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ABSTRACT
Kernel Principal Component Analysis (KPCA) is inves-
tigated for feature extraction from hyperspectral remote-
sensing data. Features extracted using KPCA are used
to construct the Extended Morphological Profile (EMP).
Classification results, in terms of accuracy, are improved in
comparison to original approach which used conventional
principal component analysis for constructing the EMP.
Experimental results presented in this paper confirm the
usefulness of the KPCA for the analysis of hyperspectral
data. The overall classification accuracy increases from 79%
to 96% with the proposed approach.

Index Terms— Morphological Profile, hyperspectral
data, kernel principal component analysis, SVM.

1. INTRODUCTION

The Morphological Profile (MP) has been proposed for the
classification of remote sensing images with very high spatial
resolution and reduced spectral information, such as panchro-
matic IKONOS data [1, 2]. It consists of a granulometry with
two advanced morphological filters, the geodesic opening and
the geodesic closing [3]. The improvement in terms of clas-
sification accuracies was clearly demonstrate over several ex-
periments and now the MP is a well know tool of the remote
sensing community, especially for the analysis of urban area.

The extension of the MP, namely the Extended Morpho-
logical Profile (EMP), to multispectral or hyperspectral data
is not straightforward. Because of the multi-valued nature of
pixels, the morphological operators which require a total or-
dering relation cannot be applied. Plaza et al. have proposed
an extension to the morphological transformation in order to
integrate the spectral and the spatial information from the
hyperspectral data [4]. A simpler approach was proposed
in [5]. The authors proposed to use the Principal Component
Analysis (PCA) in order to reduce the spectral channels to a
few number of features, the principal components (PC) and
to apply the MP on each PCs. Then the EMP is built by the
concatenation of all MPs. But it was found that too much
spectral information was lost during the PCA.

To overcome this shortcoming, it was proposed to fuse
the original spectral channels together with the EMP [6].
Supervised feature reduction algorithms, such as Decision
Boundary Feature Reduction or Decision Boundary Feature
Reduction, were used to reduce the redundancy of the fused
features. Improved classification accuracies and substantial
reduction of the training time were obtained.

In this paper, an alternative approach to data fusion is
discussed. The PCA is optimal for the purpose of represen-
tation under some simple assumptions: The n observed vari-
able, i.e., the spectral channels x ∈ Rn, result from a linear
transformation of m latent variables Gaussianly distributed
and thus it is possible to recover the latent variable, i.e., the
principal components, from the observed one by solving the
following eigenvalue problem:

λv = Σxv, subject to ‖v‖2 = 1 (1)

where Σx = E
[
xcxTc

]
≈ 1
`−1
∑`

i=1

(
xi − µx

) (
xi − µx

)T is
the empirical covariance estimator of x, µx the empirical
mean and xc is the centered vector x ∈ Rn. The PCA only
relies on second order statistics and theoretical limitations
for hyperspectral data analysis have been pointed out in [7].
Since the PCA does not handle all the spectral information,
another unsupervised feature extraction is proposed, namely
the Kernel PCA (KPCA) [8]. The KPCA is reviewed in Sec-
tion 2. Spectral features extraction for the EMP construction
is addressed in Section 3. Experiments are presented in Sec-
tion 4 and conclusions are drawn in Section 5

2. KERNEL PCA

2.1. KPCA algorithm

The main idea of KPCA is simply to map the data onto
another space H before applying the PCA:

Φ : Rn → H
x 7→ Φ(x) (2)

where Φ is a function that may be non-linear, and the only
restriction on H is that it must have the structure of a re-
producing kernel Hilbert space (RKHS). PCA in H can be
performed as in the input space, but thanks to the kernel
trick [9], it can be performed directly in the input space. The
KPCA solves the following eigenvalue problem:

λα = Kα, subject to ‖α‖2 = 1
λ

(3)

where K is the kernel matrix constructed as follows:

K =


k(x1,x1) . . . k(x1,x`)

...
. . .

...
k(x`,x1) . . . k(x`,x`)

 . (4)



Table 1. Information classes and training/test samples.
ROSIS-03

Class Samples
No Name Train Test

1 Asphalt 548 6641
2 Meadow 540 18649
3 Gravel 392 2099
4 Tree 524 3064
5 Metal Sheet 265 1345
6 Bare Soil 532 5029
7 Bitumen 375 1330
8 Brick 514 3682
9 Shadow 231 947

Total 3921 42776

HYDICE

Class Samples
No. Name Train Test

1 Roof 40 3794
2 Road 40 376
3 Trail 40 135
4 Grass 40 1888
5 Tree 40 365
6 Water 40 1184
7 Shadow 40 57
- - - -
- - - -

Total 280 6929

The function k is the core of the KPCA. It is a real-valued
positive semi-definite function on Rn × Rn that introduces
non-linearity into the processing. It is called a kernel and
has the following property (kernel trick):

k(xi,xj) = 〈Φ(xi),Φ(xj)〉H (5)

As with conventional PCA, once (3) has been solved, pro-
jection onto the mth component is then performed:

Φmkpc(x) =
∑̀
i=1

αmi k(xi,x). (6)

Note it is assumed that K is centered, otherwise it can be
centered as [10] (1` is a square matrix such as (1`)ij = 1

`
):

Kc = K− 1`K−K1` + 1`K1`. (7)

2.2. KPCA versus PCA

To better understand the link and the difference between
PCA and KPCA, one must note that the eigenvectors
of Σx can be obtained from those of XXT , where X =
[x1,x2, . . . ,x`]T [11]. Consider the eigenvalue problem:

γu = XXTu, subject to ‖u‖2 = 1. (8)

The left part is multiplied by XT giving

γXTu = XTXXTu
γXTu = (`− 1)ΣxXTu
γ′XTu = ΣxXTu

(9)

which is the eigenvalue problem (1): v = XTu. But ‖v‖2 =
uTXXTu = γuTu = γ 6= 1. Therefore, the eigenvectors
of Σx can be computed from eigenvectors of XXT as v =
γ−0.5XTu. The matrix XXT is equal to:

〈x1,x1〉 . . . 〈x1,x`〉
...

. . .
...

〈x`,x1〉 . . . 〈x`,x`〉

 (10)

which is the kernel matrix with a linear kernel: k(xi,xj) =
〈xi,xj〉Rn . Using the kernel trick, K can be rewritten in a

Table 2. Eigenvalues and cumulative variance in percentage.
Component 1 2 3 4 5

ROSIS-03

PCA
% 72.8 21.0 01.2 00.8 00.3

Cum. % 72.8 93.9 98.1 99.0 99.3

KPCA
% 43.9 21.0 15.5 05.2 03.9

Cum. % 43.9 64.9 80.4 85.6 89.5

HYDICE

PCA
% 53.4 18.7 03.8 02.0 00.7

Cum. % 53.4 72.0 75.9. 77.9 78.0

KPCA
% 41.0 20.2 13.7 06.0 05.2

Cum. % 41.0 61.2 74.9 80.9 86.16

similar form as (10):
〈Φ(x1),Φ(x1)〉H . . . 〈Φ(x1),Φ(x`)〉H

...
. . .

...
〈Φ(x`),Φ(x1)〉H . . . 〈Φ(x`),Φ(x`)〉H

 . (11)

From (10) and (11), the advantage of using KPCA comes from
an appropriate projection Φ of Rn onto H: In this space, the
data should better match the PCA model. It is clear that
the KPCA shares the same properties as the PCA, but in
different space.

3. SPECTRAL FEATURE EXTRACTION

3.1. Data sets

Airborne data from the ROSIS-03 (Reflective Optics System
Imaging Spectrometer) optical sensor are used for the first
experiments. According to specifications, the ROSIS-03 sen-
sor provides 115 bands with a spectral coverage ranging from
0.43 to 0.86µm. The spatial resolution is 1.3 m per pixel. The
test set is around the Engineering School at the University of
Pavia. It is 610 × 340 pixels. Twelve channels have been re-
moved due to noise. The remaining 103 spectral channels are
processed. All variables have been stretched between 0 and
1. Nine classes of interest are considered: Tree, asphalt, bitu-
men, gravel, metal sheet, shadow, bricks, meadow, and soil.
Available training and test sets are given in Table 1. These
are selected pixels from the data by an expert, corresponding
to predefined species/classes. Pixels from the training set are
excluded from the test set in each case and vice-versa.

Airborne data from the HYDICE sensor (Hyperspectral
Digital Imagery Collection Experiment) were used for the sec-
ond experiments. The HYDICE sensor was used to collect
data from flightline over the Washington DC Mall. Hyper-
spectral HYDICE data originally contained 210 bands in the
0.4-2.4µm region. Channels from near-infrared and infrared
wavelengths are known to contain more noise than in chan-
nels from visible wavelengths. Noisy channels due to water
absorption have been removed and the set consists of 191
spectral channels. The data were collected in August 1995
and each channel has 1280 lines with 307 pixels each. Seven
information classes were defined, namely: Roof, road, grass,
tree, trail, water and shadow.

3.2. Feature extraction

Solving the eigenvalue problems (1) and (3) yields the re-
sults reported in Table 2. A Gaussian kernel was used for



Table 3. Classification results for the University Area data set.
Features Nb. of Features OA AA κ 1 2 3 4 5 6 7 8 9

Raw 103 79.5 88.1 74.5 84.4 66.2 72.0 98.0 99.5 93.1 91.2 92.2 96.6
EMPPCA 27 92.0 93.2 89.6 94.6 88.8 73.1 99.2 99.5 95.2 98.87 99.1 90.0

EMPKPCA 108 96.5 96.2 95.4 96.23 97.6 83.6 99.4 99.5 92.9 99.1 99.5 98.3

Table 4. Classification results for the HYDICE data set.
Features Nb. of Features OA AA κ 1 2 3 4 5 6 7

Raw 191 98.1 96.9 97.4 97.05 98.1 100 100 98.0 99.6 85.6
EMPPCA 360 98.6 98.0 98.0 97.5 95.5 100 100 99.51 99.92 89.7

EMPKPCA 99 98.7 99.4 98.1 97.5 98.8 100 100 99.5 99.5 100
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Fig. 1. Mutual Information matrices for the HYDICE data.

the KPCA, its width has been set to 4 and 5000 randomly-
selected samples were used to compute the kernel matrix.

Looking at the cumulative eigenvalues, three principal
components (PCs) reach 95% of total variance for the ROSIS-
03 data, while 12 KPCs are needed to achieve 95%. On the
contrary, for the HYDICE data, 40 PCs are needed to reach
95% of total variance and only 11 KPCs. Acquired from a
higher range of wavelengths, more noise is contained in the
data and more bands were removed by comparison to the
ROSIS data. That explains why more PCs than KPCs are
needed to reach 95% of the cumulative variance. That may
be also an indication that more information is extracted and
the KPCA is more robust to non-Gaussian noise, since a rea-
sonable number of features are extracted from the HYDICE
data set.

To test this assumption, the Mutual Information (MI)
between each (K)PC has been computed. The classical cor-
relation coefficient was not used since the PCA is optimal
for that criterion. For comparison, the normalized MI was
computed (MIn(x,y) = MI(x,y)√

MI(x,x)
√
I(y,y)

). The MI is used to
test independence between two variables and intuitively the
MI measures the information that the two variables share.
A MI close to 0 indicates independence, while a high MI
indicates dependence and consequently similar information.
Fig. 1 presents the MI matrices, which represent the MI for
each pair of extracted features with both PCA and KPCA,
for the HYDICE data set. From Fig. 1(a), PCs number 4
to 40 contain more or less the same information since they
correspond to a high MI. Although uncorrelated, these fea-
tures are still dependent. This phenomenon is due to the
noise contained in the data which is not Gaussian [7] and is
distributed over several PCs. From Fig. 1, KPCA is less sen-
sitive to the noise, i.e., in the feature space the data match
better the PCA model and the noise tends to be Gaussian.
Note that with KPCA, only the first 11 KPCs are retained
against 40 with conventional PCA.

4. EXPERIMENTS

For the experiments, the EMP was constructed using a num-
ber of (K)PCs corresponding to 95% of the total variance.
The EMP constructed with the PCA (respectively KPCA) is
noted EMPPCA (respectively EMPKPCA). A circular struc-
turing element with step size increment of 2 was used. Four
openings and closings were computed for each (K)PC, result-
ing in an EMP of dimension 9 × p (p being the number of
retained (K)PCs).

The classification was done by an one-versus-one multi-
class SVM with a Gaussian kernel. Optimal parameters were
selected using 5-fold cross-validation. The classification ac-
curacy was assessed with:
• An overall accuracy (OA) which is the number of well

classified samples divided by the number of test sam-
ples.

• An average accuracy (AA) which represents the average
of class classification accuracy.

• A kappa coefficient of agreement (κ) which is the per-
centage of agreement corrected by the amount of agree-
ment that could be expected due to chance alone [12].

• A class accuracy which is the percentage of correctly
classified samples for a given class.

These criteria were used to compare classification results and
were computed using a confusion matrix. Furthermore, the
statistical significance of differences was computed using Mc-
Nemar’s test, which is based upon the standardized normal
test statistic [13]:

Z = f12 − f21√
f12 + f21

(12)

where f12 indicates the number of samples classified correctly
by classifier 1 and incorrectly by classifier 2. The difference in
accuracy between classifiers 1 and 2 is said to be statistically
significant if |Z| > 1.96. The sign of Z indicates whether
classifier 1 is more accurate than classifier 2 (Z > 0) or vice-
versa (Z < 0). This test assumes that the training and the
test samples are related and is thus adapted to the analy-
sis since the training and test sets were the same for each
experiment for a given data set.

For the ROSIS-03 data, the results are reported in Table 3
and the Z tests state that the differences of classification ac-
curacies are statistically significant. EMP constructed with
either PCs or KPCs outperformed the standard approach in
classification. The κ is increased by 15 % with EMPPCA and
by 20% with EMPKPCA. The statistical difference of accu-
racy ZKPCA_PCA = 35.33 clearly demonstrates the benefit of
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Fig. 2. Thematic map obtained with the University Area: (a) Raw data, (b) EMPPCA, (c) EMPKPCA. The classification
was done by SVM with a Gaussian kernel. The color-map is as follows asphalt, meadow, gravel, tree, metal sheet, bare soil,
bitumen, brick and shadow.

using the KPCA rather than the PCA.
Regarding the class accuracy, the highest improvements were
obtained for class 1 (Asphalt), class 2 (Meadow) and class 3
(Gravel). For these classes, the original spectral information
was not sufficient and the morphological processing provided
additional useful information. However, using KPCA for fea-
ture extraction helps in classifying better these classes.
Thematic maps obtained with the SVM applied to the Raw
data, EMPPCA and EMPKPCA are reported in Fig. 2. For in-
stance, it can be seen that the region corresponding to class 2,
meadow, are more homogeneous in the image Fig.2.(c) than
in the two other images.

For the HYDICE data, the results are reported in Table 4.
From the global accuracies, all the different approaches per-
form similarly. It is confirm with the Z tests, which indicate
that the differences in term of classification are not statisti-
cally significant. Regarding the class accuracies, the class 7,
shadow, is perfectly classified only by EMPKPCA.

5. CONCLUSIONS

This paper presents a KPCA-based method with application
to the analysis of hyperspectral remote sensing data: The
construction of the EMP with KPCs is investigated. Com-
parison to PCA in terms of classification accuracies demon-
strates the usefulness of this approach.
From this study we conclude that KPCA should be preferred
to standard PCA whenever possible. However one limitation
of the KPCA is its computational complexity, related to the
size of the kernel matrix, which can limit the number of sam-
ples used.
Our current investigations are oriented to non-linear indepen-
dent component analysis, such as kernel ICA for the construc-
tion of the EMP and to a sparse KPCA in order to reduce
the complexity.
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