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Abstract— The dynamic nature of ad hoc networks advocates identifying the underlying p.d.f.. Section V discussessthe
the use of adaptive schemes to optimize network performance. points.
Such adaptive schemes require local observations of prevailing
network conditions. This paper discusses the dependencies be- II. BACKGROUND
tween locally observable metrics. The probability density func-
tions for link statistic metrics are assessed, and the implications ~ Ad hoc network performance depends to a large extent
of the distribution model for parametric inference is investigated. on the routing protocol. Relative node movement causes

the failure of existing communication links, and enables th
creation of new communication links between nodes. Routing
protocols must react to the changing topology to maintain
A mobile ad hoc network is a collection of wireless mobileommunication.
nodes that dynamically form a temporary network on an Proactive protocols use periodic beacons to gather neigh-
as needed basis without the use of any existing netwdskurhood information and then disseminate topology infiorm
infrastructure. The resulting network is a non-hierararah tion throughout the network either periodically or in respe
distributed system. All nodes of the network act as routets observed local topology changes.
and forward received packets to nodes within radio range.Reactive protocols generally differ quite significantlprir
The network can grow, reduce in size or fragment in real-tinpggoactive protocols in that they do absolutely nothing lunti
without referencing any central authority [1]. there is a demand for a route from a node. These demand-
Routing protocols facilitate peer-to-peer communicatign driven protocols react to requests for a route by flooding the
routing packets according to a set of rules [2], [3], [4lnetwork with requests for routing information to the spedifi
Parameters in the routing protocol define the exact protoa#stination. Route requests are responded to with rouliesep
implementation. Routing in ad hoc networks is a challendgeeplies may come from either the requested destination node
due to the dynamic topology, and so analysis of link stastior from an intermediate node that has routing information
can reveal information about underlying characteristics.  about the requested destination in its route cache. The snean
A wide body of work exists in the area of ad hoc netby which request and replies are generated and processed
work routing and it is well established in the literature tthadiffers from protocol to protocol.
adapting routing protocol parameters to the prevailingvoet Bolenget al [5] suggest using the LD metric to proactively
conditions can optimize network performance [5], [6], [B]. adjust the route request (RREQ) timeout parameter for the
Existing algorithms use locally observable link statistszich reactive DSR protocol. Gerhargt al [8] examine the LD
as link duration (LD) or link change rate (LCR) to trigger metric to identify stable links for routing. In [6], Samardn
adaptivity in the routing protocol. The importance of linkWicker adapt the frequency of routing updates in a proactive
statistics in adaptive schemes is discussed in Sectiomdl, aouting protocol in response to link change statistics.
examples of existing work in the area are given. In Sectign Il As these examples show, there is a growing interest in the
the locally observable link statistics are defined. Thisgpapfield of adaptive schemes, and adequate knowledge of the
investigates two important issues regarding the use of thdvantages, artefacts and dependencies of locally oliderva
LCR and LD metrics to infer link stability in an adaptivemetrics is required to accurately infer network conditions
scheme. The dependence of the observed LCR metric on
node degree (ND) is examined, and a maximum likelihood
approach to the inference of link stability is proposed. The The distributed environment of ad hoc networks presents
LD metric is implemented in a windowed analysis. Such athallenges to adaptive schemes. Bandwidth resourcestkimit
approach has been advocated in the literature [5], howewssemination of control information, and therefore notest
remains unexplored until now. The LCR and LD distributionadapt to locally observable metrics. The available litmea{9],
are discussed in terms of maximum likelihood estimation ¢10], [11] and our own simulations indicate the major fastor
their parameters. The role of both the observed ND and th#fecting ad hoc network performance are node mobility,
distribution model are investigated in terms of adequatehode density and traffic conditions. This paper focuses en th
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relevance of node mobility and node density in an adaptive IV. EXPERIMENTAL DESIGN

scheme. Simulations are performed using a real ad hoc network,
In terms of network density, average ND is a local proxknown as the Dublin Ad hoc Wireless Network (DAWN)
measure. ND can be defined as the number of one-h@i3]. DAWN was designed and created to facilitate research
neighbors of a node. As per the OLSR and DSR specificatiofsthe area of ad hoc networking. At the core of DAWN is
[4], [3], we make use of the option to rely on neighbous dynamic modular communication stack that runs on each
sensing capabilities of the underlying MAC layer. In thisywaof the nodes of the ad hoc network. Layers of the stack
we can assume knowledge of accurate link statistics. can be independently designed in a standalone fashion. A
Mobility in the ad hoc network causes link instability. Lécageneric layer interface allows the dynamic assembly ofghes
link statistics such as LCR and LD can be used by a nodel&yers to form a network communication stack consisting
infer the stability of communication links. The LCR metricof the relevant hardware and software elements. The inter-
is defined as the number of communication links forming andyer interface is very simple, consisting of primitivessiend
breaking between nodes over a given tifjg.. The LD metric information upwards or downwards through the stack.
describes the lifetime of communication links. The physical medium is implemented in software, and
Link statistics are used to infer the prevailing link stipjl models the movement of the nodes according towaility
thus allowing a node to adapt protocol parameters accdgdingnodel. In all simulations, the random waypoint model on a
The framework requires a measure of link behaviour for tHerus [14] was used as the mobility model. This model ensures
recent past. Avindow is defined as the period of tim@&,,, in  that the local observations of link statistics and average N
the recent past, within which measurements of link statistiare spatially stationary. This is essential so that artefat
are recorded. A windowed analysis of link statistics allalwes the mobility model do not influence the results.
observed metrics to respond to changing conditions, aritslim The global mobility is set by specifying node speed. Con-
their reliance on historical, out-of-date, link behaviour stant node speeds of 1m/s, 3m/s and 5m/s are used to simulate

The LCR metric can easily be evaluated if the windowhree different levels of mobility in the network. Specifica
time, T,,, is an integer multiple of the LCR perio@}.,.. The of constant node speed eliminates transient behaviouren th
evaluation of the LD metric in a windowed analysis is moréimulations. Thepausetime parameter of the mobility model

complicated, as it involvesensoring of the lifetime data [12]. S Set to 0 seconds. Nodes are initially distributed rangoml
The average windowed LD is defined as the average duratibR€ fransmission range for all nodes is fixed at 250 metres, a
of all links that either failed within the window period orah figure commonly used and consistant with WLAN technology.
still exist. Censoring of data implies that the window sizET€€ Space propogation is assumed.

affects the observed p.d.f., and therefore the p.d.f. df lin Traffic is generated by constant bit-rate (CBR) sources that

durations with an infinite window size is not representativé€ect a uniformly random destination for each packet. &asck
of the data obtained in a windowed analysis. are presented to the network layer every 5 seconds, and traffi

| density is dictated by the number of nodes acting as CBR
sources. The DSR routing protocol [3] is used to route packet
in the network. The number of nodes is fixed at 20, of which
5 are CBR sources. The density of the network is controlled
via the simulation area. To create dense conditions a smalle
simulation area is used. Each mobility level is simulated
d using 10 different simulation areas, thus yielding 30 ueiqu
network scenarios. For each scenario, 10 trials of 1000m&ksco
are performed and local statistics for LCR, LD and ND are
analyzed.

The empirical probability density functions for the logal
observable link statistics are analyzed for varying lewls
mobility and node density. These empirical p.d.f.s chamrize
the link stability, and so the task of inferring the perfomoa
of a network in terms of link stability reduces to inferrirfget
underlying link statistic p.d.f.. Approximations to thesaved
distributions of LCR and LD allow for maximum likelihoo
estimation (MLE) of the underlying distribution parameter
thus identifying the prevailing network scenariis the set of
all possible parameters indexing a probability densitycfiom.
Local observations are denoted iy The MLEd is thef € © V. RESULTS AND DISCUSSION

that maximises the likelihood functiofi X |@). Notationally, The observation models for the LCR and LD statistics

are proposed in Section V-A. The dependency of observed
6 — arg max f(X|0) 1) !ink statistics on ND is highlight_ed in Secti_on _V-B,_a_nd an
0 important artefact of the observation models is given irtiSac
V-C.
ND information is often overlooked when implementing ) _ o
adaptive schemes. Link statistics yield information on th® Observation Models for Link Satistics
stability of links in the current ad hoc environment. ND The Kolmogorov-Smirnov (K-S) goodness-of-fit test is used
information is required to assess the impact of link inditybi to examine thewll hypothesis that the p.d.f. for LCR can be
on the communication potential of the node. Furthermore, N&pproximated well by a Gaussian distribution. The cumati
is also relevant to the correct analysis of LCR data, as shodansity function (c.d.f.) of the empirical LCR and the prepd
in Section V-B. Gaussian c.d.f. are analyzed, and the maximum deviation



in their values (D) is noted. D is compared to a table of %1% - Observed LD Distibution
Kolmogorov-Smirnov quantiles which accept or reject the [ Gamma Approximation
null hypothesis at different critical values. The sampleesi 0.1r

is 39, therefore the critical value at#% significance level

is 1.36/1/39 = 0.2178. The D value for all 30 scenarios 0.08F

is below the critical value, and therefore the null hypoihes

is not rejected and the Gaussian distribution is a plausible

model. Fig. 1 shows a typical empirical p.d.f. of LCR data,

superimposed on the Gaussian approximation to the data. 00
Similarly, the K-S test is used to examine the null hypothesi

that the p.d.f. for LD can be approximated well by a gamma

distribution. The sample size is 51, therefore the criticdue

at a5% significance level i4.36/1/51 = 0.1904. The D value

for all 30 scenarios is below the critical value, and theretbe % 50 100 150 200 250 300

gamma distribution can be used as an efficient approximation LD

to the LD distribution. Fig. 2 shows a typical empiricaﬁzig. 2. Empirical LD distribution and corresponding Gamma agjgnation

p.d.f. of LD data, superimposed on the gamma approximati@m scenario with550 x 550m? area and3m/s node speed.

to the data. The gamma distribution is commonly used to

model lifetime data [12] and indeed is used by Zonoozi and

Dassanayake in [15] to model cell residence time in a cellui@"d ND is analyzed. Observations of ND are denak&g,,
environment. yielding the likelihood functiory (X;c, |0icr, X,a) for the LCR

It should be noted that the form of the p.d.f.s is dependefetric andf(Xa|0ia, Xna) for the LD metric. 0., and 64
on the mobility model used to dictate movement in th@ré used to denote the realisation of LCR and LD distribution
network. The model used in these experiments guarant@&a@meters respectively. o
spatial stationarity of link statistics throughout the slation ~ The observation of the LD metric is found not to depend
space. Real ad hoc networks may not be spatially station&y node degee. For each mobility level bf./s, 3m/s and
however, and the locally observed link statistic p.d.f. may”/s the expected LD is plotted for the expected ND and
change from region to region. Additionally, in a real ad hoghown in Fig. 3. Error bars show one standard dewatpn apout
network the local observations may include data from regjiof'® expected value. Thus the p.d.f. of observed LD is given
exhibiting different mobility conditions. This data shdube by f(X1al6ia, Xna) = f(Xialb1a)-
regarded as noise in the inference process, as inferente of t
predominant mobility level is required.
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Fig. 3. Expected Link Duration versus Expected Node Degoeerfobility
levels of 1Im/s, 3m/s andbm/s

LCR

Fig. 1. Empirical LCR distribution and corresponding Gaassapproxima- . .
tion for scenario with500 x 500m?2 area andsm,/s node speed. The observation of LCR is found to depend on the node

degee. Intuitively, the more neighbours a node has, the more
) . link changes can occur in a mobile environment. For each
B. Observation Metric Dependence mobility level of 1m/s, 3m/s and 5m/s the expected LCR
A thorough analysis of the dependencies between obseiw-plotted for the expected ND and shown in Fig. 4. Error
able metrics is required for effective maximum likelihoast e bars show one standard deviation about the expected value.
timation. In particular, the dependency between link stias The dependency of LCR on ND is shown to be linear, and



the slope of the relationship is dictated by the mobilityloft  In practice, the accuracy of inference is also dependent on
scenario. Thus the LCR metric must be used in conjunctitile number of samples indexing the p.d.f.. The number of
with observed ND to accurately assess the link stabilityhef t samples available to index the LCR p.d.f. 1%,/T;.-. The

network. number of samples available to index the LD p.d.f. is equal
to the number of links that either failed withif,, or that
161 still exist. Therefore, the accuracy of the inference of LD i
dependent on the number of links (ND).
141 5m/s
12t VI. CONCLUSION
10 Local observations are crucial to the success of an adaptive
= ad hoc networking scheme. This paper has analyzed the prob-
S g 3 mis ability distributions for the locally observable LD and LCR
) statistics. In a spatially staionary simulation space, tid&R

6r distribution is found to be approximated well by a Gaussian
p.d.f. while the LD is distributed according to a gamma p.d.f

Lmis The dependence of link stability metrics on ND is described.

ol W While LD is independent of ND, LCR exhibits dependence
on ND. Inference techniques using the LCR metric must take

05 s 10 12 14 16 account of this dependency. The p.d.f.s of LCR and LD reveal

E[ND] an inherent advantage of the LCR metric in efficiently infegr
link stability in the network. This artefact of the LD metiig
subtle, yet it can have a major impact on the adaptive ability
of the ad hoc network. This further highlights the importanc
of adequate research in the area of locally observable caetri
As noted in Section V-A, a real ad hoc network may exhibit
spatial non-stationarity of link statistics. This leadsnoisy

local observations of the LCR and LD metrics. Future work

Itis show_n in Sectign V-A that the LC,R gnd_LD data can bﬁims to investigate the effect of such scenarios on the vbder
modelled with Gaussian and gamma distributions respégtive cr and LD distributions, with a view to modelling the noise

This section highlights the advantage of using the LCR metr 4 improving the accuracy of the inference process.
rather than the LD metric due to the difference in distribnéil

shape of the probability density functions.

Recall that the ultimate aim is to reliably infer the pa- , ) , )
rameters of the LCR or LD p.d.f. using Ioc)zgl observati(F))ns. Th|s work IS fupded by the Irish Research Council for
Maximum likelihood estimation involves evaluating the sepCieNce, Engineering and Technology (IRCSET)
of possible p.d.f.s at points dictated by the locally obedrv
data. A p.d.f. is identified with greater certainty when it
is unique among the entire set of possible p.d.f.s. As thB] C. E. PerkinsAdhoc Networking. - Addison-Wesley, 2001.
probabl_llty density functions become more similar, thellab_l [2] %uﬁhgﬁyei:('&slérg,\ﬂ;'gy b;;ygrr{ Agngchgtr\lvgfkn;alnggg.lStaneew
of the inference model to correctly identify the underlying(s) p. B. Johnson and D. A. Maltz, “Dynamic source routing in ladc
distribution in the face of noise is diminished. wireless networks,” inMobile Computing, Imielinski and Korth, Eds.

The Kullback-Leibler (K-L) divergence [16] is used to

Fig. 4. Expected Link Change Rate versus Expected Node Befgre
mobility levels of 1m/s, 3m/s andbm/s

C. Observation Models and the Implications for Parametric
Inference
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