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Abstract— The dynamic nature of ad hoc networks advocates
the use of adaptive schemes to optimize network performance.
Such adaptive schemes require local observations of prevailing
network conditions. This paper discusses the dependencies be-
tween locally observable metrics. The probability density func-
tions for link statistic metrics are assessed, and the implications
of the distribution model for parametric inference is investigated.

I. I NTRODUCTION AND MOTIVATION

A mobile ad hoc network is a collection of wireless mobile
nodes that dynamically form a temporary network on an
as needed basis without the use of any existing network
infrastructure. The resulting network is a non-hierararchical
distributed system. All nodes of the network act as routers
and forward received packets to nodes within radio range.
The network can grow, reduce in size or fragment in real-time
without referencing any central authority [1].

Routing protocols facilitate peer-to-peer communicationby
routing packets according to a set of rules [2], [3], [4].
Parameters in the routing protocol define the exact protocol
implementation. Routing in ad hoc networks is a challenge
due to the dynamic topology, and so analysis of link statistics
can reveal information about underlying characteristics.

A wide body of work exists in the area of ad hoc net-
work routing and it is well established in the literature that
adapting routing protocol parameters to the prevailing network
conditions can optimize network performance [5], [6], [7],[8].
Existing algorithms use locally observable link statistics such
as link duration (LD) or link change rate (LCR) to trigger
adaptivity in the routing protocol. The importance of link
statistics in adaptive schemes is discussed in Section II, and
examples of existing work in the area are given. In Section III,
the locally observable link statistics are defined. This paper
investigates two important issues regarding the use of the
LCR and LD metrics to infer link stability in an adaptive
scheme. The dependence of the observed LCR metric on
node degree (ND) is examined, and a maximum likelihood
approach to the inference of link stability is proposed. The
LD metric is implemented in a windowed analysis. Such an
approach has been advocated in the literature [5], however
remains unexplored until now. The LCR and LD distributions
are discussed in terms of maximum likelihood estimation of
their parameters. The role of both the observed ND and the
distribution model are investigated in terms of adequately

identifying the underlying p.d.f.. Section V discusses these
points.

II. BACKGROUND

Ad hoc network performance depends to a large extent
on the routing protocol. Relative node movement causes
the failure of existing communication links, and enables the
creation of new communication links between nodes. Routing
protocols must react to the changing topology to maintain
communication.

Proactive protocols use periodic beacons to gather neigh-
bourhood information and then disseminate topology informa-
tion throughout the network either periodically or in response
to observed local topology changes.

Reactive protocols generally differ quite significantly from
proactive protocols in that they do absolutely nothing until
there is a demand for a route from a node. These demand-
driven protocols react to requests for a route by flooding the
network with requests for routing information to the specified
destination. Route requests are responded to with route replies.
Replies may come from either the requested destination node
or from an intermediate node that has routing information
about the requested destination in its route cache. The means
by which request and replies are generated and processed
differs from protocol to protocol.

Bolenget al [5] suggest using the LD metric to proactively
adjust the route request (RREQ) timeout parameter for the
reactive DSR protocol. Gerharzet al [8] examine the LD
metric to identify stable links for routing. In [6], Samar and
Wicker adapt the frequency of routing updates in a proactive
routing protocol in response to link change statistics.

As these examples show, there is a growing interest in the
field of adaptive schemes, and adequate knowledge of the
advantages, artefacts and dependencies of locally observable
metrics is required to accurately infer network conditions.

III. L OCAL OBSERVATIONS

The distributed environment of ad hoc networks presents
challenges to adaptive schemes. Bandwidth resources limitthe
dissemination of control information, and therefore nodesmust
adapt to locally observable metrics. The available literature [9],
[10], [11] and our own simulations indicate the major factors
affecting ad hoc network performance are node mobility,
node density and traffic conditions. This paper focuses on the



relevance of node mobility and node density in an adaptive
scheme.

In terms of network density, average ND is a local proxy
measure. ND can be defined as the number of one-hop
neighbors of a node. As per the OLSR and DSR specifications
[4], [3], we make use of the option to rely on neighbour
sensing capabilities of the underlying MAC layer. In this way
we can assume knowledge of accurate link statistics.

Mobility in the ad hoc network causes link instability. Local
link statistics such as LCR and LD can be used by a node to
infer the stability of communication links. The LCR metric
is defined as the number of communication links forming and
breaking between nodes over a given timeTlcr. The LD metric
describes the lifetime of communication links.

Link statistics are used to infer the prevailing link stability,
thus allowing a node to adapt protocol parameters accordingly.
The framework requires a measure of link behaviour for the
recent past. Awindow is defined as the period of time,Tw, in
the recent past, within which measurements of link statistics
are recorded. A windowed analysis of link statistics allowsthe
observed metrics to respond to changing conditions, and limits
their reliance on historical, out-of-date, link behaviour.

The LCR metric can easily be evaluated if the window
time, Tw, is an integer multiple of the LCR period,Tlcr. The
evaluation of the LD metric in a windowed analysis is more
complicated, as it involvescensoring of the lifetime data [12].
The average windowed LD is defined as the average duration
of all links that either failed within the window period or that
still exist. Censoring of data implies that the window size
affects the observed p.d.f., and therefore the p.d.f. of link
durations with an infinite window size is not representative
of the data obtained in a windowed analysis.

The empirical probability density functions for the locally
observable link statistics are analyzed for varying levelsof
mobility and node density. These empirical p.d.f.s characterize
the link stability, and so the task of inferring the performance
of a network in terms of link stability reduces to inferring the
underlying link statistic p.d.f.. Approximations to the observed
distributions of LCR and LD allow for maximum likelihood
estimation (MLE) of the underlying distribution parameters,
thus identifying the prevailing network scenario.Θ is the set of
all possible parameters indexing a probability density function.
Local observations are denoted byX. The MLE θ̂ is theθ ∈ Θ
that maximises the likelihood functionf(X|θ). Notationally,

θ̂ = arg max
θ

f(X|θ) (1)

ND information is often overlooked when implementing
adaptive schemes. Link statistics yield information on the
stability of links in the current ad hoc environment. ND
information is required to assess the impact of link instability
on the communication potential of the node. Furthermore, ND
is also relevant to the correct analysis of LCR data, as shown
in Section V-B.

IV. EXPERIMENTAL DESIGN

Simulations are performed using a real ad hoc network,
known as the Dublin Ad hoc Wireless Network (DAWN)
[13]. DAWN was designed and created to facilitate research
in the area of ad hoc networking. At the core of DAWN is
a dynamic modular communication stack that runs on each
of the nodes of the ad hoc network. Layers of the stack
can be independently designed in a standalone fashion. A
generic layer interface allows the dynamic assembly of these
layers to form a network communication stack consisting
of the relevant hardware and software elements. The inter-
layer interface is very simple, consisting of primitives tosend
information upwards or downwards through the stack.

The physical medium is implemented in software, and
models the movement of the nodes according to amobility
model. In all simulations, the random waypoint model on a
torus [14] was used as the mobility model. This model ensures
that the local observations of link statistics and average ND
are spatially stationary. This is essential so that artefacts of
the mobility model do not influence the results.

The global mobility is set by specifying node speed. Con-
stant node speeds of 1m/s, 3m/s and 5m/s are used to simulate
three different levels of mobility in the network. Specification
of constant node speed eliminates transient behaviour in the
simulations. Thepausetime parameter of the mobility model
is set to 0 seconds. Nodes are initially distributed randomly.
The transmission range for all nodes is fixed at 250 metres, a
figure commonly used and consistant with WLAN technology.
Free space propogation is assumed.

Traffic is generated by constant bit-rate (CBR) sources that
select a uniformly random destination for each packet. Packets
are presented to the network layer every 5 seconds, and traffic
density is dictated by the number of nodes acting as CBR
sources. The DSR routing protocol [3] is used to route packets
in the network. The number of nodes is fixed at 20, of which
5 are CBR sources. The density of the network is controlled
via the simulation area. To create dense conditions a smaller
simulation area is used. Each mobility level is simulated
using 10 different simulation areas, thus yielding 30 unique
network scenarios. For each scenario, 10 trials of 1000 seconds
are performed and local statistics for LCR, LD and ND are
analyzed.

V. RESULTS AND DISCUSSION

The observation models for the LCR and LD statistics
are proposed in Section V-A. The dependency of observed
link statistics on ND is highlighted in Section V-B, and an
important artefact of the observation models is given in Section
V-C.

A. Observation Models for Link Statistics

The Kolmogorov-Smirnov (K-S) goodness-of-fit test is used
to examine thenull hypothesis that the p.d.f. for LCR can be
approximated well by a Gaussian distribution. The cumulative
density function (c.d.f.) of the empirical LCR and the proposed
Gaussian c.d.f. are analyzed, and the maximum deviation



in their values (D) is noted. D is compared to a table of
Kolmogorov-Smirnov quantiles which accept or reject the
null hypothesis at different critical values. The sample size
is 39, therefore the critical value at a5% significance level
is 1.36/

√
39 = 0.2178. The D value for all 30 scenarios

is below the critical value, and therefore the null hypothesis
is not rejected and the Gaussian distribution is a plausible
model. Fig. 1 shows a typical empirical p.d.f. of LCR data,
superimposed on the Gaussian approximation to the data.

Similarly, the K-S test is used to examine the null hypothesis
that the p.d.f. for LD can be approximated well by a gamma
distribution. The sample size is 51, therefore the criticalvalue
at a5% significance level is1.36/

√
51 = 0.1904. The D value

for all 30 scenarios is below the critical value, and therefore the
gamma distribution can be used as an efficient approximation
to the LD distribution. Fig. 2 shows a typical empirical
p.d.f. of LD data, superimposed on the gamma approximation
to the data. The gamma distribution is commonly used to
model lifetime data [12] and indeed is used by Zonoozi and
Dassanayake in [15] to model cell residence time in a cellular
environment.

It should be noted that the form of the p.d.f.s is dependent
on the mobility model used to dictate movement in the
network. The model used in these experiments guarantees
spatial stationarity of link statistics throughout the simulation
space. Real ad hoc networks may not be spatially stationary
however, and the locally observed link statistic p.d.f. may
change from region to region. Additionally, in a real ad hoc
network the local observations may include data from regions
exhibiting different mobility conditions. This data should be
regarded as noise in the inference process, as inference of the
predominant mobility level is required.
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Fig. 1. Empirical LCR distribution and corresponding Gaussian approxima-
tion for scenario with500 × 500m2 area and5m/s node speed.

B. Observation Metric Dependence

A thorough analysis of the dependencies between observ-
able metrics is required for effective maximum likelihood es-
timation. In particular, the dependency between link statistics
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Fig. 2. Empirical LD distribution and corresponding Gamma approximation
for scenario with550 × 550m2 area and3m/s node speed.

and ND is analyzed. Observations of ND are denotedXnd,
yielding the likelihood functionf(Xlcr|θlcr,Xnd) for the LCR
metric andf(Xld|θld,Xnd) for the LD metric.θlcr and θld

are used to denote the realisation of LCR and LD distribution
parameters respectively.

The observation of the LD metric is found not to depend
on node degee. For each mobility level of1m/s, 3m/s and
5m/s the expected LD is plotted for the expected ND and
shown in Fig. 3. Error bars show one standard deviation about
the expected value. Thus the p.d.f. of observed LD is given
by f(Xld|θld,Xnd) = f(Xld|θld).
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Fig. 3. Expected Link Duration versus Expected Node Degree for mobility
levels of1m/s, 3m/s and5m/s

The observation of LCR is found to depend on the node
degee. Intuitively, the more neighbours a node has, the more
link changes can occur in a mobile environment. For each
mobility level of 1m/s, 3m/s and 5m/s the expected LCR
is plotted for the expected ND and shown in Fig. 4. Error
bars show one standard deviation about the expected value.
The dependency of LCR on ND is shown to be linear, and



the slope of the relationship is dictated by the mobility of the
scenario. Thus the LCR metric must be used in conjunction
with observed ND to accurately assess the link stability of the
network.
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Fig. 4. Expected Link Change Rate versus Expected Node Degree for
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C. Observation Models and the Implications for Parametric
Inference

It is shown in Section V-A that the LCR and LD data can be
modelled with Gaussian and gamma distributions respectively.
This section highlights the advantage of using the LCR metric
rather than the LD metric due to the difference in distributional
shape of the probability density functions.

Recall that the ultimate aim is to reliably infer the pa-
rameters of the LCR or LD p.d.f. using local observations.
Maximum likelihood estimation involves evaluating the set
of possible p.d.f.s at points dictated by the locally observed
data. A p.d.f. is identified with greater certainty when it
is unique among the entire set of possible p.d.f.s. As the
probability density functions become more similar, the ability
of the inference model to correctly identify the underlying
distribution in the face of noise is diminished.

The Kullback-Leibler (K-L) divergence [16] is used to
measure the average distance between observed distributions
for both LCR and LD metrics. Three mobility levels of1m/s,
3m/s and 5m/s are analyzed. Probability density functions
for the LCR and LD metrics in a500×500m2 simulation area
are shown in Fig. 5. The average divergence between the LCR
distributions for the three mobility levels is106.6 while the
average divergence between the LD distributions for the three
mobility levels is1.13. The values for the K-L divergence are
an accurate reflection of the K-L values obtained in repeated
tests using different node densities. The underlying LCR p.d.f.
can therefore be inferred more accurately that the underlying
LD p.d.f.. The results demonstrate an important advantage
in using the LCR metric to assess link stability in ad hoc
networks.

In practice, the accuracy of inference is also dependent on
the number of samples indexing the p.d.f.. The number of
samples available to index the LCR p.d.f. isTw/Tlcr. The
number of samples available to index the LD p.d.f. is equal
to the number of links that either failed withinTw or that
still exist. Therefore, the accuracy of the inference of LD is
dependent on the number of links (ND).

VI. CONCLUSION

Local observations are crucial to the success of an adaptive
ad hoc networking scheme. This paper has analyzed the prob-
ability distributions for the locally observable LD and LCR
statistics. In a spatially staionary simulation space, theLCR
distribution is found to be approximated well by a Gaussian
p.d.f. while the LD is distributed according to a gamma p.d.f..
The dependence of link stability metrics on ND is described.
While LD is independent of ND, LCR exhibits dependence
on ND. Inference techniques using the LCR metric must take
account of this dependency. The p.d.f.s of LCR and LD reveal
an inherent advantage of the LCR metric in efficiently inferring
link stability in the network. This artefact of the LD metricis
subtle, yet it can have a major impact on the adaptive ability
of the ad hoc network. This further highlights the importance
of adequate research in the area of locally observable metrics.

As noted in Section V-A, a real ad hoc network may exhibit
spatial non-stationarity of link statistics. This leads tonoisy
local observations of the LCR and LD metrics. Future work
aims to investigate the effect of such scenarios on the observed
LCR and LD distributions, with a view to modelling the noise
and improving the accuracy of the inference process.
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