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Motivation

Introduction
Image Segmentation

I Find a contour in a given image

I The best curve for a given segmentation criterion

I Criterion based on color homogeneity, texture, edge detectors, etc.

−→

Image Segmentation

Variational Method

Shape Statistics

I Sample set of contours from already segmented images

I Shape variability ?

I Shape prior ?
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Motivation

Introduction
Image Segmentation

I Find the best contour for a given criterion

Variational Method

I Energy E to minimize with respect to a curve C

I Compute the derivative of the energy

I Gradient descent: ∂tC = −∇E(C)

I Initialization → local minimum

I Other methods: graph cuts (suitable for few energies)

Shape Statistics

I Sample set of contours from already segmented images

I Shape variability ?

I Shape prior ?
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Motivation

Introduction
Image Segmentation

I Find the best contour for a given criterion

Variational Method

I Minimize criterion by gradient descent with respect to the contour

I Most criteria: no shape information

Shape Statistics

I Sample set of contours from already segmented images

I Shape variability ?

I Shape prior ?
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Motivation

Introduction
Motivation

I Shape spaces : which metric ?

(to define similarity/distance between shapes)
I Hausdorff distance
I Symmetric difference area
I Quotients by transformation groups (rotation, translation, scaling,

affine...)
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I Shape evolution, morphing : priors on probable deformations ?
=⇒ Which local metric on deformations ?

(metric on the manifold of shapes)

I L2 norm of instantaneous deformations
I L2 + curvature, H1

I rigid motion more probable =⇒ associated metric

I =⇒ learn the suitable metric from examples (datasets of shapes)
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Motivation

Introduction
Motivation

I Shape spaces : which metric ?

(to define similarity/distance between shapes)
I Hausdorff distance
I Symmetric difference area
I Quotients by transformation groups (rotation, translation, scaling,

affine...)

I Shape evolution, morphing : priors on probable deformations ?
=⇒ Which local metric on deformations ?

(metric on the manifold of shapes)

I L2 norm of instantaneous deformations
I L2 + curvature, H1

I rigid motion more probable =⇒ associated metric

L2 inner product vs. rigidifying inner product

I =⇒ learn the suitable metric from examples (datasets of shapes)
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Issues

Issues

I Sparse sets of highly varying shapes

I e.g. human silhouettes
I high intrinsic dimension (> 30)
I =⇒ no dense training set

I to compare quantities defined on different shapes :

need for correspondences
I match shape with different topologies ?
I very frequent topological changes
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State of the art

Searching for solutions

Main existing approaches and their limitations

Approach 1 : mean + modes model
Approach 2 : distance-based approaches, such as kernel methods
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State of the art

Mean + modes model : PCA in tangent space (Gaussian distribution)

I Mean M, shapes Si , warpings WM→Si

I PCA : diagonalize correlation matrix C : Cij =
˙
WM→Si

˛̨
WM→Sj

¸
=⇒ eigenmodes ek with eigenvalues λk : best coordinate system

I any new deformation W of M :

W =
X

k

αkek+ noise
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State of the art

Mean + modes model : PCA in tangent space (Gaussian distribution)

I Mahalanobis distance : d(M + W , (S)) =
X

k

α2
k

λ2
k

I associated inner product on deformations, in the tangent space of M:

〈W1 |W2 〉 =
X

k

1

λ2
k

α1,kα2,k

I defines a deformation cost ‖W ‖2 = 〈W |W 〉
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State of the art

Mean + modes model : PCA in tangent space (Gaussian distribution)

I probability p(W ) ∝ exp(−
X

k

α2
k

2λ2
k

) : Gaussian distribution

I defines a Gaussian shape prior
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State of the art

Mean + modes model : PCA in tangent space (Gaussian distribution)

I Empirical distribution : Demp =
X

i

δWM→Si

(possibly smoothed by a kernel)

I Any inner product < | >P in tangent space of the mean
=⇒ Gaussian distribution DP(W ) ∝ exp(−‖W ‖2

P)

I Best P for Kullback-Leibler(DP |Demp) : PCA!
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State of the art

Approach 1 : mean + modes model

↪→ example from my PhD thesis

Automatic
alignment
−→

and average
shape computation
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State of the art

Statistics (PCA) on
deformation fields

−→
between the mean shape

and each sample

modes of deformation
= deformation prior

= Gaussian probabilistic model
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State of the art

Example of application : image segmentation with shape prior

without shape prior with shape prior

I requires a mean shape (does not always make sense, e.g. person walking)

I requires all deformations between the mean and samples :
=⇒ relatively similar sample shapes (otherwise, not reliable)
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State of the art

Approach 2 : distance-based methods (e.g. kernel methods)

I Kernel : symmetric definite positive function k(x , y)
I Expresses the similarity between x and y
I Typically, the Gaussian kernel : k(x , y) = exp(− d(x , y)2 )
I For each point xi : ki (y) := k(xi , y)

I choice of a distance, of a kernel ?
I distance between 2 shapes : not much informative (wrt deformations)
I rebuild geometry of space of shapes from distances ?
I distances are not reliable/meaningful for far shapes
I =⇒ needs for a representative neighborhood, i.e. a high dataset density
I in a high-dimensional manifold, all distances are similar, and all points are

on the boundary of the manifold

I =⇒ cannot work, need for more information than distances
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Approach 2 : distance-based methods (e.g. kernel methods)

I choice of a distance, of a kernel ?
I distance between 2 shapes : not much informative (wrt deformations)
I rebuild geometry of space of shapes from distances ?
I distances are not reliable/meaningful for far shapes
I =⇒ needs for a representative neighborhood, i.e. a high dataset density

(not affordable)

I in a high-dimensional manifold, all distances are similar, and all points are
on the boundary of the manifold
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Main idea

Main idea
I consider deformations (not just distances)
I should not require high density of training set
I no magic (to handle/interpolate sparse sets) : add a prior

I prior chosen : transported deformations make sense,
i.e. a deformation observed on one shape can be applied to other shapes

I transport requires correspondences
I but shape matching reliable only for close shapes
I =⇒ compute correspondences between close shapes only, and combine

small steps of reliable correspondences to build longer-distance
correspondences
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I but shape matching reliable only for close shapes
I =⇒ compute correspondences between close shapes only, and combine

small steps of reliable correspondences to build longer-distance
correspondences
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Main idea

Map
I Close shape matching

I Transport

I Metric estimation (statistics on transported deformations)

I Theoretical justifications
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Close shape matching

Shape matching

Simple case : two shapes, A and B, with one connected component

inf
f :A→B

Z
A

‖f ‖2 + α‖∇f ‖2dA

- shape sampling
- dynamic time warping
- theory & experiments :

higher sampling rate on target

B B

AA

ff

A

B

(s+ds)(s)

(s)

m(s+ds)m(s)

(s+ds)
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Close shape matching

Shape matching

Simple case : two shapes, A and B, with one connected component

inf
f :A→B

Z
A

‖f ‖2 + α‖∇f ‖2dA

- shape sampling
- dynamic time warping
- theory & experiments :

higher sampling rate on target

Usual case : random topologies

Usual cases = more complex
(more than 10 connected components in this silhouette)

but

one connected component →
[
i

connected components

= the same
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Close shape matching

Further possible improvements

I as such, allows appearing points (mismatches)

I allows disappearing points : matching to ∅ with a fixed high cost

I pb : better matchings, but energy value loses meaning
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Close shape matching

Further possible improvements

I as such, allows appearing points (mismatches)

I allows disappearing points : matching to ∅ with a fixed high cost

I pb : better matchings, but energy value loses meaning

Drawbacks

I specific to planar curves

I not symmetric : mA→B 6= m−1
B→A
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Local transport

Transport

Local transport
I Set of shapes (Si )i∈I (e.g. from a video segmentation)

I Two shapes Si and Sj =⇒ their correspondence field mi→j

I Transport (translation, naive) :

∀ h : Sj → X , T L
j→i (h) : Si → X`
T L

j→i (h)
´

(s) = h (mi→j(s))

I Associated cost : E(mi→j) =⇒ reliability wL
i→j ∝ exp

`
− αE(mi→j)

´
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Global transport

Global transport
I Associated cost : E(mi→j) =⇒ reliability wL

i→j ∝ exp
`
− αE(mi→j)

´
I close shapes : reliable; distant shapes : not reliable

I =⇒ search for paths of small steps in the training set (Si )

I graph : nodes = shapes, edges = transport, weights = transport cost

I shortest path between pairs of shapes : global transport

I compose : TG
i→j = T L

in→j o T L
in−1→in o ... o T L

i1→i2 o T L
i→i1

I reliability : wG
i→j =

Y
k

wL
ik→ik+1

I use transport to propagate information

Example : colored walker
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Global transport
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Global transport
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Global transport

Correspondence
field
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Global transport

Transported
arm rotation
(translation)

Guillaume Charpiat Pulsar project - INRIA

Metrics that suit an empirical manifold of shapes



Introduction Searching for solutions Shape matching Transport Metric estimation Theory Conclusion

Global transport

Transported
arm rotation

(better)
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Global transport

Forearm
rotation
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Global transport
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Global transport

Transported
forearm
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Global transport

Transport to
another

shape
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Global transport

Transported
forearm
rotation

(translation)
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Global transport

Transported
forearm
rotation
(better)
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Global transport

Transported
arm rotation
(translation)
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Global transport

Transported
arm rotation

(better)
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Global transport

L2

inner-product
> 0
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Global transport

L2

inner-product
= 0
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Global transport

L2

inner-product
< 0
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Global transport

Remarks about transport
Why ?

I transport : of deformations : needed to increase training set density

Which ?

I “translation” : ok for short pathes

I transport : not obvious (muscles + T-shirt artifacts)

I criterion to assess transport quality / suitability ?

I transport : should be learned (from video sequences ?)

I path could depend on deformation transported

What properties ?

I probability of a deformation transported : can differ

I inner product : no reason to be transport-invariant
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Global transport

Transport in differential geometry
A connection ∇ is Riemannian if the parallel transport it defines preserves the
metric g . Metric connection :

∇X g(·, ·) = 0 for all vector fields X on M
I not satisfied (probability of a deformation depends on the shape)

=⇒ not Riemannian : transport and metric are independent

Guillaume Charpiat Pulsar project - INRIA

Metrics that suit an empirical manifold of shapes



Introduction Searching for solutions Shape matching Transport Metric estimation Theory Conclusion

Global transport

Transport in differential geometry
A connection ∇ is Riemannian if the parallel transport it defines preserves the
metric g . Metric connection :

∇X g(·, ·) = 0 for all vector fields X on M
I not satisfied (probability of a deformation depends on the shape)

=⇒ not Riemannian : transport and metric are independent

Transport =⇒ connection
Given transport, under few hypotheses (e.g. smoothness), it is possible to recover
the associated infinitesimal connection :

∇XV = lim
h→0

T h→0
γ Vγ(h) − Vγ(0)

h
=

d

dt
T t→0
γ Vγ(t)

˛̨̨̨
t=0

.
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Global transport

Transport in differential geometry
A connection ∇ is Riemannian if the parallel transport it defines preserves the
metric g . Metric connection :

∇X g(·, ·) = 0 for all vector fields X on M
I not satisfied (probability of a deformation depends on the shape)

=⇒ not Riemannian : transport and metric are independent

Transport =⇒ connection
Given transport, under few hypotheses (e.g. smoothness), it is possible to recover
the associated infinitesimal connection :

∇XV = lim
h→0

T h→0
γ Vγ(h) − Vγ(0)

h
=

d

dt
T t→0
γ Vγ(t)

˛̨̨̨
t=0

.

Connection =⇒ transport :
Given a covariant derivative ∇, the transport along a curve γ is obtained by
integrating the condition ∇γ̇ = 0.
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Statistics on deformations

Metric estimation (statistics on deformations)

I set of shapes (Si ), local deformations mi→j , transport TG
i→k

I =⇒ transport deformations to a particular shape Sk :
f i→k
i→j = TG

i→k(mi→j) are, ∀i , j , deformations defined on the same shape Sk

with reliability weights w k
ij = wG

i→k wL
i→j

I statistics, for k fixed : PCA

I PCA with weights, and with H1-norm

I =⇒ eigenmodes en (= principal deformations) with eigenvalues λn

I =⇒ defines an inner product Pk = metric in the tangent space of the
shape Sk

I Pk varies smoothly as a function of k
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Example of results

Example of results : dancing sequence (9s, 24Hz), shape 1
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Example of results

Example of results : shape 2
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Example of results

Example of results : shape 3
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Theoretical justifications

Theoretical justifications

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a
function of the shape Sk) ?

I vain quest : hairy ball theorem =⇒ no best smooth direction field
(or then it has to vanish sometimes)
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Theoretical justifications

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a
function of the shape Sk) ?

I vain quest : hairy ball theorem =⇒ no best smooth direction field
(or then it has to vanish sometimes)

Best metric for a given distribution (on one shape) ?

I =⇒ PCA gives the best metric for a criterion based on Kullback-Leibler

divergence between distributions
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Theoretical justifications

Theoretical justifications

The best metric ?

Searching for principal modes of deformations which vary smoothly (as a
function of the shape Sk) ?

I vain quest : hairy ball theorem =⇒ no best smooth direction field
(or then it has to vanish sometimes)

Best metric for a given distribution (on one shape) ?

I =⇒ PCA gives the best metric for a criterion based on Kullback-Leibler

divergence between distributions

Best metric for a given empirical manifold (all shapes together) ?

I needs a smoothness criterion ( =⇒ transport)

I =⇒ best metric for a criterion involving transport & K-L divergence.

I =⇒ best metric for another criterion involving transport & L2-norm of

distributions.
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Best metric

Best metric for a given empirical manifold

I set of shapes (Si ), local deformations fi→j , transport TG
i→k

I Empirical distributions : Dempi
=
P

j wL
i→j δ fi→j

I Transported distribution : via Ti→k(δ f ) = δTi→k (f).

I Criterion : best (Pk) for
X
i,k

wG
ik KL (DPk | Ti→k(Dempi

) )

I = best (Pk) for
X

k

KL(DPk |D
T
empk

)

where DT
empk

=
X
i,j

w k
i→j δ fki→j

I Transported deformations to any shape Sk : f k
i→j = TG

i→k(fi→j)
with reliability weights w k

i→j = wG
i→k wL

i→j

I = the one obtained by weighted PCA on transported deformations
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Best metric

Best metric for a given empirical manifold
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P
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X
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ik KL (DPk | Ti→k(Dempi
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T
empk
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Best metric

Best metric for a given empirical manifold (again!)

I empirical distributions : Dempi

I kernel-smoothed empirical distributions : DKempi
= g 0

i dµ

I g 0
i : density functions in the tangent space of the shape Si

I search for gi : close to gi and smooth from shape to shape

I E(g) =
X

i

‖gi − g 0
i ‖2

L2(Ti )
+
X

ij

wij ‖Ti→j(gi )− gj‖2
L2(Tj )

I minimization =⇒ Ag = g 0 with :
Aii = 1 +

P
j wij T

∗
i→j Ti→j + wji

Aij = −wij T
∗
i→j − wji Tj→i for i 6= j

I A = Id + ε∆ where ∆ = graph Laplacian (with transports)

I g = A−1g 0 = (Id + ε∆)−1g 0 ' (Id − ε∆)g 0 ' Nε ∗ g 0.

I g = (Id − ε∆) g 0 coincides with the DT
emp

and the inner products (Pi ) which suit g = (gi ) the best (for K-L) are the
ones we computed
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Conclusion

I transport is useful to reduce required training set size

I transport is useful to propagate information between shapes

I globally optimal metrics (and low complexity)
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Conclusion

I transport is useful to reduce required training set size

I transport is useful to propagate information between shapes

I globally optimal metrics (and low complexity)

[NORDIA 2009 : Learning Shape Metrics based on Deformations and Transport]
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Future works

I learning functions defined on shape spaces / with values in shape spaces

I statistics on image patches through correspondences/transport
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PCA and Kullback-Leibler

Link between PCA and Kullback-Leibler divergence

Aim : to find a metric suitable for a given distribution of deformations (fi ) on
one particular shape

I Empirical distribution of deformations : Demp =
X

i

wi δ fi

I Any inner product (= metric) P is associated to a probability distribution:
DP(f) ∝ exp(−‖f‖2

P)

I Given an inner product P0 (= H1) of reference, with its orthonormal basis
(en), supposing that P is continuous wrt. P0:

∀ f ∈ T , ‖f‖2
P =

X
n

αn 〈 f | en 〉2P0

I =⇒ DP is Gaussian : DP(f) :=
Y
n

“αn

π

” 1
2

exp(−αn 〈f |en 〉2P0
)

I =⇒ search over inner products = search over Gaussian distributions
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PCA and Kullback-Leibler

Link between PCA and Kullback-Leibler divergence (bis)

I Gaussian distribution that fits Demp the best ?

I search for best Gaussian (= for best P) that minimize KL(DP |Demp)

I best inner product P is the one given by weighted PCA with norm P0 !

I similar result for kernel-smoothed distributions :
DKemp(f) =

X
j

wj K(fj − f).
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weighted, H1-PCA

Weighted PCA with H1 norm

I PCA = find the best axes (to project data on this subspace)

I Minimize projection error :

inf
〈en|en′ 〉H1

α
=δn=n′

X
i,j

w k
i→j

‚‚‚‚‚fk
i→j −

X
n

D
fk
i→j |en

E
H1

α

en

‚‚‚‚‚
2

H1
α

I classical PCA problem, with correlation matrix :

M(i,j),(i′,j′) =
Dq

w k
i→j fk

i→j

˛̨̨q
w k

i′→j′ fk
i′→j′

E
H1

α

I eigenvectors :

en =
X

ij

γ(i,j)
n

q
w k

i→j fk
i→j
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X
i,j
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i→j

‚‚‚‚‚fk
i→j −

X
n

D
fk
i→j |en

E
H1

α

en

‚‚‚‚‚
2

H1
α

I sup
〈en|en′ 〉H1

α
=δn=n′

X
n

X
i,j

w k
i→j

D
fk
i→j |en

E2

H1
α

I sup
〈en|en′ 〉H1

α
=δn=n′

X
n

en HFH en

where F =
P

i,j w
k
i→j fk

i→j ⊗ fk
i→j = weighted covariance matrix,

and H = Id − α∆ = symmetric definite operator s.t.
〈a |b 〉H1

α
= 〈H a |b 〉L2

I Change of variables: dn = H1/2en : sup
〈dn|dn′ 〉L2 =δn=n′

X
n

dn H1/2FH1/2 dn
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