Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion

Estimating metrics suitable to an empirical manifold of shapes, using transport against the curse of dimensionality

Guillaume Charpiat

Pulsar Project

INRIA Workshop on Statistical Learning IHP

05/12/2011

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion

Мар

- Introduction
 - Motivation
 - Issues
- Searching for solutions
 - Main existing approaches and their limitations
 - Main idea
- The approach
 - Shape matching
 - Transport
 - Metric estimation (statistics on deformations)
 - Theory
- Future work

Introduction ●○○	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory 000	Conclusion
Motivation						

Image Segmentation

- Find a contour in a given image
- The best curve for a given segmentation criterion
- Criterion based on color homogeneity, texture, edge detectors, etc.

Image

Segmentation

Guillaume Charpiat

Pulsar project - INRIA

Introduction ●○○	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory	Conclusion
Motivation						

Image Segmentation

Find the best contour for a given criterion

Variational Method

- Energy E to minimize with respect to a curve C
- Compute the derivative of the energy
- Gradient descent: $\partial_t C = -\nabla E(C)$
- ► Initialization → local minimum
- Other methods: graph cuts (suitable for few energies)

Introduction ●○○	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory 000	Conclusion
Motivation						

Image Segmentation

Find the best contour for a given criterion

Variational Method

- Minimize criterion by gradient descent with respect to the contour
- Most criteria: no shape information

Introduction ●○○	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
Motivation						

Image Segmentation

Find the best contour for a given criterion

Variational Method

Minimize criterion by gradient descent with respect to the contour

Shape Statistics

- Sample set of contours from already segmented images
- Shape variability ?
- Shape prior ?

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
Motivation						

- Shape spaces : which metric ?
 - (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, morphing : priors on probable deformations ?
 - \implies Which local metric on deformations ?

(metric on the manifold of shapes)

Introduction 000	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory 000	Conclusion
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, morphing : priors on probable deformations ?
 - \implies Which local metric on deformations ?

(metric on the manifold of shapes)

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, morphing : priors on probable deformations ?
 - \implies Which local metric on deformations ?

(metric on the manifold of shapes)

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory 000	Conclusion
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, morphing : priors on probable deformations ?
 - \implies Which local metric on deformations ?
 - (metric on the manifold of shapes)
 - L² norm of instantaneous deformations
 - L² + curvature, H¹
 - \blacktriangleright rigid motion more probable \implies associated metric

Introduction 000	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, morphing : priors on probable deformations ?
 - \implies Which local metric on deformations ?
 - (metric on the manifold of shapes)
 - L² norm of instantaneous deformations
 - L² + curvature, H¹
 - rigid motion more probable \implies associated metric

 L^2 inner product

rigidifying inner product

Pulsar project - INRIA

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
Motivation						

- Shape spaces : which metric ? (to define similarity/distance between shapes)
 - Hausdorff distance
 - Symmetric difference area
 - Quotients by transformation groups (rotation, translation, scaling, affine...)
- Shape evolution, morphing : priors on probable deformations ?
 - \implies Which local metric on deformations ?
 - (metric on the manifold of shapes)
 - L² norm of instantaneous deformations
 - L² + curvature, H¹
 - \blacktriangleright rigid motion more probable \implies associated metric

$\blacktriangleright \implies$ learn the suitable metric from examples (datasets of shapes)

Guillaume Charpiat

Introduction ○○●	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
Issues						

- Sparse sets of highly varying shapes
 - e.g. human silhouettes
 - high intrinsic dimension (\geq 30)
 - $\blacktriangleright \implies$ no dense training set

Guillaume Charpiat Metrics that suit an empirical manifo<u>ld of shapes</u>

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
Issues						

- Sparse sets of highly varying shapes
 - e.g. human silhouettes
 - high intrinsic dimension (\geq 30)
 - no dense training set

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
Issues						

- Sparse sets of highly varying shapes
 - e.g. human silhouettes
 - high intrinsic dimension (\geq 30)
 - no dense training set

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
Issues						

- Sparse sets of highly varying shapes
 - e.g. human silhouettes
 - high intrinsic dimension (\geq 30)
 - no dense training set

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
Issues						

- Sparse sets of highly varying shapes
 - e.g. human silhouettes
 - ▶ high intrinsic dimension (≥ 30)
 - no dense training set

 to compare quantities defined on different shapes : need for correspondences

- match shape with different topologies ?
- very frequent topological changes

Pulsar project - INRIA

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
State of the art						

Searching for solutions

Main existing approaches and their limitations

Approach 1 : *mean* + *modes* model

Approach 2 : distance-based approaches, such as kernel methods

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

• Mean M, shapes S_i , warpings $W_{M \to S_i}$

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

• Mean *M*, shapes S_i , warpings $W_{M \to S_i}$

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

• Mean M, shapes S_i , warpings $W_{M \to S_i}$

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

- Mean M, shapes S_i , warpings $W_{M \to S_i}$
- ▶ PCA : diagonalize correlation matrix C : $C_{ij} = \langle W_{M \to S_i} | W_{M \to S_i} \rangle$
 - \implies eigenmodes e_k with eigenvalues λ_k : best coordinate system

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

- ▶ Mean *M*, shapes S_i , warpings $W_{M \to S_i}$
- ▶ PCA : diagonalize correlation matrix C : $C_{ij} = \langle W_{M \to S_i} | W_{M \to S_j} \rangle$ ⇒ eigenmodes e_k with eigenvalues λ_k : best coordinate system
- ▶ any new deformation *W* of *M* :

$$W = \sum_{k} \alpha_k e_k + \text{ noise}$$

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

• Mahalanobis distance : $d(M + W, (S)) = \sum_{k} \frac{\alpha_{k}^{2}}{\lambda_{k}^{2}}$

Introduction	Searching for solutions ○●○○○○○○	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

- Mahalanobis distance : $d(M + W, (S)) = \sum_{k} \frac{\alpha_{k}^{2}}{\lambda_{k}^{2}}$
- ► associated inner product on deformations, in the tangent space of *M*: $\langle W_1 | W_2 \rangle = \sum_k \frac{1}{\lambda_k^2} \alpha_{1,k} \alpha_{2,k}$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

- Mahalanobis distance : $d(M + W, (S)) = \sum_{k} \frac{\alpha_{k}^{2}}{\lambda_{k}^{2}}$
- ► associated inner product on deformations, in the tangent space of *M*: $\langle W_1 | W_2 \rangle = \sum_k \frac{1}{\lambda_k^2} \alpha_{1,k} \alpha_{2,k}$
- defines a deformation cost $||W||^2 = \langle W |W \rangle$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory 000	Conclusion
State of the art						

▶ probability $p(W) \propto exp(-\sum_k \frac{\alpha_k^2}{2\lambda_k^2})$: Gaussian distribution

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions ○●○○○○○○	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
State of the art						

▶ probability
$$p(W) \propto exp(-\sum_{k} \frac{\alpha_k^2}{2\lambda_k^2})$$
: Gaussian distribution

defines a Gaussian shape prior

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory	Conclusion
State of the art						

Empirical distribution : $\mathcal{D}_{emp} = \sum_{i} \delta_{W_{M \to S_i}}$ (possibly smoothed by a kernel)

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions ○●○○○○○○	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art	t					

► Empirical distribution : $\mathcal{D}_{emp} = \sum_{i} \delta_{W_{M \to S_i}}$ (possibly smoothed by a kernel)

Any inner product < | >_P in tangent space of the mean ⇒ Gaussian distribution D_P(W) ∝ exp(-||W||²_P)

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
	0000000					
State of the ar	t					

► Empirical distribution : $\mathcal{D}_{emp} = \sum_{i} \delta_{W_{M \to S_i}}$ (possibly smoothed by a kernel)

Any inner product $\langle | \rangle_P$ in tangent space of the mean \Rightarrow Gaussian distribution $\mathcal{D}_P(W) \propto \exp(-||W||_P^2)$

▶ Best *P* for Kullback-Leibler($\mathcal{D}_P | \mathcal{D}_{emp}$) : PCA!

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

Approach 1 : mean + modes model

\hookrightarrow example from my PhD thesis

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
	0000000					
State of the art						

Statistics (PCA) on deformation fields

between the mean shape and each sample

modes of deformation = deformation prior = Gaussian probabilistic model

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

Example of application : image segmentation with shape prior

without shape prior

with shape prior

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

Example of application : image segmentation with shape prior

without shape prior

with shape prior

requires a mean shape (does not always make sense, e.g. person walking)

Guillaume Charpiat Metrics that suit an empirical manifold of shapes
Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
State of the art						

Example of application : image segmentation with shape prior

without shape prior

with shape prior

requires a mean shape (does not always make sense, e.g. person walking) Δ

requires all deformations between the mean and samples : \implies relatively similar sample shapes (otherwise, not reliable)

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
State of the art						

- Kernel : symmetric definite positive function k(x, y)
- Expresses the similarity between x and y
- ▶ Typically, the Gaussian kernel : $k(x, y) = exp(-d(x, y)^2)$
- For each point x_i : $k_i(y) := k(x_i, y)$

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
State of the art						

- Kernel : symmetric definite positive function k(x, y)
- Expresses the similarity between x and y
- **•** Typically, the Gaussian kernel : $k(x, y) = exp(-d(x, y)^2)$
- For each point x_i : $k_i(y) := k(x_i, y)$

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
State of the art						

- Kernel : symmetric definite positive function k(x, y)
- Expresses the similarity between x and y
- ▶ Typically, the Gaussian kernel : $k(x, y) = exp(-d(x, y)^2)$
- For each point x_i : $k_i(y) := k(x_i, y)$

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
	00000000					
State of the art						

- Kernel : symmetric definite positive function k(x, y)
- Expresses the similarity between x and y
- ▶ Typically, the Gaussian kernel : $k(x, y) = exp(-d(x, y)^2)$
- For each point x_i : $k_i(y) := k(x_i, y)$

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
	00000000					
State of the art						

- choice of a distance, of a kernel ?
- distance between 2 shapes : not much informative (wrt deformations)
- rebuild geometry of space of shapes from distances ?
- distances are not reliable/meaningful for far shapes
- needs for a representative neighborhood, i.e. a high dataset density (not affordable)

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
	00000000					
State of the art	:					

- choice of a distance, of a kernel ?
- distance between 2 shapes : not much informative (wrt deformations)
- rebuild geometry of space of shapes from distances ?
- distances are not reliable/meaningful for far shapes
- \blacktriangleright \implies needs for a representative neighborhood, i.e. a high dataset density
- in a high-dimensional manifold, all distances are similar, and all points are on the boundary of the manifold
- $lacksim \Longrightarrow$ cannot work, need for more information than distances

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
Main idea						

- consider deformations (not just distances)
- should not require high density of training set
- no magic (to handle/interpolate sparse sets) : add a prior

Introduction	Searching for solutions ○○○○○○●○	Shape matching	Transport	Metric estimation	Theory	Conclusion
Main idea						

- consider deformations (not just distances)
- should not require high density of training set
- no magic (to handle/interpolate sparse sets) : add a prior
- prior chosen : transported deformations make sense,
 - i.e. a deformation observed on one shape can be applied to other shapes

Introduction	Searching for solutions ○○○○○○●○	Shape matching	Transport	Metric estimation	Theory	Conclusion
Main idea						

- consider deformations (not just distances)
- should not require high density of training set
- no magic (to handle/interpolate sparse sets) : add a prior
- prior chosen : transported deformations make sense,
 - i.e. a deformation observed on one shape can be applied to other shapes

transport requires correspondences

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions ○○○○○○●○	Shape matching	Transport	Metric estimation	Theory	Conclusion
Main idea						

- consider deformations (not just distances)
- should not require high density of training set
- no magic (to handle/interpolate sparse sets) : add a prior
- prior chosen : transported deformations make sense,
 - i.e. a deformation observed on one shape can be applied to other shapes

- transport requires correspondences
- but shape matching reliable only for close shapes

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions ○○○○○○●○	Shape matching	Transport	Metric estimation	Theory	Conclusion
Main idea						

- consider deformations (not just distances)
- should not require high density of training set
- no magic (to handle/interpolate sparse sets) : add a prior
- prior chosen : transported deformations make sense,
 - i.e. a deformation observed on one shape can be applied to other shapes

- transport requires correspondences
- but shape matching reliable only for close shapes
- compute correspondences between close shapes only, and combine small steps of reliable correspondences to build longer-distance correspondences

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions 0000000●	Shape matching	Transport	Metric estimation	Theory	Conclusion
Main idea						

Мар

- Close shape matching
- Transport
- Metric estimation (statistics on transported deformations)
- Theoretical justifications

Introduction	Searching for solutions	Shape matching ●○	Transport 00000	Metric estimation	Theory 000	Conclusion
Close shape mat	tching					

Shape matching

Simple case : two shapes, A and B, with one connected component

$$\inf_{f:A\to B} \int_{A} \|f\|^2 + \alpha \|\nabla f\|^2 dA$$

- shape sampling
- dynamic time warping
- theory & experiments :

higher sampling rate on target

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching ●○	Transport 00000	Metric estimation	Theory 000	Conclusion
Close shape ma	tching					

Shape matching

Simple case : two shapes, A and B, with one connected component

$$\inf_{f:A\to B}\int_{A}\|f\|^{2}+\alpha\|\nabla f\|^{2}dA$$

- shape sampling
- dynamic time warping
- theory & experiments :
 - higher sampling rate on target

Usual case : random topologies

Usual cases = more complex (more than 10 connected components in this silhouette) but one connected component $\rightarrow \bigcup_{i}$ connected components = the same

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
		00				
Close shape mat	tching					

Further possible improvements

- as such, allows appearing points (mismatches)
- > allows disappearing points : matching to \varnothing with a fixed high cost
- pb : better matchings, but energy value loses meaning

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
		00				
Close shape mat	tching					

Further possible improvements

- as such, allows appearing points (mismatches)
- > allows disappearing points : matching to \varnothing with a fixed high cost
- pb : better matchings, but energy value loses meaning

Drawbacks

- specific to planar curves
- not symmetric : $m_{A \to B} = m_{B \to A}^{-1}$

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport ●○○○○	Metric estimation	Theory 000	Conclusion
Local transport						

Local transport

Set of shapes $(S_i)_{i \in I}$ (e.g. from a video segmentation)

Ż

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport ●○○○○	Metric estimation	Theory 000	Conclusion
Local transport						

Local transport

- Set of shapes $(S_i)_{i \in I}$ (e.g. from a video segmentation)
- ▶ Two shapes S_i and $S_j \implies$ their correspondence field $m_{i \rightarrow j}$

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport ●0000	Metric estimation	Theory	Conclusion
Local transport						

Local transport

- Set of shapes $(S_i)_{i \in I}$ (e.g. from a video segmentation)
- ▶ Two shapes S_i and $S_j \implies$ their correspondence field $m_{i \rightarrow j}$

Transport (translation, naive) :

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport ●0000	Metric estimation	Theory 000	Conclusion
Local transport						

Local transport

- Set of shapes $(S_i)_{i \in I}$ (e.g. from a video segmentation)
- ▶ Two shapes S_i and $S_j \implies$ their correspondence field $m_{i \rightarrow j}$
- Transport (translation, naive) :

$$egin{array}{lll} orall \ h: S_j
ightarrow \mathcal{X}, & T^L_{j
ightarrow i}(h): \ S_i \
ightarrow \mathcal{X} \ & \left(T^L_{j
ightarrow i}(h)
ight)(s) \ = \ h\left(m_{i
ightarrow j}(s)
ight) \end{array}$$

Associated cost : $E(m_{i \rightarrow j}) \implies$ reliability $w_{i \rightarrow j}^L \propto \exp\left(-\alpha E(m_{i \rightarrow j})\right)$

Introduction	Searching for solutions	Shape matching	Transport ○●○○○	Metric estimation	Theory	Conclusion
Global transport						

Global transport

- ► Associated cost : $E(m_{i \to j}) \implies$ reliability $w_{i \to j}^L \propto \exp\left(-\alpha E(m_{i \to j})\right)$
- close shapes : reliable; distant shapes : not reliable
- $\blacktriangleright \implies$ search for paths of small steps in the training set (S_i)
- graph : nodes = shapes, edges = transport, weights = transport cost
- shortest path between pairs of shapes : global transport

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport ○●○○○	Metric estimation	Theory	Conclusion
Global transport						

Global transport

- Associated cost : $E(m_{i \rightarrow j}) \implies$ reliability $w_{i \rightarrow j}^{L} \propto \exp\left(-\alpha E(m_{i \rightarrow j})\right)$
- close shapes : reliable; distant shapes : not reliable
- $\blacktriangleright \implies$ search for paths of small steps in the training set (S_i)
- graph : nodes = shapes, edges = transport, weights = transport cost
- shortest path between pairs of shapes : global transport
- ► compose : $T_{i \to j}^{\mathcal{G}} = T_{i_n \to j}^{\mathcal{L}} \circ T_{i_{n-1} \to i_n}^{\mathcal{L}} \circ \dots \circ T_{i_1 \to i_2}^{\mathcal{L}} \circ T_{i \to i_1}^{\mathcal{L}}$

• reliability :
$$w_{i \rightarrow j}^{G} = \prod_{i} w_{i_k \rightarrow i_{k+1}}^{L}$$

use transport to propagate information

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport						

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport						

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport						

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport						

Transported arm rotation (translation)

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport						

Transported arm rotation (better)

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport						

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport						

Transported forearm rotation

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport						

Transported forearm rotation (better)

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport	t					

Transport to another shape

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport						

Transported forearm rotation (translation)

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport	t					

Transported forearm rotation (better)

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory 000	Conclusion
Global transport	ŧ					

Transported arm rotation (translation)

Guillaume Charpiat

Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory 000	Conclusion
Global transport						

Transported arm rotation (better)

Guillaume Charpiat

Pulsar project - INRIA
Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport						

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport	t					

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00●00	Metric estimation	Theory	Conclusion
Global transport						

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 000●0	Metric estimation	Theory 000	Conclusion
Global transport						

Remarks about transport

Why ?

transport : of deformations : needed to increase training set density

Which ?

- "translation" : ok for short pathes
- transport : not obvious (muscles + T-shirt artifacts)
- criterion to assess transport quality / suitability ?
- transport : should be learned (from video sequences ?)
- path could depend on deformation transported

What properties ?

- probability of a deformation transported : can differ
- inner product : no reason to be transport-invariant

Introduction	Searching for solutions	Shape matching	Transport 0000●	Metric estimation	Theory 000	Conclusion
Global transport						

Transport in differential geometry

A connection ∇ is **Riemannian** if the parallel transport it defines preserves the metric *g*. Metric connection :

 $abla_X g(\cdot, \cdot) = 0$ for all vector fields X on \mathcal{M}

- not satisfied (probability of a deformation depends on the shape)
 - \implies **not Riemannian** : transport and metric are independent

Introduction	Searching for solutions	Shape matching	Transport 0000●	Metric estimation	Theory	Conclusion
Global transport						

Transport in differential geometry

A connection ∇ is **Riemannian** if the parallel transport it defines preserves the metric *g*. Metric connection :

 $abla_X g(\cdot, \cdot) = 0$ for all vector fields X on \mathcal{M}

not satisfied (probability of a deformation depends on the shape)

⇒ not Riemannian : transport and metric are independent

Transport \implies connection

Given transport, under few hypotheses (e.g. smoothness), it is possible to recover the associated infinitesimal connection :

$$\nabla_X V = \lim_{h \to 0} \left. \frac{T_{\gamma}^{h \to 0} V_{\gamma(h)} - V_{\gamma(0)}}{h} = \left. \frac{d}{dt} T_{\gamma}^{t \to 0} V_{\gamma(t)} \right|_{t=0}.$$

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport 0000●	Metric estimation	Theory	Conclusion
Global transport						

Transport in differential geometry

A connection ∇ is **Riemannian** if the parallel transport it defines preserves the metric *g*. Metric connection :

 $abla_X g(\cdot, \cdot) = 0$ for all vector fields X on \mathcal{M}

not satisfied (probability of a deformation depends on the shape)

 \implies not Riemannian : transport and metric are independent

Transport \implies connection

Given transport, under few hypotheses (e.g. smoothness), it is possible to recover the associated infinitesimal connection :

$$\nabla_X V = \lim_{h \to 0} \frac{T_{\gamma}^{h \to 0} V_{\gamma(h)} - V_{\gamma(0)}}{h} = \left. \frac{d}{dt} T_{\gamma}^{t \to 0} V_{\gamma(t)} \right|_{t=0}.$$

Connection \implies **transport**: Given a covariant derivative ∇ , the transport along a curve γ is obtained by integrating the condition $\nabla_{\dot{\gamma}} = 0$.

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation ●000	Theory	Conclusion	
Statistics on deformations							

- ▶ set of shapes (S_i) , local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation ●000	Theory	Conclusion	
Statistics on deformations							

- ▶ set of shapes (S_i) , local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation ●000	Theory	Conclusion	
Statistics on deformations							

- ▶ set of shapes (S_i) , local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation ●000	Theory	Conclusion	
Statistics on deformations							

- ▶ set of shapes (S_i) , local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation ●000	Theory	Conclusion	
Statistics on deformations							

- ▶ set of shapes (S_i) , local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation ●000	Theory	Conclusion
Statistics on def	ormations					

- ▶ set of shapes (S_i) , local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation ●○○○	Theory 000	Conclusion
Statistics on def	formations					

- ▶ set of shapes (S_i), local deformations $m_{i \to j}$, transport $T_{i \to k}^G$
- ► ⇒ transport deformations to a particular shape S_k : $f_{i \to j}^{i \to k} = T_{i \to k}^G(m_{i \to j})$ are, $\forall i, j$, deformations defined on the same shape S_k with reliability weights $w_{ij}^k = w_{i \to k}^G w_{i \to j}^L$
- statistics, for k fixed : PCA
- PCA with weights, and with H¹-norm
- \blacktriangleright \implies eigenmodes e_n (= principal deformations) with eigenvalues λ_n
- \implies defines an inner product P_k = metric in the tangent space of the shape S_k
- \triangleright P_k varies smoothly as a function of k

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion		
				0000				
Example of results								

Example of results : dancing sequence (9s, 24Hz), shape 1

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation ○○●○	Theory 000	Conclusion	
Example of results							

Example of results : shape 2

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion	
Example of results							

Example of results : shape 3

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ●○○	Conclusion	
Theoretical justifications							

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

 vain quest : hairy ball theorem on best smooth direction field (or then it has to vanish sometimes)

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ●○○	Conclusion	
Theoretical justifications							

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

 vain quest : hairy ball theorem on best smooth direction field (or then it has to vanish sometimes)

Best metric for a given distribution (on one shape) ?

PCA gives the best metric for a criterion based on Kullback-Leibler divergence between distributions

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ●○○	Conclusion	
Theoretical justifications							

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

 vain quest : hairy ball theorem on best smooth direction field (or then it has to vanish sometimes)

Best metric for a given distribution (on one shape) ?

 PCA gives the best metric for a criterion based on Kullback-Leibler divergence between distributions

Best metric for a given empirical manifold (all shapes together) ?

needs a smoothness criterion (⇒ transport)

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ●○○	Conclusion	
Theoretical justifications							

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a function of the shape S_k) ?

 vain quest : hairy ball theorem on best smooth direction field (or then it has to vanish sometimes)

Best metric for a given distribution (on one shape) ?

PCA gives the best metric for a criterion based on Kullback-Leibler divergence between distributions

Best metric for a given empirical manifold (all shapes together) ?

- needs a smoothness criterion (\implies transport)
- $\blacktriangleright \implies$ best metric for a criterion involving transport & K-L divergence.
- best metric for another criterion involving transport & L²-norm of distributions.

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ○●○	Conclusion
Best metric						

- ▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \rightarrow j}$, transport $T_{i \rightarrow k}^{G}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \rightarrow j}^L \delta_{f_{i \rightarrow j}}$

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ○●○	Conclusion
Best metric						

- ▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \rightarrow j}$, transport $T_{i \rightarrow k}^{G}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \rightarrow j}^L \delta_{f_{i \rightarrow j}}$

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ○●○	Conclusion
Best metric						

- ▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \to j}$, transport $T_{i \to k}^{\mathsf{G}}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \rightarrow j}^L \delta_{f_{i \rightarrow j}}$

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ○●○	Conclusion
Best metric						

- ▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \rightarrow j}$, transport $T_{i \rightarrow k}^{G}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \to j}^L \delta_{\mathbf{f}_{i \to j}}$

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory ○●○	Conclusion
Best metric						

- ▶ set of shapes (S_i) , local deformations $\mathbf{f}_{i \to j}$, transport $\mathcal{T}_{i \to k}^{\mathsf{G}}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \to j}^L \delta_{\mathbf{f}_{i \to j}}$
- ► Transported distribution : via $T_{i \to k}(\delta_{\mathbf{f}}) = \delta_{T_{i \to k}(\mathbf{f})}$.

×

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory ○●○	Conclusion
Best metric						

- ▶ set of shapes (S_i), local deformations $\mathbf{f}_{i \rightarrow j}$, transport $\mathcal{T}_{i \rightarrow k}^{\mathsf{G}}$
- Empirical distributions : $\mathcal{D}_{emp_i} = \sum_j w_{i \to j}^L \delta_{\mathbf{f}_{i \to j}}$
- ► Transported distribution : via $T_{i \to k}(\delta_{\mathbf{f}}) = \delta_{T_{i \to k}(\mathbf{f})}$.
- $\blacktriangleright \quad \text{Criterion} : \text{ best } (P_k) \text{ for } \sum_{i,k} \quad w_{ik}^{\mathcal{G}} \quad \textit{KL} (\mathcal{D}_{P_k} \mid T_{i \to k} (\mathcal{D}_{emp_i}))$

$$= \text{ best } (P_k) \text{ for } \sum_{k} KL(\mathcal{D}_{P_k} | \mathcal{D}_{emp_k}^{\mathsf{T}})$$
where $\mathcal{D}_{emp_k}^{\mathsf{T}} = \sum_{i,j}^{k} w_{i \to j}^k \, \delta_{\mathfrak{f}_{i \to j}^k}$

- ► Transported deformations to any shape S_k : $f_{i \to j}^k = T_{i \to k}^G(f_{i \to j})$ with reliability weights $w_{i \to j}^k = w_{i \to k}^G w_{i \to j}^L$
- the one obtained by weighted PCA on transported deformations

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ○○●	Conclusion
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$
- \triangleright g_i^0 : density functions in the tangent space of the shape S_i

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ○○●	Conclusion
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$
- \triangleright g_i^0 : density functions in the tangent space of the shape S_i
- search for g_i : close to g_i and smooth from shape to shape

$$E(g) = \sum_{i} \|g_{i} - g_{i}^{0}\|_{L^{2}(T_{i})}^{2} + \sum_{ij} w_{ij} \|T_{i \to j}(g_{i}) - g_{j}\|_{L^{2}(T_{j})}^{2}$$

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ○○●	Conclusion
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$
- \triangleright g_i^0 : density functions in the tangent space of the shape S_i
- **•** search for g_i : close to g_i and smooth from shape to shape

$$E(g) = \sum_{i} \|g_{i} - g_{i}^{0}\|_{L^{2}(T_{i})}^{2} + \sum_{ij} w_{ij} \|T_{i \to j}(g_{i}) - g_{j}\|_{L^{2}(T_{j})}^{2}$$

▶ $A = Id + \varepsilon \Delta$ where $\Delta =$ graph Laplacian (with transports)

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory ○○●	Conclusion
Best metric						

- empirical distributions : D_{empi}
- ▶ kernel-smoothed empirical distributions : $\mathcal{D}_{emp_i}^{\mathcal{K}} = g_i^0 d\mu$
- \triangleright g_i^0 : density functions in the tangent space of the shape S_i
- search for g_i : close to g_i and smooth from shape to shape

$$E(g) = \sum_{i} \|g_{i} - g_{i}^{0}\|_{L^{2}(T_{i})}^{2} + \sum_{ij} w_{ij} \|T_{i \to j}(g_{i}) - g_{j}\|_{L^{2}(T_{j})}^{2}$$

$$\begin{array}{l} \bullet \quad \text{minimization} \quad \Longrightarrow \quad Ag = g^0 \text{ with }: \\ \left\{ \begin{array}{l} A_{ii} = 1 + \sum_j w_{ij} \ T_{i \to j}^* \ T_{i \to j} + w_{ji} \\ A_{ij} = -w_{ij} \ T_{i \to j}^* - w_{ji} \ T_{j \to i} & \text{for } i \neq j \end{array} \right. \end{array}$$

- $A = Id + \varepsilon \Delta$ where $\Delta =$ graph Laplacian (with transports)
- $\blacktriangleright \ g = A^{-1}g^0 = (Id + \varepsilon \Delta)^{-1}g^0 \simeq (Id \varepsilon \Delta)g^0 \simeq \mathcal{N}_{\varepsilon} * g^0.$
- g = (Id − εΔ) g⁰ coincides with the D^T_{emp} and the inner products (P_i) which suit g = (g_i) the best (for K-L) are the ones we computed

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
						00000

Conclusion

- transport is useful to reduce required training set size
- transport is useful to propagate information between shapes
- globally optimal metrics (and low complexity)

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
						00000

Conclusion

- transport is useful to reduce required training set size
- transport is useful to propagate information between shapes
- globally optimal metrics (and low complexity)

[NORDIA 2009 : Learning Shape Metrics based on Deformations and Transport]

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
						00000

Future works

- learning functions defined on shape spaces / with values in shape spaces
- statistics on image patches through correspondences/transport

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion
PCA and Kullba	nck-Leibler					

Link between PCA and Kullback-Leibler divergence

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

Guillaume Charpiat Metrics that suit an empirical manifold of shapes

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory	Conclusion ○○●○○
PCA and Kullba	ck-Leibler					

Link between PCA and Kullback-Leibler divergence

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

Empirical distribution of deformations : $\mathcal{D}_{emp} = \sum_{i} w_i \, \delta_{\mathbf{f}_i}$
Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion ○○●○○
PCA and Kullba	ck-Leibler					

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

- Empirical distribution of deformations : $\mathcal{D}_{emp} = \sum_{i} w_i \, \delta_{\mathbf{f}_i}$
- Any inner product (= metric) *P* is associated to a probability distribution: $\mathcal{D}_P(\mathbf{f}) \propto \exp(-\|\mathbf{f}\|_P^2)$

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion ○○●○○
PCA and Kullba	ck-Leibler					

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

- Empirical distribution of deformations : $\mathcal{D}_{emp} = \sum w_i \, \delta_{\mathbf{f}_i}$
- Any inner product (= metric) *P* is associated to a probability distribution: $\mathcal{D}_P(\mathbf{f}) \propto \exp(-\|\mathbf{f}\|_P^2)$

Given an inner product P_0 (= H^1) of reference, with its orthonormal basis (e_n) , supposing that P is continuous wrt. P_0 :

$$\forall \mathbf{f} \in \mathcal{T}, \quad \|\mathbf{f}\|_{P}^{2} = \sum_{n} \alpha_{n} \langle \mathbf{f} | \mathbf{e}_{n} \rangle_{P_{0}}^{2}$$

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion ○○●○○
PCA and Kullba	ck-Leibler					

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

- Empirical distribution of deformations : $\mathcal{D}_{emp} = \sum w_i \, \delta_{f_i}$
- Any inner product (= metric) *P* is associated to a probability distribution: $\mathcal{D}_P(\mathbf{f}) \propto \exp(-\|\mathbf{f}\|_P^2)$

Given an inner product P_0 (= H^1) of reference, with its orthonormal basis (e_n) , supposing that P is continuous wrt. P_0 :

n

$$\forall \mathbf{f} \in T, \quad \|\mathbf{f}\|_{P}^{2} = \sum_{n} \alpha_{n} \langle \mathbf{f} | \mathbf{e}_{n} \rangle_{P_{0}}^{2}$$
$$\implies \mathcal{D}_{P} \text{ is Gaussian} : \mathcal{D}_{P}(\mathbf{f}) := \prod \left(\frac{\alpha_{n}}{\pi}\right)^{\frac{1}{2}} \exp(-\alpha_{n} \langle \mathbf{f} | \mathbf{e}_{n} \rangle_{P_{0}}^{2})$$

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion ○○●○○
PCA and Kullba	ick-Leibler					

Aim : to find a metric suitable for a given distribution of deformations (f_i) on one particular shape

- Empirical distribution of deformations : $\mathcal{D}_{emp} = \sum w_i \, \delta_{f_i}$
- Any inner product (= metric) *P* is associated to a probability distribution: $\mathcal{D}_P(\mathbf{f}) \propto \exp(-\|\mathbf{f}\|_P^2)$

• Given an inner product P_0 (= H^1) of reference, with its orthonormal basis (e_n), supposing that P is continuous wrt. P_0 : $\forall \mathbf{f} \in T$, $\|\mathbf{f}\|_P^2 = \sum \alpha_n \langle \mathbf{f} | \mathbf{e}_n \rangle_{P_0}^2$

$$\blacktriangleright \implies \mathcal{D}_{P} \text{ is Gaussian} : \mathcal{D}_{P}(\mathbf{f}) := \prod_{n} \left(\frac{\alpha_{n}}{\pi} \right)^{\frac{1}{2}} \exp(-\alpha_{n} \langle \mathbf{f} | \mathbf{e}_{n} \rangle_{P_{0}}^{2})$$

 \blacktriangleright \implies search over inner products = search over Gaussian distributions

Guillaume Charpiat

Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion 000●0
PCA and Kullba	ick-Leibler					

► Gaussian distribution that fits \mathcal{D}_{emp} the best ?

Guillaume Charpiat Metrics that suit an empirical manifold of shapes Pulsar project - INRIA

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
000	00000000	00	00000	0000	000	00000
PCA and Kullba	ick-Leibler					

- Gaussian distribution that fits \mathcal{D}_{emp} the best ?
- ▶ search for best Gaussian (= for best P) that minimize $KL(D_P|D_{emp})$

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
						00000
PCA and Kullba	ick-Leibler					

- Gaussian distribution that fits \mathcal{D}_{emp} the best ?
- search for best Gaussian (= for best P) that minimize $KL(\mathcal{D}_P|\mathcal{D}_{emp})$
- best inner product P is the one given by weighted PCA with norm P_0 !

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory	Conclusion
000	00000000	00	00000	0000	000	00000
PCA and Kullba	ick-Leibler					

- ► Gaussian distribution that fits \mathcal{D}_{emp} the best ?
- search for best Gaussian (= for best P) that minimize $KL(\mathcal{D}_P|\mathcal{D}_{emp})$
- **b** best inner product P is the one given by weighted PCA with norm P_0 !
- similar result for kernel-smoothed distributions : $\mathcal{D}_{emp}^{\mathcal{K}}(\mathbf{f}) = \sum_{j} w_{j} \mathcal{K}(\mathbf{f}_{j} - \mathbf{f}).$

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory	Conclusion ○○○○●
weighted, H^1 -P	CA					

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory	Conclusion ○○○○●
weighted, H^1 -P	CA					

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} \mid \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} \mid \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

$$\blacktriangleright \sup_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{\mathcal{H}_{\alpha}^{1}} = \delta_{n=n'}} \sum_{n} \sum_{i,j} w_{i \to j}^{k} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{\mathcal{H}_{\alpha}^{1}}^{2}$$

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport 00000	Metric estimation	Theory	Conclusion ○○○○●
weighted, H^1 -P	CA					

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

$$\begin{aligned} & \sup_{\langle \mathbf{e}_n | \mathbf{e}_{n'} \rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{n} \sum_{i,j} w_{i \to j}^{k} \left\langle \mathbf{f}_{i \to j}^{k} | \mathbf{e}_n \right\rangle_{H_{\alpha}^{1}}^{2} \\ & \sum_{\langle \mathbf{e}_n | \mathbf{e}_{n'} \rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{n} \mathbf{e}_n HFH \mathbf{e}_n \\ & \text{where } F = \sum_{i,j} w_{i \to j}^{k} \mathbf{f}_{i \to j}^{k} \otimes \mathbf{f}_{i \to j}^{k} = \text{weighted covariance matrix,} \\ & \text{and } H = Id - \alpha\Delta = \text{symmetric definite operator s.t.} \\ & \langle a | b \rangle_{H_{\alpha}^{1}} = \langle H a | b \rangle_{L^2} \end{aligned}$$

Guillaume Charpiat

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion 0000●
weighted, H ¹ -PCA						

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} | \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} | \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

$$\begin{split} \sup_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{n} \sum_{i,j} w_{i \to j}^{k} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}}^{2} \\ & \sum_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{n} \mathbf{e}_{n} HFH \mathbf{e}_{n} \\ & \text{where } F = \sum_{i,j} w_{i \to j}^{k} \mathbf{f}_{i \to j}^{k} \otimes \mathbf{f}_{i \to j}^{k} = \text{weighted covariance matrix,} \\ & \text{and } H = Id - \alpha \Delta = \text{symmetric definite operator s.t.} \\ & \left\langle a \middle| b \right\rangle_{H_{\alpha}^{1}} = \left\langle H a \middle| b \right\rangle_{L^{2}} \end{split}$$

Change of variables:
$$\mathbf{d}_n = H^{1/2} \mathbf{e}_n$$
:
$$\sup_{\langle \mathbf{d}_n | \mathbf{d}_{n'} \rangle_{i,2} = \delta_{n=n'}} \sum_n \mathbf{d}_n H^{1/2} F H^{1/2}$$

Guillaume Charpiat

Pulsar project - INRIA

n

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion ○○○○●		
weighted, H ¹ -PCA								

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

classical PCA problem, with correlation matrix : $M_{(i,j),(i',j')} = \left\langle \sqrt{w_{i \to j}^{k}} \mathbf{f}_{i \to j}^{k} \left| \sqrt{w_{i' \to j'}^{k}} \mathbf{f}_{i' \to j'}^{k} \right\rangle_{H_{\Omega}^{1}} \right.$

Introduction	Searching for solutions	Shape matching	Transport	Metric estimation	Theory 000	Conclusion ○○○○●		
weighted, H ¹ -PCA								

- PCA = find the best axes (to project data on this subspace)
- Minimize projection error :

$$\inf_{\left\langle \mathbf{e}_{n} \middle| \mathbf{e}_{n'} \right\rangle_{H_{\alpha}^{1}} = \delta_{n=n'}} \sum_{i,j} w_{i \to j}^{k} \left\| \mathbf{f}_{i \to j}^{k} - \sum_{n} \left\langle \mathbf{f}_{i \to j}^{k} \middle| \mathbf{e}_{n} \right\rangle_{H_{\alpha}^{1}} \mathbf{e}_{n} \right\|_{H_{\alpha}^{1}}^{2}$$

- classical PCA problem, with correlation matrix : $M_{(i,j),(i',j')} = \left\langle \sqrt{w_{i \to j}^{k}} \mathbf{f}_{i \to j}^{k} \left| \sqrt{w_{i' \to j'}^{k}} \mathbf{f}_{i' \to j'}^{k} \right\rangle_{H^{1}_{\alpha}} \right.$
- eigenvectors :

$$\mathbf{e}_n = \sum_{ij} \gamma_n^{(i,j)} \sqrt{w_{i \to j}^k} \mathbf{f}_{i \to j}^k$$

Guillaume Charpiat