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Abstract— Decision fusion for classification of hyperspectral data
from urban area is addressed. Classical classification algorithms
are based on the spectral signature of the individual classes. For
urban area, where classes could be defined in accordance with the
shape of the structure, these methods have a major drawback: no
spatial information are contained in the spectrum. A new method
has been proposed that considers the spatial content, but it reduces
the spectrum to a small number of bands and does not exploit the
spectral richness of the hyperspectral data. In this paper, we propose
to use both approaches, and then fuse them. The data are first pre-
processed to extract some spatial information. Using Support Vector
Machines (SVMs), the data are classified. Finally, according to the
property of SVMs outputs, we propose to fuse the results using three
different operators. Results are presented on real hyperspectral data
from urban area. The proposed approach is positively compared to
the results obtained by each of the classifiers used separately.

I. INTRODUCTION

Hyperspectral images are now fully available. Many ap-
proaches have been defined to handle the characteristics of high
dimensional data. Algorithms, such as the Decision Boundary
Feature Extraction (DBFE), focus on finding a subspace projec-
tion of the original space using spectral class characteristics, then
a statistical classifier is usually applied, [1] (e.g., the maximum
likelihood classifier). However, these methods concentrate the
analysis only on the spectral data, while spatial contents is
not used. Many image processing algorithms can be used on
individual images, but they limit the spectral information to
only one channel. Recently, a principal component analysis step
followed by a morphological processing step were used to create
the Extended Morphological Profile (EMP) [2]. This approach
extracts spatial information from the data and it is well suited
for the analysis of urban area images. The EMP was classified
with a neural network. This approach gave good results in terms
of classification accuracies. However, PCA reduces the whole
spectrum to a few bands and the richness of the hyperspectral
data is not fully used. While the use of all the spectrum without

morphological feature extraction does not provide information
about the size, the shape or the orientation of the structure. For
an urban area context, both kinds of information are needed to
allow a fine classification.

In this paper, we propose to fuse the results obtained by a
separate use of the spectral data and the Extended Morphological
Profile. Each data are processed by SVMs classifiers. The SVMs
where chosen according to their strong capability to deal with
remote sensing data [3], [4]. The result from each classifiers are
aggregated according to the intrinsic characteristic of the SVMs
outputs:

• outputs are not bounded,
• outputs are signed numbers.

Classical fuzzy fusion operators, such as T-norm, T-conorm or
symmetrical sum [5], cannot deal with signed data. For the fusion,
we must define operators which use sign as information. In this
paper, we suggest three different operators. First, a modified
version of the max operator, namely the absolute maximum
decision rule is applied. Second, the agreement of classifiers is
suggested. The agreement is seen as the probability of the outputs
of each classifier. Third, a rule based on the majority voting,
which was initially used for multiclass SVMs is investigated.

In the following, we start with a brief introduction of SVMs
(Sec. II). Then, in relation to the nature of the classifiers’ outputs,
the fusion operators are presented and the fusion scheme is
detailed (Sec. III). The proposed method is applied on real
hyperspectral remote sensing data of an urban area and results
are given Sec. IV. Finally, conclusions are drawn in Sec. V.

II. SUPPORT VECTOR MACHINES

A. Linear SVM

For a two-class problem in a n-dimensional space Rn, we
assume that l training samples, xi ∈ Rn, are available with their
corresponding labels yi = ±1, S = {(xi, yi) | i ∈ [1, l]}. The



SVM method consists of finding the hyperplane that maximizes
the margin (see Fig. 1), i.e., the distance to the closest training
data points in both classes. Noting w ∈ Rn as the vector normal
to the hyperplane and b ∈ R as the bias, the hyperplane Hp is
defined as

〈w, x〉+ b = 0, ∀x ∈ Hp (1)

where 〈w, x〉 is the inner product between w and x. If x /∈ Hp

then f(x) = 〈w, x〉 + b is the distance of x to Hp. The sign of
f corresponds to decision function y = sgn (f(x)). The optimal
parameters (w, b) are found by solving

min

[
‖w‖2

2
+ C

l∑
i=1

ξi

]
(2)

subject to

yi(〈w, xi〉+ b) ≥ 1− ξi, ξi ≥ 0 ∀i ∈ [1, l] (3)

where the constant C control the amount of penalty and ξi are
slack variables which are introduced to deal with misclassified
samples (see Fig. 1). This optimization task can be solved through
its Lagrangian dual problem.

max
α

l∑
i=1

αi −
1
2

l∑
i,j=1

αiαjyiyj〈xi, xj〉

subject to 0 ≤ αi ≤ C ∀i ∈ [1, l]
l∑

i=1

αiyi = 0.

(4)

Finally:

w =
l∑

i=1

αiyixi. (5)

The solution vector is a linear combination of some samples of
the training set, whose αi is non-zero, called Support Vectors.
The hyperplane decision function can thus be written as:

yu = sgn

(
l∑

i=1

yiαi〈xu, xi〉+ b

)
(6)

where xu is an unseen sample.

B. Non-linear SVM

Using the so-called Kernel Trick, one can generalize SVMs
to non-linear decision functions. This way, the classification
capability is improved. The idea is as follows. Via a non-linear
mapping Φ, data are mapped onto a higher dimensional space F

Φ : Rn → F

x 7→ Φ(x).
(7)

The SVM algorithm can now be simply considered with the
following training samples: Φ(S) = {(Φ(xi), yi) | i ∈ [1, l]}.

Fig. 1. Classification of non-linearly separable case by SVMs. There is one non
separable vector in each class.

It leads to a new version of (6) where the scalar product is now:
〈Φ(xi),Φ(xj)〉. Hopefully, for some kernels function k, the extra
computational cost is reduced to:

〈Φ(xi),Φ(xj)〉 = k(xi, xj). (8)

The kernel function k should fulfill Mercers’ conditions [6].
Using kernels, it is possible to work implicitly in F while all
the computation are done in the input space.
Classical kernels in remote sensing are the polynomial kernel and
the Gaussian radial basis function:

kpoly(xi, xj) = [(xi · xj) + 1]p. (9)

kgauss(xi, xj) = exp
[
−γ ‖xi − xj‖2

]
. (10)

C. Multiclass SVMs

SVMs are designed to solve binary problems where the class
labels can only take two values: ±1. For a remote sensing
application, several classes are usually of interest. Various ap-
proaches have been proposed to address m-class problems [6].
They usually split the problem into a set of binary classifiers
before combining them. The one against all classification strategy
splits the problem into m binary sub-problems (class 1 against
the others, class 2 against the others ...). The selected class is the
one which gets the highest positive result. The one versus one
classification strategy creates m(m − 1)/2 binary sub-problems
(class 1 against class 2, class 1 against class 3 ...). Then, results
are combined following a majority voting scheme. This approach
has shown to be more suitable for large problems [7]. Even
though the number of the used classifiers is large, the whole
classification problem is decomposed into much simpler ones.
Therefore, this approach was used in our experiments.



III. DECISION FUSION

As explained in the previous section, the SVM’s decision
function returns the sign of the distance to the hyperplane. For
the fusion scheme, it is more useful to have access to the belief
of the classifier rather than the final decision [8]. For SVMs,
it is possible to get the distance to the hyperplane, thanks to a
simple change in (6). For a given sample, the more the distance
to the hyperplane, the more reliable the label. That is the basis of
the one against all strategy [6]. For the combination process, we
choose to fuse this distance. We consider that the most reliable
source is the one that gives the highest absolute distance.

In this paper, we first used the absolute maximum decision rule.
For an m-source problem {S1, S2, . . . , Sm}, where S1 = d1

ij is
the distance provided by the first SVM classifier which separates
class i from j, this decision rule is defined as follows:

Sf = AbsMax(S1, . . . , Sm) (11)

where AbsMax is the set of logical rules:

if(|S1| > |S2| , . . . , |Sm|) then S1

else if(|S2| > |S1| , . . . , |Sm|) then S2

...
else if(|Sm| > |S1| , . . . , |Sm−1|) then Sm.

(12)

The second operator considered takes into account the agree-
ment of the classifier. Each distance is multiplied by the maxi-
mum probability associated to the two considered classes. Then,
the absolute maximum is used to fuse the results. The probabil-
ities are simply computed by [9]:

pi =
2

m(m− 1)

m∑
j=0,j 6=i

I(dij) (13)

where I is the indicator function I(x) = 1 if x ≥ 0 else I(x) = 0.
For the fusion, the absolute distance is used as in (11), where
source Sk is weighted by the corresponding pk:

Sf = AbsMax
(
max(p1

i , p
1
j )S1, . . . ,max(pm

i , pm
j )Sm

)
. (14)

The third operators is the one that is used to combine classifiers
in the one versus one strategy. If we have two SVM classifiers,
and apply each of them on a datasets with the same number of
classes, each classifier builds m(m− 1)/2 binary classifiers and
uses majority voting. Thus, we propose to build a new set of
classifiers, containing m(m − 1) classifiers. Then, we apply a
classical majority voting scheme.

Finally, the fusion is done as follows. First we extract for
each classifier the distance to the hyperplane for each sample.
Then, using one of the three operators, the data are fused. For
the operators based on absolute maximum, a majority voting is
done. For all the operators the winning class is selecting as the
one which has the highest number of votes.

TABLE I
INFORMATION CLASSES AND TRAINING-TEST SAMPLES.

Class Samples
No Name Train Test

1 Asphalt 548 6304
2 Meadow 540 18146
3 Gravel 392 1815
4 Tree 524 2912
5 Metal Sheet 265 1113
6 Bare Soil 532 4572
7 Bitumen 375 981
8 Brick 514 3364
9 Shadow 231 795

Total 3921 400002

IV. EXPERIMENT

The proposed approach has been tested on real hyperspectral
data. The image data were collected by means of the Reflective
Optics System Imaging Spectrometer (ROSIS-03) optical sensor.
The flight over the University of Pavia, Italy, was operated by the
Deutschen Zentrum fur Luft - und Raumfahrt (DLR, the German
Aerospace Agency) in the framework of the HySens project, man-
aged and sponsored by the European Union. According to speci-
fications the number of bands of the ROSIS-03 sensor is 115 with
a spectral coverage ranging from 0.43 to 0.86 µm. The data are
of very fine spatial resolution (1.3m per pixel). The image used
here was 610 × 340 pixels and 9 classes were defined, and 103
bands were available. The original image is shown in Fig. 2.(a).
See Table I for a description of the class of interest and of the
training and testing set. 3 principal components were selected and
the morphological profile was made of 10 openings/closings by
reconstruction. The image was first classified with the spectral
data (103 bands) and then with the EMP (63 bands). Gaussian
kernels were used for each experiment. The parameters (C, γ)
of the SVMs were tuned using a five-fold cross validation.
The results were combined following the classification scheme
previously defined. The accuracies in terms of classification are
listed in Table II. The overall accuracy (OA) is the percentage
of correctly classified pixels whereas the average accuracy (AA)
represents the average of class classification accuracies. Kappa
coefficient is another criterion classically used in remote sensing
classification to measure the degree of agreement and takes into
account the correct classification that may have been obtained
”by chance” by weighting the measured accuracies. Per Class
classification accuracy has been also reported. Classification map
for the absolute maximum fusion operator is presented Fig. 2.(b).
As can be seen from the Table, the fusion step using absolute

maximum improves the classification accuracies. The highest
overall accuracies as well as the highest average accuracies
and the highest Kappa value were achieved when the absolute
maximum and probability were used conjointly. By comparing
the global accuracies (OO, OA, Kappa), it is clear that the use of
probabilities does not help so much in the fusion process of these



TABLE II
CLASSIFICATION ACCURACIES IN PERCENTAGE FOR THE SVMS

CLASSIFICATION WITH THE SPECTRAL DATA, THE EMP AND FOR THE THREE

FUSION OPERATORS.

Spect. PCA+EMP Abs. Max. A.M.+Prob. Maj. Vot.

OA 80.99 85.22 89.56 89.65 86.07
AA 88.28 90.76 93.61 93.70 88.49

Kappa 76.16 80.86 86.57 86.68 81.77

Class 1 83.71 95.36 93.18 93.02 93.98
Class 2 70.25 80.33 83.89 83.96 85.34
Class 3 70.32 87.61 82.13 82.23 64.94
Class 4 97.81 98.37 99.67 99.67 99.67
Class 5 99.41 99.48 99.48 99.41 99.48
Class 6 92.25 63.72 91.21 91.83 61.55
Class 7 81.58 98.87 96.99 97.22 93.01
Class 8 92.59 95.41 96.39 96.41 98.83
Class 9 96.62 97.68 99.58 99.58 99.58

experiments. The use of the majority voting rule does not improve
the results compared to those obtained with the EMP. Regarding
the per class accuracies, it is interesting to note that the best per
class results are only in three cases provided by the normalized
absolute maximum rule. However, all the accuracies are higher
than 82% and for each class, the accuracy is close to the highest
obtained accuracy. Regarding the computing time, the majority
voting is the combination rule that leads to the shortest processing
while the absolute maximum approach requires slightly more
time. Assessing the probabilities increases the computing time.

V. CONCLUSION

Decision fusion for SVMs classifier has been discussed.
Three operators based on the main characteristics of the outputs
of SVMs were proposed. The operators were based on the
assumption that the absolute distance to a hyperplane gives
good information about agreement of classifiers. In experiments,
the proposed approach outperformed each of the individual
classifiers in terms of overall accuracies. The use of the absolute
maximum operator lead to a significant improvement in terms
of classification accuracy.
It is noteworthy that other operators are able to use sign as an
informative feature. The classical mean or MYCIN rules [5] are
examples of possible operators. Unfortunately, for a two-source
problem, such operators have the same influence on the sign
of the fused data as the absolute maximum. Thus, in our case
(majority voting) lead to the same results.
In this paper, only one type of kernel was used. One possible
extension of the proposed method is to include other sources
using different kernels. Polynomial kernels, which are known to
perform well on complex data, could be investigated.
The good performance of the proposed combination scheme is
interesting because it uses no information about the reliability of
the source. A topic of a future research is to use a more advance
fusion scheme, that takes into account the performance of the
classifiers such as in [8].

(a) (b)

Fig. 2. Rosis University Area. (a): false colors original image, (b): classification
map. Classes description: asphalt, meadow, gravel, tree, metal sheet, bare soil,
bitumen, brick, shadow.
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