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Outline

● Machine Learning in Neuroimaging
● Overview
● Common technical challenges

● Some learning problems in neuroimaging:
● Medical diagnosis/study of between subject-variability

● Brain reading

● Brain connectivity mapping
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NeuroImaging: modalities and aims

● 'Functional' 
(time resolved) 
modalities: 
fMRI, EEG, 
MEG

● vs 'anatomical' 
(spatially 
resolved) 
modalities: T1-
MRI, DW-MRI
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Neuroimaging modalities: T1 MRI
 T1 (1mm)3 MRI yields

 Various measurements of 
brain structure

− density of grey matter 
− Cortical thickness
− Gyrification ratio

 Landmarks-based statistics
− Sulcus 

shape/orientation
 102 to 106 variables

WM

GM

CSF
Skull

sulcus

gyrus
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Neuroimaging modalities: DW-MRI

 Diffusion MRI: measurement of 
water diffusion in all directions in 
the white matter

 Resolution: (2mm)3, 30-60 
directions

 Yields the local direction of fiber 
bundles that connect brain 
regions

 fibers/bundles can be 
reconstructed through 
tractography algorithms

 Statistical measurement on 
bundles (counting, fractional 
anisotropy, direction)



6INRIA Machine Learning WorkshopDecember 6th, 2011

NeuroImaging modalities: fMRI

 BOLD signal: measures blood 
oxygenation in regions where 
synaptic activity occurs

− Used to detect 
functionally specialized 
regions 

− But indirect measurement

− Not a true quantitative 
measurement

 Can also be used to characterize 
network structure from brain 
signals

 102 to 106 observations

 Resolution (2-3mm)3, TR = 2-3s
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NeuroImaging: modalities and aims

● Provide some biomarkers for diagnosis/prognosis, study 
of risk factors for various brain diseases

● Psychiatric diseases
● Neuro-degenerative diseases, 
● Brain lesions (strokes...)

● Understand brain organization and related factors: brain 
mapping, connectivity, architecture, development, aging, 
relation to behavior, relation to genetics

● Study chronometry of brain processes (EEG, MEG)
● Build brain computer interfaces (EEG)
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Technical challenges in MLNI

● Low SNR in the data
● Only a fraction of the data is modeled (BOLD)
● Presence of structured noise (noise is not i.i.d. 

Gaussian !) + non-stationarity in time and space
● Few salient structures (resting-state fMRI...)

● Size of the data
● 104 to 106 voxels in most settings
● Compared to 10 to 102 samples available

● Related to the particular learning problems
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Technical challenges in MLNI
● Diagnosis/classification problems

●  Needs accuracy mostly (+ robustness)
● Suffers from curse of dimensionality, but this is well 

addressed in the literature: generic approaches 
perform well

● But: not the main aim of most neuroimaging studies

­ Need a large set of tools to be 
compared against each other
- Need to take into account some 
priors on the data/true model 
(smoothness, sparsity)
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Technical challenges in MLNI

● Recovery: retrieve the true model that accounts for the data
● This is the main topic of all neuroimaging / brain mapping / 

decoding literature.
● Suffers much more from feature dimensionality and 

correlation
● Virtually in-addressed/unseen so far

1. learn EN model for pain perception 
rating using first 120 TRs for training and 
next 120 TRs for testing.
2. Find ‘best-predicting’ 1000 voxels 
using EN, delete them, find next 1000 
best-predicting, etc.
Does the predictive accuracy degrade 
sharply?
Surprisingly, the answer is ‘NO’

I. Rish, HBM 2011
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Study of between-subject variability

● Between-subject variability is a prominent 
effect in neuroimaging: 

● hard to characterize as such
● how much of it can be explained using other 

data ?

● Brain diseases are extreme case of normal 
variability

● Data easier to acquire on normal populations
● Confrontation to behavioral data
● Confrontation to genetic data

● Perspective of individualized treatments
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Study of between-subject variability

● Sometimes handled as unsupervised problems: describe the density of 
the data based on observations (manifold learning, mixture modeling)

● The major challenge here is to discover statistical associations 
between complex, high-dimensional variables (regression)

p( )|

imagephenotype

Image→Phenotype

p( )|

Gene→Image

geneticimage

Imaging as an intermediate (endo)phenotype

● HPC
● Multiple comparison
● recovery
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“Brain reading”

● Definition: Use of functional neuroimaging 
data to infer the subject's behaviour – 
typically the brain response related to a 
certain stimulus

● Similar to BCI -to some extent- 

● without time constraints
● More emphasis on model correctness

● Popular due to its sensitivity to detect small-
amplitude but distributed brain responses

● Rationale: population coding
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Brain reading / Reverse inference

Aims at predicting a cognitive variable → decoding brain activity
[Dehaene et al. 1998, Cox et al. 2003]
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Brain reading: population coding

● Not a unique kind of pattern for 
the spatial organization of the 
neural code.
● This is further confounded by 
between-subject variability

 Different spatial models of the functional 
organization of neural networks
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Inter-subject variability
Inter-subject prediction → find stable predictive regions across subjects.
Inter-subject variability → lack of voxel-to-voxel correspondence

[Tucholka 2010]



18

Prediction function

y  R∈ n is the behavioral variable.
X  R∈ n×p is the data matrix, i.e. the activations maps.
(w, b) are the parameters to be estimated.
n activation maps (samples), p voxels (features).

p≫n
Curse of dimensionality

Risk of overfit 

y = f (X, w, b) = X w + b  or 
sign(X w + b)
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Dealing with the curse of 
dimensionality in fMRI

● Feature selection (e.g. Anova, RFE) :
● Regions of interest → requires strong prior knowledge.
● Univariate methods → selected features can be redundant.
● Multivariate methods → combinatorial explosion, computational 

cost.
[Mitchell et al. 2004], [De Martino et al. 2008]

● Regularization (e.g. Lasso, Elastic net) :
● performs jointly feature selection and parameter estimation 

→ majority of the features have zero loading.
[Yamashita et al. 2004], [Carroll et al. 2010]

● Feature agglomeration :
● agglomeration : construction of intermediate structures 

→ based on the local redundancy of information.
[Filzmoser et al. 1999], [Flandin et al. 2003]
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Evaluation of the decoding

Prediction accuracy

Explained variance ζ :

→ assess the quantity of information shared by the pattern of voxels.

Structure of the resulting maps of weights: reflect our hypothesis on 
the spatial layout of the neural coding ?
Common hypothesis :
→ sparse : few relevant voxels/regions implied in the cognitive task.
→ compact structure : relevant features grouped into connected clusters.
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Total Variation (TV) regularization

Penalization J(w) based on the l
1
 norm of the gradient of the image

[L. Rudin, S. Osher, and E. Fatemi - 1992], [A. Chambolle - 2004]

gives an estimate of w with a sparse block structure

→ take into account the spatial structure of the data.

extracts regions with piecewise constant weights

→ well suited for brain mapping.

requires computation of the gradient and divergence over a mask 
of the brain with correct border conditions.



22

TV-based prediction
First use of TV for prediction task.

Minimization problem

Regression → least-squares loss :

Classification → logistic loss :

TV(w) not differentiable but convex
→ optimization by iterative procedures (ISTA, FISTA).
[I. Daubechies, M. Defrise and C. De Mol - 2004], [A. Beck and M. Teboulle - 2009]
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Convex optimization for TV-based decoding

First order iterative procedures:

● FISTA procedure 

→ TV (ROF problem).

● ISTA procedure 

→ main minimization problem

Natural stopping criterion:  

duality gap.
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Intuition on simulated data

True 
weights

SVR Elastic net TV

→ extract weights with a sparse block structure.
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4 different objects. 3 different sizes.

10 subjects, 6 sessions, 12 images/session. 70000 voxels.
Inter-subject experiment : 1 image/subject/condition → 120 images.
[Eger et al. - 2008]

Real fMRI dataset on representation of objects



26

Prediction accuracy on inter-subject 
analyzes

Regression analysis

Classification analysis
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TV → maps for brain mapping
TV 

Elastic net

TV

SVR



28

Influence of the regularization 
parameter λ 

→ results are extremely stable with respect to λ.
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Influence of the regularization 
parameter λ 

λ = 0.05
ζ = 0.84

λ = 0.01
ζ = 0.83

λ = 0.1
ζ = 0.84
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TV for fMRI-based decoding

→ derive maps similar to classical inference, within the inverse
inference framework.

Inter-subject 
classification 
analysis.

Inter-subject 
regression 
analysis.



31

Conclusion on TV regularization

First use of TV for prediction problem (classification/regression).
✔ TV approach allows to take into account the spatial structure of 
the data in the regularization.
→ yields better prediction accuracy than reference methods.

✔ TV deals with inter-subject variability.
→ well suited for inter-subjects analysis.

✔ TV creates cluster-like activation maps.
→ provides interpretable maps for brain mapping.

✔ V. Michel, A. Gramfort, G. Varoquaux and B. Thirion. Total Variation regularization 
enhances regression-based brain activity prediction. In 1st ICPR Workshop on Brain 
Decoding. 2010.
✔ V. Michel, A. Gramfort, G. Varoquaux, E. Eger and B. Thirion. Total variation 
regularization for fMRI-based prediction of behaviour.     IEEE Transactions on Medical 
Imaging, 2011, 30 (7), pp. 1328 – 1340.
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Structured sparsity for fMRI data

● Structure: 

● Hierarchical clustering of the 
brain volume

● Variance minimization (Ward's 
clustering)

● With connectivity constraints

● Nested/multi-scale

● Sparsity: group lasso on the 
clusters of the tree

● Acts as the l
1
-norm on the 

vector

● If one node is set to 0 , its 
descendants are also set to 0

● Consider large parcels before 
small parcels → robustness to 
spatial variability

[Michel et al. Pattern Recognition 2011] 
[Jenatton et al PRNI 2011, subm to SIAM imaging]
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Dealing with the recovery issue

● Recovery: retrieve the true model that 
accounts for the data

● Use of stability selection (randomized lasso 
on bootstrapped data) 

● adaptive brain parcellations (Ward's 
algorithm) 

● yields high accuracy and good recovery on 
simulations

Gramfort et al., MLINI 2011
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Brain reading / open issues

Do we want this....

… or that ?

### Compute the prediction accuracy for the different folds (i.e. session)
cv_scores = cross_val_score(anova_svc, X, y, cv=cv, n_jobs=-1,
                            verbose=1, iid=True)

### Return the corresponding mean prediction accuracy
classification_accuracy = np.sum(cv_scores) / float(n_samples)
print "Classification accuracy: %f" % classification_accuracy, \
>>> print "Classification accuracy: %f" % classification_accuracy, \
    " / Chance level: %f" % (1. / n_conditions)
Classification accuracy: 0.744213  / Chance level: 0.125000



35INRIA Machine Learning WorkshopDecember 6th, 2011

Brain reading: Transfer learning
● a classifier trained to 
discriminate left versus right 
saccades can also decode mental 
arithmetics:

● subtraction  left saccade 

● addition  right saccade

● This generalization occurs only 
when based on two regions of the 
parietal cortex

● This shows that the same neural 
populations are involved in ocular 
saccades and arithmetics

[Knops et al.,  science 2009]



36INRIA Machine Learning WorkshopDecember 6th, 2011

Outline

● Machine Learning in Neuroimaging
● Overview
● Common technical challenges

● Some learning problems in neuroimaging:
● Medical diagnosis/study of between subject-variability

● Brain reading

● Brain connectivity mapping



37INRIA Machine Learning WorkshopDecember 6th, 2011

Functional connectivity mapping

● Definition: consists in deriving a quantitative 
measure of brain networks integration based on 
functional neuroimaging correlations

● Rationale
● Popularity of resting-state fMRI.
● Model-driven approach (SEM, DCM) do not 

scale well

● Learning problems
● Segment regions based on observed 

correlations (common to many neuroimaging 
problems)

● Inference of graphical models
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Learning in FCM (1)

● Learn a spatial model (atlas) from 
the resting state data 

● ICA, clustering provide little 
guarantees on the result

● Dictionary learning (SSPCA) 
can be used instead

[Varoquaux et al. IPMI 2011]

The population-level model adapts 
to individual configurations
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Toward large-scale brain atlases

● More generally learn brain functional atlases from the data... 

● requires lots of data
● Could be the first serious attempt to map brain space to brain 

function
● Requires learning methods that scale with huge datasets

– online dictionary learning
● Model selection is tricky 

[Varoquaux et al. In prep]
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Learning in FCM (2)

● Next: Given a set of regions, quantify 
properly their interactions/integration 
of the underlying networks

● Learn covariance model 
between the set of regions 
(partial correlations)

● Group- sparse- penalty
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Learning in FCM (3)

● Do  statistical inference on these 
objects:localize the differences in the 
graph structure between two populations

● Example: stroke patients

● Problem: covariance matrices live on a 
manifold; computing statistics (mean, 
variance) is challenging

● Our solution so far: linearize the 
variability model, assuming small 
differences
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Conclusion

● Machine learning in Neuroimaging

● standard challenges (but lack of data)
● Need guarantees on the result (e.g. support recovery)
● Neuroimaging people also need guidelines

● At INRIA

● Fruitful & long-term collaborations with Select and Sierra
● Other ongoing projects (MEG, BCI) → more impact

● Implementation matters: 

● the success of many methods is related to their availability 
(libsvm !)

● Computation time is important in practice
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