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SIGNAL PROCESSING FOR WIRELESS AD HOC
COMMUNICATION NETWORKS
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Ad Hoc Networking,

Markov Random Fields,
and Decision Making

n a very general sense, an ad hoc network can be considered

to be a collection of wireless mobile nodes that dynamically

form a temporary network without the use of any existing

network infrastructure. The resulting network is a nonhier-

archical distributed structure. All nodes of the network act
as routers and forward received packets to nodes within radio
range. Ad hoc networks, by their nature, are highly adaptive sys-
tems that can come into existence on an as-needed basis. They
can grow, reduce in size, fragment, and dismantle as desired. In
this article, we focus on mobile ad hoc networks (MANETS). As
such, we are interested in ad hoc nodes that are mobile and
highly functioning.

As communication systems get ever more sophisticated, we
can look to a future of highly self-organizing networks that can
not only form networks as needed but can also reconfigure and
adapt to prevailing network conditions. Such networks will

The challenges involved

leverage, and make best use of, available node, network, and
radio resources. The nodes of these networks will consist of both
reconfigurable software and hardware components. Such enti-
ties will have the ability to change operating parameters to
improve the performance of the network, to adapt to users
needs, and to leverage business opportunities (e.g., reconfigure
to avail of cheaper tariffs) among very many other capabilities.
Viewed from this reconfigurable and adaptive perspective, all
parameters associated with an ad hoc node, at all layers, will be
treated as variables that are to be set and reset as required.
While a range of scenarios exist in which a node can adapt
and reconfigure in a unilateral fashion, of interest here are
those scenarios in which nodes in the network must make col-
lective decisions. Such a distributed decision-making (distrib-
uted consensus) task is a challenging problem in highly
dynamic MANETSs and hence is the focus of this article. In
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response to the challenge, we present a framework for distrib-
uted decision making that borrows heavily from the field of
image processing and results in an elegant solution to the
problem. Our central proposition is that by articulating deci-
sion making in an ad hoc
network using a Markov
random field (MRF) maxi-
mum a posteriori (MAP)
approach, a viable deci-
sion-making framework
can be designed.

This article explains
why distributed decision
making in ad hoc networks is so challenging. It describes the
MRF-MAP decision-making framework and in doing so high-
lights the many insights gained from image processing. The
framework is explored in the context of deciding between differ-
ent ad hoc routing protocols.

THE CHALLENGES OF DISTRIBUTED

DECISION MAKING IN AD HOC NETWORKS

Ad hoc networks are inherently self-organizing systems that
meet spatially and temporally varying communication demands.
Unlike static wired networks that are generally long lived, it is
difficult to plan the configuration of a MANET in advance. As
such, MANETs demand applications, services, and protocols that
can manage the network without manual intervention and
adapt to dynamic network conditions. Fundamentally, the abili-
ty of a network to self-organize rests on its ability to make deci-
sions about the configuration choices available to it. Examples
of self-organizing network-wide protocols are routing protocols
[1], [2] and dynamic addressing schemes [3], [4], which eschew
the use of centralized solutions.

Many existing decision-making algorithms make generous
assumptions about the robustness of the communication
model underpinning the decision-making solution, using a
model formally described as the synchronous shared-memory
model [5], [6]. Under this stable model, all nodes partaking in
a decision are guaranteed to be capable of communicating
with every other node within a defined time period. When this
model is transposed into a network context, it demands system
characteristics such as reliable multicasting and synchronized
node clocks. However, a MANET would be more realistically
modeled as a volatile asynchronous, message-passing system
as the assumption of reliable multicasting and synchronized
clocks is not practical.

Furthermore, the Fischer-Lynch-Patterson (FLP) [7] impos-
sibility result clearly delineates the limits of deterministic deci-
sion making in systems of the kind characterized by open,
mobile, multihop ad hoc networks. Fischer et al. have demon-
strated that deterministic distributed decision making is impos-
sible in an asynchronous message-passing system if even one
node crashes. Essentially, nodes cannot place hard time bounds
on the time taken for interactions with other nodes, making it
impossible to distinguish between slow and crashed nodes. A

AD HOC NETWORKS ARE INHERENTLY
SELF-ORGANIZING SYSTEMS THAT MEET
SPATIALLY AND TEMPORALLY VARYING

COMMUNICATION DEMANDS.

crashing node is the simplest form of system failure; a node can
be perceived to have crashed in a mobile ad hoc networking
environment due to the effects of both node mobility and signal
quality on the status of node-to-node links. Nonetheless, the lit-
erature has shown that it is
possible to circumvent the
FLP result if some addition-
al constraints are placed on
the problem space. These
fixes have generally
involved limiting the scope
of the decision-making
process to the local neigh-
borhood (as against the global network space) [8] and using
soft-state techniques to terminate the global decision-making
process in the absence of synchronized node clocks [3].

A SIGNAL PROCESSING FRAMEWORK

FOR DECISION MAKING

The problem of reaching a consensus in an ad hoc network can
be described as a labeling problem. This involves assigning
labels to a set of sites. In the case of the ad hoc network, the
sites are the nodes of the network and consensus means that the
same label must be assigned to each site. The label to be
assigned represents some network-wide parameter (e.g., radio
frequency of operation and MAC scheme).

In a network of M nodes, the label at a site, X, is denot-
ed I(x) with the set of all labels represented by
L =1[l(x1),(x2),...,l(xp)]. Consider that each node can
make some observations that can help determine the choice of
label and let ® denote the set of observations at all nodes. To
choose the best label configuration implies choosing L to maxi-
mize p(L|®), the MAP estimate for L, and to do this we can pro-
ceed in a Bayesian fashion as follows:

pL|®) < p@[L)) x  pL).
Posterior Likelihood Prior

Employing Bayesian inference in this way allows the nodes
to make decisions by coherently combining the evidence they
observe with prior beliefs. To proceed, specific functions must be
designed that express the likelihood and prior. The likelihood
provides a connection between labels and observed data, while
the prior encodes some belief about the label configuration
before any observations are made. The likelihood used here will
be described later as it depends on the specific decision-making
problem. The prior is of chief concern and is discussed next.

THE MRF AS A PRIOR

It is required to encourage a situation in which the choice of
label at a node is not an independent choice of any individual
node but depends also on the choice of the other nodes in the
network. A MRF can be used as a prior on L to capture this
interdependency. The MRF is a field in which the conditional
probability that a site is in some state depends only on a subset
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of the sites nearby and not all other sites available. It is through
these local dependencies that longer term dependencies can be
modeled. In other words, the MRF as a prior can be used to
drive consensus.

FINDING A SOLUTION

To find the labels that maximize p(L|®), using the MRF-MAP
framework is in fact quite challenging. The classic Monte Carlo
approach to solving this problem is to draw samples of L from
the distribution : L ~ p(L|®). Collecting a large number of
these samples then allows the measurement of the probability
density function p(L|®), and hence the best L can be selected.
In the case of the ad hoc network, the problem as currently for-
mulated would necessitate some kind of control node or god-
like object that can see/communicate with all other nodes to
determine the labels that maximize p(L|®). Some kind of lead-
ership elections could be carried out that would select a leader
node that could subsequently manage the choice of label. Such
an approach is not appropriate in highly mobile ad hoc networks
as membership of the network is in constant flux and new elec-
tions would be necessary when the leader leaves. To make the
problem tractable, it must be converted to a problem requiring
only local decision making at each node. Mechanisms for doing
this can be borrowed from the field of image processing.

CONVERSION FROM A GLOBAL TO A LOCAL PROBLEM
In image processing, the labeling problem is well studied. The
sites to be labeled are usually pixels, and the labels can have a
wide range of meanings (for example, pixel grey level or
edge/nonedge). The goal is typically to design a process by
which, through local interactions, entire patches of image are
associated with the same label, i.e., are segmented into
homogenous segments. This is precisely the problem to be
addressed in the ad hoc networking context: the need to seek
global optimization through local interactions. Insights into
the problem posed in this article can be gained from the well
established approaches to the problem in the image process-
ing fields [9]-[12].

The most well known of these is the Gibbs sampler [13].
Samples from a complicated multidimensional distribution can
be generated by recursively sampling from local conditional dis-
tributions. These local conditionals can be much simpler and
may involve just a single node. This solves the problem of com-
putational complexity but crucially converts the problem from a
centralized problem to a fully distributed problem. Hence given
three nodes for instance, with some initial configuration
l?, lg Ig, the Gibbs Sampler requires the following iterations:

B~ phh161, B, 8), B~ pkl6s, I, B),
B~ psl6s, B, ), B~ plh161,5,8),
B~ pbloo, B, D), B~ pls103, B, B), )

where 01, 02, 03 are the data observations made at nodes 1, 2, 3,
respectively.

The fact the network is an MRF means that the label configu-
ration of a given node is only dependent upon the configura-
tions of the neighboring nodes. The exact definition of neighbor
is dealt with in the next section but to understand how this
works, consider three nodes lying along a line such that /; is
connected to /» but not /3, and /5 is connected to both /; and Z3.
In this case /; and /3 have one neighbor, and /> has two neigh-
bors. Then the Gibbs sampler would proceed as

0~ phlor. 8. B~ paloz, 4, ),

B~ p(s103. 3.). &~ p(hlor. 3.),

B ~ploe. B, 1Y), &~ ps63. B). 3)
The centralized and global optimization problem has now been

converted into a distributed and local optimization problem.
The process and the problem can now be expressed as follows:

PUX)|L(—X), ©) x p(OX)[I(x))) x p({(X)|L(—X)),

4)

Posterior Likelihood Prior

where L(—x) denotes all the neighbors of the node, as distinct
from all the remaining nodes in the network. This is exactly
the strategy needed for ad hoc decision making. Nodes can
make decisions aufonomously and in place without recourse
to any knowledge that concerns nodes which cannot be seen,
i.e., that are outside its neighborhood. The key point to notice
here is that decision making at a site now depends only on
this neighborhood. The neighborhood can be quite small. In
this context, all nodes within one hop of the current one is
sufficient: a first-order neighborhood. This specification does
not compromise the overall system from allowing for more
long-range dependencies. This can be understood by return-
ing to the three-node problem introduced above. In that prob-
lem, the state of /; depends only on /. And similarly /3
depends only on . Despite this, the state of /3 is influenced
by /1 because it is influenced by /> which in turn is influenced
by 41. This shows that the MRF has specified local interactions
only, yet is able to account for longer term dependencies
through the interconnectivity of the network. As each node
has its own computing power the solution can be compared to
a massively parallel image processing solution.

One last key point in connection with the Gibbs sampler
should be made. As mentioned earlier, the lack of network-wide
time synchronization in ad hoc networks means that no time
bounds can be placed on any processes. The Gibbs sampler sup-
ports synchronous and asynchronous updating of the choice of
label at each node [9]. There are very interesting questions here
about synchronous versus asynchronous updating, but it is for-
tunate that regardless of the strategy (and asynchronous is nec-
essary for ad hoc decision making) the Gibbs sampler will
converge to samples from the underlying global distribution.

THE NOTION OF NEIGHBOR IN AN AD HOC NETWORK
In image processing the neighbors typically tend to be adjacent
pixels, the number of neighbors is typically the same for all sites
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(except sites at the edge of an image) and the number of neigh-
bors of any given site typically remains constant throughout the
process. We define the neighbors of an ad hoc node to be all
nodes from which it can successfully receive packets in one hop.
The number of neighbors can grow and recede over the lifetime
of the MANET; it is a highly dynamic number. Figure 1 illus-
trates the notion of neighbor in an ad hoc network at two differ-
ent times, #; and /. In Figure 1, the nodes of interest are node 1
and node 6. The radio range of each of these nodes is illustrated
in the figure as a dotted circle around each node. At time #
node 1 has nodes 2, 3, and 4 as its neighbors. Node 6 has nodes
4, 5, and 7 as neighbors. At the later time there has been much
movement of nodes and a new pattern arises. Of particular note
is node X, which although within radio range of node 6, is not a
neighbor of node 6 as node 6 does not know it exists. This may
occur either because it is deliberately not communicating or
due to some physical phenomena. The very dynamic nature of
the neighborhood does not in any way compromise the MRF-
MAP framework. It is simply the case that when calculating
(4), use is made of whatever neighbors exist at the time the
calculation is made. The different number of nodes is taken
into account in the prior.

THE PRIOR
The MRF prior, p(I(x)|L(—x)), or p(/) in short hand, can be
expressed as follows [14], [13]:

[#]
pd) ocexp—r Y Z% &)
lkEN

where A is a tuning parameter, / is shorthand for /(x), and the
set \V is the set of labels at sites that are neighbors of /. Hence /.
is one label in the neighborhood, and the probability p(/) is
highest when 7 agrees with all or most of the labels in the neigh-
borhood. This is the effect that drives consensus in the frame-
work. Because the number of sites in the neighborhood, #C, is
not the same from site to site, it must be incorporated into the
prior as a normalising factor. This allows nodes that have fewer
neighbors to attach more weight to achieving consensus (i.e.,
more weight to the prior) and vice-versa.

/ !
SOy
\ 4 /
~e___2a7 @/ @
---<_ ),
S ’//
Time

[FIG1] Understanding neighbors in ad hoc networks.

A provides a means of stipulating how much peer pressure
should be allowed in the network. In other words, the MRF-
MAP framework can be tuned to provide a balance between the
desire for consensus and the ability of a node to adapt to net-
work conditions. The idea of a tuning parameter opens up
many interesting discussions in the context of an ad hoc net-
work as nodes could theoretically adopt different tuning
parameters in very nonhomogenous environments. Of course
A can also be used to encourage fragmentation (texture). This
may be a desired effect, e.g., in a dynamic frequency/cell plan-
ning exercise for a network. Groups of neighboring nodes
could, for example, select a frequency of operation that would
not interfere with the frequency selected by other groups. This
discussion is for future work but nonetheless emphasizes the
generality of the proposed framework.

AN MRF-MAP DECISION-MAKING FRAMEWORK
FOR ROUTING PROTOCOL CHOICE

ROUTING IN AD HOC NETWORKS
Ad hoc routing protocols are at the core of ad hoc networks and
must be specially designed to deal with the dynamic nature of
the ad hoc network environment. A broad range of routing pro-
tocols have been designed and developed for use in ad hoc net-
works. Routing protocols can be loosely broken in to proactive
protocols (e.g., optimal link state routing (OLSR) [2]), reactive
protocols (e.g., dynamic source routing (DSR) [1]) and hybrids
(e.g., zone routing protocol [15]). (There are also a class of rout-
ing protocols known as location-based routing protocols, but
these depend on nodes having access to location information.)
In general, the goal has been to identify an optimal ad hoc
routing protocol. However, it has been well established in the
literature that the current routing protocols are not individually
suited to all networking conditions that would typically be
encountered by a MANET [16]-[19]. The literature, and our own
simulations, identify the major factors affecting the choice of
routing protocol as being relative node mobility, node density
and traffic conditions when end-to-end data throughput and
routing protocol control overhead are used as measures of a

Time & (b > 1)
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protocol’s performance. More specifically, DSR and OLSR have
been comparatively evaluated in many surveys, among them
[19] and [17], which demonstrate their disparate realms of opti-
mal performance.

DSR reactively creates routes between source and destination
nodes when requested by higher application layers. As such, DSR
uses aperiodic network-layer signalling to discover and maintain
routes. On the other hand, OLSR proactively uses local periodic
beaconing to perform neigh-
borhood discovery, and it
uses a predominantly period-
ic flooding technique to relay
full topology information
throughout the network. In
both cases, the flow of data
across the network invokes
aperiodic signaling at the
network layer. The result of
this is that the level of neighbor-to-neighbor signaling varies by
protocol and by traffic demands. This signaling has, for all intent
and purposes, the effect of acting like a network-layer radar that
reveals the presence and state of neighboring nodes with varying
resolutions of clarity.

Rather than continuing to search for that one routing proto-
col that suits all network conditions, an alternative approach is
to design a system that allows nodes to dynamically reconfigure
themselves to utilize the most suitable ad hoc routing protocol
for the prevailing network conditions. An adaptive network layer
would facilitate such a complete change of routing protocol.
And of course, choosing the best routing protocol for the pre-
vailing conditions necessitates a consensus decision to be made,
as all nodes must run the same protocol. Some work has been
carried out on adaptive routing protocols for ad hoc networks
but this work has tended to focus on adaptivity within a given
protocol (nodal change) rather than adapting between different
protocols (network-wide change).

The application example used to illustrate the power of the
MRF-MAP framework is based on a reconfigurable ad hoc net-
work layer that allows nodes to dynamically configure and uti-
lize the most suitable ad hoc routing protocol for the
prevailing network conditions. This is a complicated example
that illustrates many of the key features of the framework as
well as highlighting the challenges. For the purposes of this
article we have focused on reconfiguring the network layer
between two different protocols, DSR and OLSR. In this case
when we speak of a protocol being more suited we mean the
data throughput is better than if an unsuited protocol were in
operation [19], [17]. The remainder of the article focuses on
DSR and OLSR when presenting results and findings.

EXPERIMENTAL FRAMEWORK

Before describing the experiments and results, it is useful to
describe the experimental platform. The research described in
the article was carried out using a real ad hoc network, known
as the Dublin Ad hoc Wireless Network (DAWN) [20]. DAWN was

MANETS DEMAND APPLICATIONS,
SERVICES, AND PROTOCOLS THAT
CAN MANAGE THE NETWORK
WITHOUT MANUAL INTERVENTION,
AND ADAPT TO DYNAMIC
NETWORK CONDITIONS.

designed and created to facilitate research in the area of ad hoc
networking. At the core of DAWN is a dynamic modular commu-
nication stack that runs on each of the nodes of the ad hoc net-
work. A generic layer interface allows the dynamic assembly of
these layers to form a network communication stack consisting
of the relevant hardware and software elements. The MRF-MAP
framework is what we call a sfack service that can be called on
by any layer of a DAWN node to help it make decisions. In this
case, the network layer uses
the decision-making frame-
work to decide between DSR
and OLSR. The DAWN stack
has a facility for swapping
between protocols at a partic-
ular layer. The physical layer
in DAWN can deal with a
large number of physical
frontends, including IrDA,
802.11, and an in-house software radio known as IRIS
(Implementing Radio In Software) [21], which facilitates recon-
figurability in the radio. There is also a simulation layer in
DAWN, and this was used during the experimental work as it
permits the simulation of highly mobile nodes.

BUILDING THE MRF-MAP FRAMEWORK

FOR ROUTING PROTOCOL CHOICE

To build the MRF-MAP decision-making framework for the pur-
poses of routing protocol selection, it is necessary to determine
the required local observations and to compute the associated
likelihood functions.

LOCAL OBSERVATIONS

To use the MRF-MAP framework in our application example, nodes
must be capable of locally observing node mobility, node density,
and node traffic conditions. This can be achieved as follows:

1) The local mobility of a node can potentially be determined
if the node knows its current and previous location and the
time taken to move between the two positions. In the absence
of a positioning system, link change rate (LCR) can be used
by a node to get a sense of its mobility. The LCR metric is
defined as the number of communication links forming and
breaking between nodes over a given time.

2) In terms of network density, average node degree (ND) is a

local proxy measure. Node degree can be defined as the num-

ber of one-hop neighbors that a node is aware of.

3) The number of data packets per second (PPS) passing

through the node is a local measure of the traffic.

There are a number of points that should be made in connec-
tion with the observations. First, the probability of the observed
LCR statistic is dependent on the observed average ND. The
more neighbors (communication links) a node has, the more
link changes can occur in a mobile environment. Second, the
observed PPS statistic is dependent on the current protocol,
?(X). While DSR buffers data packets for transmission, OLSR
does not and will only transmit data if a valid route is available.
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As a result, less data packets are observed in an OLSR network
compared to a DSR network under identical traffic loading.

So, if the observations at the node are
0(X) = {flcr (X), Opg(X), Opps(X)} where 6, (x) is the observed
LCR, 0pq(x) is the observed ND and 6,ps(x) is the observed PPS,
then the likelihood function is p@X)|I(x), ?(x),L) =
POt (X), O (X), Opps X)|1(X), Z(x), L). This can be expressed as a
product of conditional distributions given the aforementioned
dependencies, resulting in

P (6091, 109, L) =p(B1er (9164 (). 1)

- P(a 0 100)P (Bpps ). 1) )
)

DETERMINING THE LIKELIHOOD FUNCTIONS

The form of each of the probability density functions for the local
observations was evaluated by experiment using DAWN. In all
simulations, the random waypoint (on a torus) model [22] was
used as the mobility model. This model ensures that the local
observations of LCR and average node degree are spatially sta-

tionary. This is essential so that artifacts of the mobility model do
not influence the results, a point that can often be neglected. The
global mobility is set by specifying node speed. Traffic is generat-
ed by constant bit rate (CBR) sources that select a uniformly ran-
dom destination for each packet. Packets are presented to the
network layer every 5 s, and traffic loading is altered by changing
the number of nodes acting as CBR sources. The node density of
the network was controlled via the simulation area. To create
dense conditions smaller, simulation areas are used.

For the experiment, we defined two scenarios that exhibit
different network characteristics. Scenario A features a dense
network of 20 nodes in an area of 500 x 500 m?. Mobility is low
with an average node speed of 1 m/s. Traffic originates from 5
CBR sources. Under these conditions, a network operating
OLSR has a higher throughput performance than one operating
DSR. On observing local measures of LCR, ND, and PPS indica-
tive of this scenario, a node should favor implementation of
OLSR. Scenario B features a sparse network of 20 nodes in an
area of 700 x 700 m?. Mobility is also low with an average node
speed of 1 m/s. Traffic load is high with 20 CBR sources. Under
these conditions, a network operating DSR has a higher
throughput performance than one
operating OLSR. On observing local
measures of LCR, ND and PPS indica-
tive of this scenario, a node should
favor implementation of DSR. Hence,
in the problem specified, each node
can select one of two values for its
label: I(-) € {4, B} alternatively

— (X =DSR_|:
I(x) = OLSR |
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I(-) € {OLSR, DSR}. The likelihood
functions were determined by analyz-
ing the local observations of 20 nodes
in the network conditions of
Scenarios A and B. Ten trials of 500 s
each were performed.

Our experiments show ‘Ehat
PBrd®)1{(x)) and p(Bpps (X)|1(x), (X))
are approximated well by 1-D

— () =DSR |
[x)=OLSR |:
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Gaussians, as illustrated in Figure 2.
The distributions for PPS are vague
and the dependency on the current
protocol is not so pronounced. The
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likelihood p(6yc,|-) is more complicat-
ed. Since there is a conditional
dependency between LCR and ND, the
framework should use the joint distri-

P(Opps(X)I(x), (X))
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[FIG2] Likelihood functions. Part () shows p(fpps|-) and its dependency on the current label
I. Hence p(fppsll = B, = B) ~ N(1.32, 20), p(fpps|l = B, | = A) ~ N (6, 20);

POppsll = A, I = A) = N(4,20), p(Opps|l = A, | = B) ~ N'(0.4, 20). Part (b) shows

POngll = A) = N(15.2,0.21); p(bnall = B) = N(7.3, 0.38) and (a) shows

Pl = A) = N(2.5,0.26); p(dicll = B) = N'(1.39.0.1).

1:6': :1*8- - ;0 potentially computationally expen-

sive, so we approximate with
PB1er () 1ang, [(X)), where g is the
mean of p(0,4(X)|{(x)). The variance
of p(6,4(X)|{(x))is small and thus this
simplification does not impact on the
solution. p(0;.,(X)|und, (X)) is also
Gaussian, as illustrated in Figure 2(a).
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THE MRF-MAP FRAMEWORK ALGORITHM
Recall that the problem is now a local one. It is required to assign
a label /(x) to the node at site x. This is achieved by choosing the
label that maximises p(/(x)|L(—x), ®(x)), (4). Given that in this
case there are just two labels A, B representing the two choices
for protocol at a node, then
this amounts to selecting the
larger of p((x) =A|) or
p(l(x) = B|-). This is the
Iterated Conditional Modes
(ICM) algorithm as proposed by
Besag [9]. An alternate strategy
is to run the Gibbs sampler as
discussed earlier, but ICM is computationally more attractive.
Using the negative logarithm of the a-posteriori distribution,
—In[p({(x)|L(—x), ®(x))], avoids issues with scaling and expo-
nentials, converts the product to a sum, and yields a more direct
solution with

= In[p/(x®)|L(—x), ©(x))]

() # I )
In (p(®1I(x)) + (x Z #C) .
lkEN

Hence the ICM algorithm at each node proceeds as follows,
given the current node is at site 7 with curent label ?i.

1) Make measurements of Opps, Ojcy, Onq at the site 7.

2) Set /; = A, measure —In[p(®|l; = A)] by combining the

likelihoods shown in Figure 2. Define this as an energy Eir

3) Set /; = B, measure —In[p(®|/; = A)] in a similar manner

to that above. Define this as an energy EIB.

4) Set I; = A, measure A Zlke/\/ ((A# lp)/#C), i # k. This is

the MRF energy and requires measurement of the state of the

nodes that are one hop away (/) from site i. Note that
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Zlke (A # [p) is the number of these nodes having a label
that is not A. Define this as an energy £5,.
5) Set /; = B, measure the MRF energy (as above),
Ey =Y en (B# L) /HO).
6) IfEil + £ < Eg + E%,, then choose /; = A. Else I; = B.
The implementation of the
algorithm for the decision-
making framework is therefore
straightforward. At each
process clock cycle, nodes
incorporate the local observa-
tions of LCR, ND, and PPS in
the likelihood function. The
prior (5) is used to get a measure of how many of the neighbor-
ing nodes are similar to ;. The protocol that yields the mini-
mum energy is then selected by the node.

RESULTS AND ANALYSIS

Recall that in the overall problem, nodes initially operate under
a specific set of network conditions (mobility, density, and traf-
fic load). Consider that the nodes are operating the optimal
routing protocol for that set of conditions. At some time 7, net-
work conditions change so as to make the current protocol
nonoptimal. The task of the MRF-MAP framework is to facili-
tate a distributed consensus process in the network, resulting
in the selection of a new protocol which is optimal for the new
environmental situation.

To demonstrate this behavior, two distinct simulations are
set up. Network conditions in the first set of simulations change
from Scenario A to Scenario B, and vice versa in the second set.
The time at which network conditions change is set to t = 0.
The network-wide choice of routing protocol is then analyzed.
As stated earlier, OLSR is optimal for Scenario A and DSR is
optimal for Scenario B. The optimal protocol is therefore

—— Trial-Specific w;
20 .........................
. — E[w]]
10 ................. ®occooo - _E[ Wt] +0
0 | 1 1
-5 0 5 10 15
Process Clock Cycles

(b)

[FIG3] Expected w; =+ standard deviation for 1 = 5. Example w; for individual trials are also displayed. (a) Scenario A — Scenario B

(OLSR optimal). (b) Scenario B — Scenario A (DSR optimal).
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[FIG4] Target w; compared to realizations of w; for individual trials. (a) Scenario A — Scenario B (OLSR optimal). (b) Scenario B —

Scenario A (DSR optimal).
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[FIG5] Convergence statistic D; against 2 for each set of simulations. (a) Scenario A — Scenario B (OLSR optimal). (b) Scenario B —

Scenario A (DSR optimal).

known a priori. A good statistic to capture the dynamic behav-
ior of the framework is the percentage of nodes operating the
optimal protocol, defined as
wy, at time £. There are a
number of issues to consid-
er such as the ability of the
network to reach consensus,
the length of time taken to
reach such consensus, and
the effect of A on the con-
vergence to consensus.
Furthermore, we consider the whether it is possible to esti-
mate an optimal value of A.

Figure 3 shows results from the two sets of simulations. In
each case the expected value for wy, E[wy], is evaluated over
100 trials and plotted against Process Clock Cycles for » = 5.

AD HOC ROUTING PROTOCOLS ARE
AT THE CORE OF AD HOC NETWORKS
AND MUST BE SPECIALLY DESIGNED
TO DEAL WITH THE DYNAMIC
NATURE OF THE AD HOC
NETWORK ENVIRONMENT.

In both cases more than 95% of the nodes have attained the
optimal protocol within five clock cycles. The dashed lines rep-
resent one standard devia-
tion, o, about the mean.
Majority consensus has
indeed been achieved with
an expected 98% of nodes
on the optimal protocol.
However, there is fluctua-
tion between each trial run
due to the random nature of
the simulation, i.e., variance in local observations between
sites. Examples of w; for specific trials are also shown to illus-
trate possible node behaviors and the significance of the stan-
dard deviation plots. Although nodes are converging on the
optimal protocol, some thrashing of protocol choice occurs in
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individual nodes. This behavior is unacceptable as nodes on
different protocols cannot communicate. Therefore, while it is
important for E{wy] to converge to 100%, it is just as impor-
tant for the standard deviation to converge to zero.

To capture the performance of the framework for different A,
a target convergence behavior is defined as
wi =100(1 — exp[—n{]). The parameter 5 is chosen to yield a
target of 95% of nodes converged in ten clock cycles with expo-
nential convergence. wy is compared to wj; as shown in (8) to
produce the convergence statistic D;, defined as follows.

D, = Z(wf — wo s~y ®)
7

where

1 wj>wt

Liyswy = .
>l {0 otherwise.

D;, is proportional to the degree with which wy is below the
ideal value and is a function of 1. Figure 4(a) and (b) compares w}
to trial-specific w; for both sets of simulations. The convergence
statistic Dy, is equivalent to the sum of the red lines. Hence D;, is a
measure of the distance of a particular experimental observation,
e.g., wy in Figure 4, from the target performance wj. Large values
of D;, imply poor convergence while small values imply perform-
ance attaining our target. Note that our target is chosen as an
indicative baseline measure only. The expected value for D; is
evaluated over 100 trials for each set of simulations.

Figure 5 shows E[D, ] against A for each set of simulations. It
shows that there is a broad range of A that is optimal for deci-
sion making and that values of A may be chosen such that they
suit both scenarios. This implies a certain amount of robustness
of the system to the choice of A. Figure 5 also shows how A
affects the overall convergence. A provides a balance between
the desire for consensus (i.e., nodes wish to operate the same
protocol as their neighbors) and the need to adapt to the prevail-
ing network conditions. If A is too small, then nodes do not have
sufficient desire to form consensus and fragmentation of the
network may take place, where different nodes operate different
protocols and communication between them is lost. Nodes may
also sporadically thrash between optimal and nonoptimal proto-
cols due to a lack of dependence on neighboring nodes’ choices.
This behavior can be seen in Figures 6(a) and 7(a) for the case
where A = 0. If A is too large, the nodes do not react to chang-
ing conditions, instead preferring to form consensus with their
neighbors operating the nonoptimal protocol. Again, fragmenta-
tion of the network can occur. Figures 6(c) and 7(c) show this
behavior at a value of A = 140. Figures 6(b) and 7(b) show the
MRF-MAP performance at a value of A = 80. This value is cho-
sen to be within the range of optimal A for both simulation sets.
The standard deviation tends to zero in the latter stages of simu-
lation, indicating that the thrashing of protocol choice amongst
nodes has abated. Thus it is possible to tune A to produce the
desired global behavior in the network.

It should be noted that in these simulations, network condi-
tions strongly favor either DSR or OLSR, and this is reflected in

the local observations of the nodes. The network conditions are
highly stationary at all points of the network, and so nodes are
likely to infer the optimal protocol from local observations alone
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[FIG6] Expected w; + standard deviation. Scenario A — Scenario
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(A = 0). However, the stochastic nature of the ad hoc networks
implies that some observations may cause a node to infer the
nonoptimal protocol, and it is in these cases that the framework
facilitates convergence to the optimal protocol and ensures that
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[FIG7] Expected w; + standard deviation. Scenario B — Scenario
A (DSR optimal). (a) » = 0 (b) » = 80 (c) » = 140.

nodes remain on the optimal protocol. The results prove that a
nontrivial choice of A leads to higher consensus among nodes and
a reduction in nodes thrashing to the nonoptimal protocols. In
practical terms, self-stabilizing techniques can be used to avoid
thrashing once nodes have been perturbed from a suboptimal
state to the optimal state using the MRF-MAP framework [23].

The MRF-MAP framework is shown to be a viable method of
producing distributed consensus in ad hoc networks. The sto-
chastic nature of ad hoc networks presents a challenge to the
decision-making process, however appropriate selection of A
allows for quick convergence to the optimal protocol. Analysis
reveals a large range of optimal A and consequently that the sys-
tem is relatively robust to the choice of A.

APPLICABILITY OF THE MRF-MAP FRAMEWORK

The MRF-MAP framework has proven to be a useful tool in net-
work-wide protocol selection from the evidence of the experi-
mental work described in this article. The question now arises as
to its use for other network-wide decisions. There are a number
of key issues to be considered here.

The first issue relates to the time dynamics of the problem at
hand. Timing in the case of the MRF-MAP framework is a relative
issue and very much depends on the decision to be made. If the time
taken for a node to make an observation and the time taken for the
framework to make a decision is so long that the network conditions
have changed appreciably in the meantime, then it is not suitable.

The second issue in terms of the applicability of the frame-
work is the issue of the observations themselves. In some cases
there may not be a local physical manifestation of the effects of a
global parameter. And in other cases, even when there is some-
thing that can be measured locally, there may be no causal link
between local measurements and the global conditions. In such
cases the framework has no role to play but nor does any distrib-
uted decision-making framework. In general, a centralized
approach would be necessary.

The third issue that is important for the applicability of the
framework relates to the actual implementation. This has been
alluded to in the previous paragraphs in terms of the calculation
of the clique potential. The implementation of the MRF-MAP
framework must be carried out in such a way as to not overbur-
den the network. For example nodes can actively query neigh-
bors for their preferences or can opportunistically glean the
information during the normal course of communication. The
second option is more lightweight and less likely to overburden
the network. Hence, implementation choices have an impact on
the framework’s applicability.

CONCLUSIONS

The MRF-MAP framework presented in this article is a general
framework for solving distributed-consensus problems in ad hoc
networks. The framework has borrowed much from the field of
imaging processing. Ideas from networking have found their
way to the image processing domain through such techniques
as graph cuts [12]. In this article ideas from image processing
are finding a place in networking, thus closing the loop.
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The framework is attractive and elegant and through the ini-
tial experiments presented here, very workable. It is clear that
the use of the framework is very dependent on designing good
likelihood functions and understanding the tuning parameter.
Depending on the complexity of the application area this can be
an arduous task, but no doubt the same can be said of its appli-
cation to areas of image processing.

We are continuing the work in protocol selection and look-
ing at the use of nonhomogeneous tuning parameters across the
network, among other things. We are currently also expanding
the applications of the framework and much can be learned
from using it in different ways. Reconfigurable wireless commu-
nications systems are very much a part of the future of commu-
nication systems in general and the facilitation of
reconfiguration in ad hoc networks is in line with developing
trends. We are particularly interested in opportunistic use of
spectrum, spectrum pooling and spectrum rental for nonincum-
bents. The MRF-MAP framework can aid self-organizing collabo-
rative and distributed entities to make decisions about key
resources in this and many other areas.
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