : log-Gaussian Cox process (LGCP)

where  $Y_i(s)$  a multivariate Gaussian field.



### Estimation & simulation of log-Gaussian Cox model

$$\text{ Order1 : } \lambda_i = \exp(\mu_i + \frac{\sigma_i^2}{2}) \qquad \text{ Order2 : } K_{ij}(R) = 2\pi \int_0^R r \exp(c_{ij}(r)) dr \\ \int_0^R \left\{ \sigma_{ij}^2 \mathbb{L}(\beta, r) - c_{ij}(r) \right\}^2 dr$$

<u>Proposed descriptor vector:</u>  $(\lambda_i, \sigma_{ij}, \beta_{ij})$ 

\* Simulation of LGCP with the different covariance model  $L(\beta,r)$ :



Gaussian :  $exp(-(r/\beta)^2)$ 





Hyperbolic : (1+r/β)-1



20

40

30

200

8

page 19





ELECO



### **1.** Spatial point statistics

- Multi-marked point process and associated descriptive statistic
- Log-Gaussian Cox model
- 2. Local signature detection and characterization in images
  - Keypoints
  - Shapes
- **3.** Experimental evaluation



# Keypoint detection



Harris



Harris-Laplacian





Harris-Affine

DoG

| Detector          | Coin | Region | Rotation | Scale | Affine | Ref.          |
|-------------------|------|--------|----------|-------|--------|---------------|
| Harris            | х    |        | x        |       |        | Harris88      |
| Harris-Laplacian  | х    | (x)    | x        | х     |        | Mikolajczyk01 |
| Hessian-Laplacian | (x)  | x      | x        | х     |        |               |
| Harris-Affine     | х    | (x)    | x        | х     | х      | Mikolajczyk05 |
| Fast Hessian      | (x)  | х      | х        | х     |        | Bay06         |
| page 22 DOG       | (x)  | х      | х        | х     |        | Lowe04        |



Scale-invariant feature transform-DoG+SIFT (Lowe 04)







Scale-invariant feature transform-DoG+SIFT (Lowe 04)







#### Scale-invariant feature transform-DoG+SIFT (Lowe 04)



Contrast





#### Scale-invariant feature transform-DoG+SIFT (Lowe 04)







page 26



Scale-invariant feature transform-DoG+SIFT (Lowe 04)

| Detector   | DoG    | Fast-Hes | Fast-Hes   | Hes-Lap | Har-Lap   |
|------------|--------|----------|------------|---------|-----------|
| Descriptor | Sift   | Surf     | Brief      | Daisy   | Sift-Spin |
| Ref.       | Lowe04 | Bay 06   | Calonder10 | Tola10  | Zhang07   |



page 27





Level-line representation

$$\begin{cases} \chi^{\geq\lambda}(u) = \{x \in X, u(x) \geq \lambda\} \\ \chi_{\leq\mu}(u) = \{x \in X, u(x) \leq \mu\} \end{cases}$$

Upper and lower level set



Upper level set tree Fast Level-Set Transform -FLST (Caselles99)



## Shape's description

Inner-distance shape context descriptor (Ling05):

$$h_i(k) = E_{j \neq i} \left\{ x_j : \left\langle d(x_j, x_i), \theta(x_j, x_i) \right\rangle \in bin(k) \right\}$$





inner-distance  $d(x_i, x_i)$ 





### **1.** Spatial point statistics

- Multi-marked point process and associated descriptive statistic
- Log-Gaussian Cox model
- **2.** Local signature detection and characterization in images
  - Keypoints
  - Shapes
- 3. Experimental evaluation



## Supervisor classification



**Distance :** Euclidiean,  $\chi^2$  and Jensen-Shannon divergence



# Supervisor classification

### Random forest (RF):

• Choose a training set with n samples of N training cases, and m variables from *M* variables of sample to determine the decision at a node of the tree.

The class of new sample is the major vote of all trees.





| $N_t$                | 1                | 5                | 10               |
|----------------------|------------------|------------------|------------------|
| Filtre de Gabor [7]  | $51.71 \pm 3.24$ | $59.27 \pm 1.97$ | $69.81 \pm 1.48$ |
| Matrice de Cooc. [8] | $62.13 \pm 3.17$ | $72.15 \pm 1.53$ | $81.21 \pm 1.27$ |
| SDM[9]               | $67.15 \pm 2.55$ | $85.42 \pm 1.56$ | $92.03 \pm 1.21$ |
| Ling[10]             | $66.83 \pm 2.33$ | $85.27 \pm 1.83$ | $91.92 \pm 1.24$ |
| Xu[11]               | $67.54 \pm 2.49$ | $87.12 \pm 1.91$ | $91.85 \pm 1.12$ |
| Zhang[12]            | $73.33 \pm 2.17$ | $90.67 \pm 1.15$ | $94.25 \pm 0.73$ |
| SSC[104]             | $74.57{\pm}1.69$ | $91.17 \pm 1.08$ | $96.67 \pm 0.35$ |
| LGCM                 | $73.85 \pm 1.75$ | $91.34{\pm}0.72$ | $97.14{\pm}0.37$ |

Classification rates and standard deviations over 50 random selections



# Natural texture classification

### 25 classes of UIUC textures [Lazebnik05]; 40 640x480 images/class.



| $N_t$                | 1                | 10                 | 20                 |
|----------------------|------------------|--------------------|--------------------|
| Filtre de Gabor [7]  | $31.22 \pm 3.14$ | $57.37 \pm 1.93$   | $67.78 \pm 1.28$   |
| Matrice de Cooc. [8] | $45.33 \pm 3.03$ | $70.67 \pm 1.72$   | $80.12 \pm 1.30$   |
| SDM[9]               | $67.25 \pm 2.75$ | $81.12 \pm 1.45$   | $91.28 \pm 1.15$   |
| Ling[10]             | $67.62 \pm 2.93$ | $84.14 \pm 1.72$   | $91.87 \pm 1.38$   |
| Zhang[12]            | $72.53 \pm 2.45$ | $93.17 {\pm} 1.15$ | $96.67 {\pm} 0.93$ |
| SSC[104]             | $75.66{\pm}1.65$ | $94.33 {\pm} 0.78$ | $97.34 {\pm} 0.25$ |
| LGCM                 | $75.21 \pm 1.75$ | $95.42{\pm}0.71$   | $97.84{\pm}0.32$   |

Classification rates and standard deviations over 50 random selections





#### ✤ 15 classes of natural scene



### [Lazebnik06]

Bayesian hierarchical model (Fei-Fei 05) Spatial pyramid of keypoint (Lazebnik06) Spatial concept correlogram (Liu 07) Iog-Gaussian Cox model 74,8% 81,4% 81,72% 82,9%



# Publications

- H-G Nguyen et al. "Keypoint-based analysis of sonar images : application to seabed recognition." IEEE Transaction on Geoscience and Remote Sensing TGRS'2011.
- H-G Nguyen et al."Multivariate log-Gaussian Cox models of elementary shapes for recognizing natural scene categories". IEEE International Conference on Image Processing, ICIP'2011.
- H-G Nguyen et al." Visual textures as realizations of multivariate log-Gaussian Cox processes." IEEE Conf. on Computer Vision and Pattern Recognition, pp.2945-2952, CVPR'2011.
- H-G Nguyen et al." Log Gaussian Cox Processes of visual keypoints for sonar texture recognition." IEEE Conf. on Acoustics, Speech and Signal Processing, pp.1005-1008, ICASSP'2011.
- H-G Nguyen et al." Spatial statistics of visual keypoints for texture recognition." European Conference on Computer Vision, Vol.6314, pp.764-777, ECCV'2010.
- H-G Nguyen et al." Invariant descriptors of sonar textures from spatial statistics of local features." IEEE Conf. on Acoustics, Speech and Signal Processing, pp. 1674-1677, ICASSP'2010.

H-G Nguyen et al." Statistiques spatiales de points d'intérêt pour la reconnaissance invariante de textures.", 5ème Congrès Francophone AFRIF-AFIA de Reconnaissance des Formes et Intelligence Artificielle, RFIA'2010.

