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∗∗ ÚTIA, AV ČR, Czech Republic

doylesj@tcd.ie

Abstract: Recent research has pioneered quantitative
Bayesian methods for diagnosis of early-stage lym-
phedema. The effectiveness of this approach depends
on the selection of optimal lymphoscintigraphic imag-
ing times for the entire limb, which are currently un-
available. This paper develops a novel multi-channel
parametric model of the arm and, using the Bayesian
paradigm, derives an expression for the optimal lym-
phoscintigraphic sampling times. The Bayesian infer-
ence algorithm is applied to an over-sampled scinti-
graphic image sequence, and an optimal subset of
such images is inferred.

Introduction

Upper-limb lymphedema is a condition involving ex-
cessive swelling of the arm. It can occur as a side-effect of
breast cancer treatment and is caused by impaired circula-
tion in the lymphatic system. Therapy is used to eliminate
protein stagnation and restore normal lymphatic circula-
tion. However, this is only effective in the early stages of
the condition. If untreated, lymphatic walls undergo irre-
versible fibrosis and the patient may lose functionality of
the limb. The ability to diagnose early stage lymphedema
is therefore critical to recovery.

Lymphoscintigraphy is a non-invasive, low risk, nu-
clear imaging method used to diagnose early stage lym-
phedema [1]. Typically, 25MBq of Tc-99m-labelled hu-
man serum albumen is injected into the interstitial space
of each hand. This radioactive tracer then flows through
the lymph system of the arm, to the liver. Lymphoscinti-
graphic images record the counts from the radioactive
tracer at a chosen time during its propagation through the
arm. Patient, time and economic factors limit the number
of imaging times. Each image is exposed for one minute,
and typically only two or three images are taken. Subse-
quent images allow for an analysis of flow dynamics and
provide an insight into the state of the lymph system.

Traditionally, these images have required qualitative
examination by a medical expert. Gebouský et al [2] have
recently developed quantitative Bayesian techniques to
infer the state of the lymph system from lymphoscinti-
graphic images. In this Bayesian approach, the images
are divided into threeRegions Of Interest(ROIs). The
radioactive counts are aggregated across each ROI, and

then normalized with respect to the initial administered
activity. The resulting normalized counts in each ROI
correspond to the radioactive activity in each region and
thus the time-dependent flow of tracer can be analysed
in that region of the arm. The complicated nature of the
lymphatic system, as well as abnormal lymphatic flow
dynamics indicative of lymphedema [3][4], make exact
modelling of the arm impossible. Gebouský et al model
the data for each ROI independently, using a single-
channeldth order discrete-time delay model for each ROI.
This model facilitates Bayesian inference of diagnosti-
cally significant quantities and hence a quantitative eval-
uation of the underlying lymphatic condition.

The approach is sensitive to the temporal location of
imaging times. The single-channel model is localized to
individual ROI, and therefore is incapable of determin-
ing the optimal sampling times across all three ROI. In
this paper, we present a multi-channel parametric model
of the arm which models the normalized counts from all
three ROI simultaneously. This model is then used to in-
fer the optimal sampling times across all ROIs.

Multi-Channel Parametric Model
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Figure 1: Multi-Channel Parametric Model of Normal-
ized ROI Counts.q−1 is the backward shift operator
(q−1xt = xt−1)

The counts for each ROI are modeled with a discrete-
time dth order delay model. Thedth order delay model
is also employed in the single-channel model. It can re-
alize a rich ensemble of possible curves, capturing the
stable, slowly-decaying, non-oscillatory nature of the ob-
served lymphoscintigraphic counts. The delay models are
cascaded to reflect the gradual propagation of radioactive
tracer through the lymph system of the arm (Figure 1).
Here, the forearm, upper-arm and axilla ROI yield three
channels of data, denoted byc = 1, 2, 3 respectively.

The model is parameterized byθ = (b1, b2, b3, ϑ, r),
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Figure 2: Sample Time Activity Curves for thedth Order
Delay Model (normalized so that Curve Maximum = 1)

whereϑ = (a, d1, d2, d3). Gain parameters,b1, b2 and
b3, are used to adjust signal amplitude and allow for an
expanded set of possible system responses. The partial
time constant,a, is such that the system response is stable
and non-oscillatory. A sufficiently large set of candidate
response curves allow fora to be assumed identical for
each channel. The model orders,d1, d2 andd3, describe
the propagation rate of the tracer through the lymph sys-
tem of the arm.

The injection of radioactive tracer is modeled by a
Unit Sample Sequence(USS) δt at the system input.
The discrete-time output at each ROI is sampled at time
t ∈ T = {1, 2, . . . , N}, whereN is the cardinality of the
complete set of sampling times,T . The USS response
of channelc is known as theTime Activity Curve(TAC),
XT

c = (xc,1, xc,2, . . . , xc,N )
T . Typical TAC are shown

in Figure 2. SuperscriptT is used to denote the vector of
times at which a ROI is observed.T universally denotes
transposition. Causality requires thatxc,t = 0,∀t < 0.
The closed form solution [5] of the USS response of
channelc is given by

xc,t = bc

(

t + dc − 1

t

)

atut, t ∈ Z
+. (1)

ut is the unit step function. The gain parameterbc en-
ters the analysis linearly, while the non-linear terms are
ϑc = (a, dc)

T . ThusXc,t = bcAϑc,t where

Aϑc,t =

(

t + dc − 1

t

)

atut, t ∈ Z
+. (2)

The cascade is tapped after each ROI, and noise is su-
perimposed on the signal by the observation process. The
datay1,t, y2,t andy3,t are the observed normalized counts
from channel 1, 2 and 3 respectively, with added noise.

Independence of samples can be assumed under
sparse sampling conditions. Aggregation within each
ROI allows the Poisson distributed noise on individual
counts to be approximated well by zero-mean Gaussian

noise ec,t. ec,t are i.i.d. ∀t ∈ T owing to the large
sampling period ofT . Furthermore, the channel noise
processes may be assumed to be mutually independent.
Thus the probability density function (pdf) of the ob-
servation vectorY T

c = (yc,1, yc,2, . . . , yc,N )
T , where

yc,t = xc,t + ec,t, is given by

p(Y T

c |θ, T ) =

(2πr)
−0.5N

exp

[

−1

2r
||Y T

c − bcA
T

ϑc

||2
]

(3)

|| · || denotes the Euclidean norm. The variance of the
noise,r, is assumed constant∀c, t. The pdf of the obser-
vations for the entire limb,Y = {Y1, Y2, Y3}, is derived
from Equation (3).

p(YT |θ, T ) = l(θ|T , YT ) =

(2πr)
−1.5N

exp

[

−1

2r

3
∑

c=1

||Y T

c − bcA
T

ϑc

||2

]

(4)

l(θ|T , YT ) denotes the Likelihood Function (LF) ofθ.

Prior Information

The Bayesian approach demands that the probability
distributions for model parameters must be determined.
Gebousḱy [6] elicits prior distributions for the parame-
ters of the single channel model, and these are used to
determine the prior distributions for multi-channel model
parameters.

a is dependant ondc, and is typically observed in the
range0.9 ≤ a ≤ 0.999. dc describes the rate of prop-
agation of the radioactive tracer and is observed in the
range1 ≤ dc ≤ 5. The multi-channel model indicates
that dc+1 = dc + d, d ∈ Z

+, with d1 ∈ {1, 2, 3},
d2 ∈ {2, 3, 4} andd3 ∈ {3, 4, 5}. a anddc determine
the location of the TAC maximum, which is observed in
the range(25, 250) for channel 1,(60, 300) for channel 2
and(100, 360) for channel 3.

bc determines the amplitude of the USS response, and
depends on the non-linear parametersϑc. The data sug-
gest that the maximum of the response does not exceed
20% of the applied input, and that it is non-negative.
bc ∈ (0, b̄ϑc

) whereb̄ϑc
is the maximum value ofbc and

is evaluated numerically for eachϑc. The noise is an arte-
fact of the measurement process and as such is patient and
limb independent. The variance of the noise is also inde-
pendent of all other parameters and empirically is in the
ranger ∈ (10−6, 10−4). The prior distributionp(θ) can
thus be expressed as a product of conditional distributions
given the aforementioned dependencies.

p(θ) = p(b1|ϑ, r)p(b2|ϑ, r)p(b3|ϑ, r)p(ϑ)p(r) (5)

The parametera is discretized to facilitate computation.
A uniform pdf onϑ = (a, d1, d2, d3)

T is invoked accord-
ing to theprinciple of insufficient reason[7]. The pdfs



on the continuous parametersbc andr are conjugate to
Equation (4) [8].

p(bc|ϑ, r) =

(2πωc,ϑr)
−0.5

exp

[

−1

2ωc,ϑr
||bc − b̂c,ϑ||

2

]

(6)

ωc,ϑ > 0 and b̂c,ϑ parameterize this distribution. The
expected range ofbc is used to determine the relation-

shipsb̂c,ϑ = 0.5bc,ϑ and ωc,ϑ = b
2

c,ϑ/(4r̂), wherer̂ is
a conservative estimate of the measurement variancer,
r̂ = 10−5.

p(r|δ, ε) = (κ)
0.5δ

Γ−1 (0.5δ) r−0.5δ−1 exp
[

−
κ

r

]

,

(7)

where

κ =
(δ − 2)ε

2
.

δ and ε are known hyperparameters.Γ(·) is the Euler
gamma function. In [2], a Gaussian approximation of (7)
is used with the one-standard-deviation confidence in-
terval set by physical considerations. This leads to the
choiceδ = 7, ε = 3 × 10−5. From Equations (5), (6),
and (7):

p(θ) ∝ p(ϑ)r−
1

2
(δ+5)

3
∏

c=1

(

ω−0.5
c,ϑ

)

×

exp

[

−1

2r

(

(δ − 2)ε +
1

ωc,ϑ

3
∑

c=1

||bc − b̂c,ϑ||
2

)]

(8)

The posterior inference of the model is found by mul-
tiplying Equations (4) and (8).

p(θ|YT , T ) ∝ p(YT |θ, T )p(θ) (9)

Optimal Sampling Grid Selection

We consider the set of possible times,T =
{1, 2, . . . , N} to be the common superset of every pos-
sible sparse sampling gridS = {ti, . . . , tNS

}; i.e. ti ∈
T , NS ≤ N . Typically NS << N , eg. 2 or 3. The num-
ber of possible choices ofS is thereforeNCNS

.
Since only a small number of images may be

recorded, the choice of the recording times is critical.
Currently, the sparse set of sampling timesS ⊆ T are
chosen empirically. Our task now is to inferS via the
multi-channel parametric model. This should provide an
optimal inference for the entire limb, rather than a ROI-
specific inference.

To ensure the reportability of the inference, it is nec-
essary that there exist a database of patient data that suf-
ficiently represents the ensemble of all possible patient-
specific realizations.YT = {YT

1 , . . . , YT

P } is the set of
all patient data, whereP is the number of patients.

We wish to select the subset of sampling timesS
for whichp(S|YT ) is maximised. Bayes’ theorem yields

p(S|YT ) ∝ p(YT |S)p(S). A uniform distribution is in-
voked onp(S), and theMaximum A Posteriori(MAP)
value ofS, SMAP, is given by

SMAP = arg max
S

p(YT |S)

Patient-specific characteristics are independent so

SMAP = arg max
S

P
∏

i=1

p(YT

i |S)

p(YT

i |S) is the patient-specific posterior predictive
distribution conditioned on the sub-sampled timesS.

p(YT

i |S) =

∫

θ

p(YT

i |θ, T )p(θ|YS

i ,S)dθ

Wherep(YT

i |θ, T ) is the likelihood function given
by Equation (4).p(θ|YS

i ,S) is the posterior distribution
evaluated on a candidate sampling gridS. From Bayes’
theorem:

p(θ|YS

i ,S) ∝ p(YS

i |θ,S)p(θ)

Here,p(YS

i |θ,S) is the likelihood function (4) eval-
uated on the vector of timesS. Equation (8) gives the
expression forp(θ). Thusp(YT

i |S) can be elicited and
SMAP reveals the optimal sampling times.

Sampling Grid Inference Experiments

Recall that the ultimate aim is to infer reliably the pa-
rameters of an unseen patient case. Hence, an effective
sub-selectionS will be one for which the associated data
YS is most sensitive to changes inθ.

Observation of the data reveals that few counts are
recorded in the initial period after injection, and the
curves for different parameters are difficult to distinguish.
A period of high activity then prevails as the radio-active
tracer propagates through the ROI. The activity then di-
minishes and curves for different parameters once again
coincide. The TAC are most sensitive to changes inθ in
the high-activity region, and the optimal sampling times
should reflect this fact.

Simulated Data Case

Artificial lymphoscintigraphic data is generated us-
ing the multi-channel parametric model. Realizations
of θ from Equation (8) are used to generate data for
three-thousandvirtual patients. Notionally then, the data-
base is representative of the ensemble of possible sim-
ulated patient records. The complete sampling set is
T = {10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210}.
The number of sampling times isN = 11, while the
number of sub-sampled times isNS = 2, allowing for
a comprehensive choice of11C2 = 55 possible combi-
nations.p(S|YT ) is evaluated for each choice ofS and
the results are shown in Table 1. Of the fifty-five possible



Table 1: Sampling Combinations and associated Proba-
bility for Simulated Data. (Sampling Combinations for
whichp(S|YT ) < 10−4 are not displayed)

S p(S|YT )
{70, 190} 0.907
{70, 210} 0.078
{90, 210} 0.01
{90, 190} 0.003

sampling time combinations,SMAP = {70, 190} is maxi-
mum. Note from Figure 2 that the optimal sampling times
for simulated data are in the high-activity region of many
of the candidate curves.

To verify the ability of the inference procedure to se-
lect the optimal sampling times, we observe the location
of the sampling times as the high-activity regions in the
data vary according to the realization ofθ. The maximum
of the TAC for each channel is selected as an indicator of
the location of the high-activity region.

The average of the optimal sampling times is plotted
against the mean time to maximum of the three channels.
The result is shown in Figure 3. As the mean time to max-
imum of channel 1, 2 and 3 increases, the average of the
optimal sampling times increases. The correlation coeffi-
cient is0.926. Thus the optimal sampling times track the
high-activity characteristic region of the data.

Real Data Case

The analysis is fed with real data gathered from
the lymphoscintigraphic imaging of sixteen patients, or
thirty-two limbs. Each patient has undergone breast-
cancer treatment, and has suspected early-stage lym-
phedema in one or more limbs. The number of sampling
times for each patient is typically three or four. The actual
sampling times used differ slightly, and so data is grouped
into foursampling intervalsto facilitate the analysis. The
intervals are denoted byI1, I2, I3 andI4. The selection
of optimal sampling times becomes a selection of opti-
mal sampling intervals. A choice of4C2 = 6 possible
combinations exist forS. The optimal sampling intervals
for real data are shown in Table 2. Of the six possible
sampling interval combinations, the selection{I2, I4} is
maximum a posteriori. The optimal sampling intervals
for real data are〈65, 105〉 and〈170, 220〉.

Recall that the optimal sampling times for simulated
data are 70 minutes and 190 minutes. These times fall
within the optimal sampling intervals for real data of
〈65, 105〉 and 〈170, 220〉. This result implies the valid-
ity of the multi-channel model, the prior information and
the simulated data.

Note that the MAP selection of{I2, I4} for real data
places the sampling intervals near the high-activity region
of many of the candidate curves. We note from Figure 2
that this region is also one of high variability. The can-
didate curves at the location of the optimal sampling in-
tervals are highly sensitive to changes inθ. This fulfills
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Figure 3: Average ofS against Mean Time to Maximum
of Y

Table 2: Optimal Sampling Intervals for Real Data

Interval Range (mins) SMAP

I1 〈20, 60〉
I2 〈65, 105〉 •
I3 〈110, 160〉
I4 〈170, 220〉 •

the aim of optimal sampling time inference, given at the
beginning of this section.

Conclusion

The selection of optimal sampling times is critical for
accurate diagnosis of early-stage lymphedema. This pa-
per presents a Bayesian technique for inference of the
optimal sampling times for the entire limb.

The multi-channel parametric model describes the
time-varying lymphoscintigraphic counts from all ROIs
simultaneously. The optimal sampling times are there-
fore a compromise for all ROIs. An expression for the
posterior predictive distributionp(YT |S) is derived. Real
lymphoscintigraphic data is used to evaluate the optimal
sampling intervals of〈65, 105〉 and〈170, 220〉 for a pa-
tient database. Artificial data generated on the expected
range ofθ yields the optimal sampling times of 70 and
190 minutes. This validates the multi-channel parametric
model, and the Bayesian inference ofSMAP.

The optimal sampling times allow for a more accu-
rate diagnosis of early-stage lymphedema using quanti-
tative methods, facilitating early therapeutic treatmentof
the limb and thereby helping to preserve its functionality.
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