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Abstract. In this paper, we present some recent developments of Mul-
tiple Classifiers Systems (MCS) for remote sensing applications. Some
standard MCS methods (boosting, bagging, consensus theory and ran-
dom forests) are briefly described and applied to multisource data (satel-
lite multispectral images, elevation, slope and aspect data) for landcover
classification. In a second part, special attention is given to Support Vec-
tor Machines (SVM) based algorithms. In particular, the fusion of two
classifiers using the spectral and the spatial information, respectively, is
discussed in the frame of hyperspectral remote sensing for the classifica-
tion of urban areas. In all the cases, MCS provide a significant improve-
ment of the classification accuracies. In order to address new challenges
for the analysis of remote sensing data, MCS provide invaluable tools
to handle situations with an ever growing complexity. Examples include
extraction of multiple features from one data set, use of multi-sensor
data, and complementary use of several algorithms in a decision fusion
scheme.

1 Introduction

Over the past decades, remote sensing has become a central source of informa-
tion for the observation of the Earth. Numerous satellites have been launched,
providing images in different modalities. On one hand, active imagery systems
use radar sensors (e.g., synthetic aperture radar, polarimetric or interferometric
imagery): an electromagnetic wave is generated and the sensor records the in-
formation reflected by the ground surface when illuminated. On the other hand,
passive imagery systems use optical sensors (panchromatic, multispectral or hy-
perspectral images) where the sensor records the information naturally emitted
by the ground when illuminated by the sun. Multisource data can also include
geographic data such as elevation and slope [7]. All these data have different
characteristics, e.g., different spatial and spectral resolutions, different angle of
view, and different dates of acquisition. They thus provide complementary in-
formation.

Remote sensing data are used in a wide range of applications, including mon-
itoring of the environment, management of major disasters, urban planning,
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precision agriculture, and strategic defense issues. In most of these applications,
an automatic analysis of the data is required. The first step of the analysis
usually consists in a classification at pixel-level, be it (semi-)supervised or not.
Numerous algorithms have been proposed in the geoscience and remote sensing
community to address these emerging issues. Considering the complexity of the
data and the variety of available algorithms, multiple classifier systems (MCS)
proved to be of the utmost interest in numerous remote sensing applications,
significantly improving the classification performances. The aim of this paper is
to present some of the recent issues addressed by multiple classifier systems in
remote sensing. Special attention will be paid to classification algorithms based
on Support Vector Machines.

Several multiclassifier systems have been used in remote sensing research. Bag-
ging, boosting and consensus theory are among the most commonly used such
approaches. Their application to multisource remote sensing data is discussed in
Section 2. Based on these approaches, ensemble of classification and regression
tree classifiers can be formed, leading to random forest classifier. This strategy
used for land cover classification is presented in Section 3.

Support Vector Machines (SVM) have been widely used of late in classification
of remote sensing data. Section 4 briefly presents the principle of this machine
learning algorithm. The fusion of SVM for classification of hyperspectral data is
then addressed, making a joint use of spatial and spectral information. In the
conclusion, we also discuss the new trends in the use of MCS for remote sensing
applications, such as decision fusion schemes.

2 Boosting, Bagging and Consensus Theory for
Multisource Data

The combination of multisource remote sensing and geographic data offers im-
proved accuracies in land cover classification. For such classification, the conven-
tional parametric statistical classifiers, which have been applied successfully in
remote sensing for the last two decades, are not appropriate, since a convenient
multivariate statistical model does not exist for the data. In [1], several single
and multiple classifiers, that are appropriate for the classification of multisource
remote sensing and geographic data are considered. The focus is on multiple
classifiers; bagging, boosting, and consensus-theoretic classifiers. These multiple
classifiers have different characteristics.

2.1 Boosting

Boosting is a general and well known method which is used to increase the
accuracy of any classifier. In this study, we use the AdaBoost.M1 method which
can be used on classification problems with more than two classes [17]. In the
beginning of AdaBoost, all patterns have the same weight and the classifier
C1 is the same as the base classifier. If the classification error is greater than
0.5, then the method does not work and the procedure is stopped. A minimum
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accuracy is thus required for the base classifier, which can be of considerable
disadvantage in multiclass problems. Iteration by iteration, the weight of the
samples which are correctly classified goes down. The algorithm consequently
concentrates on the difficult samples. At the end of the procedure, T weighted
training sets and T base classifiers have been generated. In most cases, the overall
accuracy is increased. Many practical classification problems include samples
which are not equally difficult to classify. AdaBoost is suitable for such problems.
It tends to exhibit virtually no overfitting when the data is noiseless. Other
advantages of boosting include that the algorithm has a tendency to reduce both
the variance and the bias of the classification. On the other hand, AdaBoost
is computationally more demanding than other simpler methods. The lack of
robustness to noise is another shortcoming.

2.2 Bagging

Bagging is an abbreviation of bootstrap aggregating [18]. Bootstrap methods
are based on randomly and uniformly collecting m samples with replacement
from a sample set of size m. Many different bags are constructed by performing
bootstrapping iteratively, classifying each bag, and computing some type of an
average of the classifications of each sample via a vote. Bagging is in some
ways similar to boosting since both methods design a collection of classifiers
and combine their conclusions with a vote. However, the methods are different,
e.g., because bagging always uses resampling instead of re-weighting, it does not
change the distribution of the samples and all classes in the bagging algorithm
have equal weights during the voting. Furthermore, bagging can be done in
parallel, i.e., all the bags can be designed at once. On the other hand, boosting
is always done in series, and each sample set is based on the latest weights.

For a particular bag Si, the probability that a sample from the training set S
is selected at least once in m tries is 1−(1−1/m)m. For a large m, the probability
is approximately 1 − 1/e ≈ 0.632, indicating that each bag only includes about
63.2% of the samples in S. If the base classifier is unstable, that is, when a small
change in training samples can result in a large change in classification accuracy,
then bagging can improve the classification accuracy significantly. If the base
classifier is stable, like e.g., a k-NN classifier, then bagging can actually reduce
the classification accuracy because each classifier receives less of the training
data. The bagging algorithm is also not very sensitive to noise in the data.
The algorithm uses the instability of its base classifier in order to improve the
classification accuracy. Therefore, it is of great importance to select the base
classifier carefully. This is also the case for boosting since it is sensitive to small
changes in the input signal. Bagging reduces the variance of the classification
(just as boosting does) but in contrast to boosting, bagging has little effect on
the bias of the classification.

2.3 Consensus Theory

Consensus theory aims at combining single probability distributions to sum-
marize estimates from multiple experts with the assumption that the experts



504 J.A. Benediktsson, J. Chanussot, and M. Fauvel

make decisions based on Bayesian decision theory [8]. The combination formula
is called a consensus rule. These rules are used in classification by applying a
maximum rule, i.e., the summarized estimate is obtained for all the information
classes and the pattern X is assigned to the class with the highest summarized
estimate. The most common consensus rule is the linear opinion pool (LOP)
which is based on a weighted linear combination of the posterior probabilities
from each data source. Another consensus rule, the logarithmic opinion pool
(LOGP), is based on the weighted product of the posterior probabilities. The
LOGP is unimodal and less dispersed than the LOP and it processes the data
sources independently.

The simplest approach of the weighting scheme consists in giving all the data
sources equal weights. Measures of reliability of the different sources can also
be used for heuristic weighting. Furthermore, the weights can be chosen to not
only weight the individual sources but also the individual classes. For such a
scheme both linear and nonlinear optimization can be used. In [9], the statistical
consensus models are optimized with neural networks, and achieve improved
classification.

2.4 Experimental Results

Experiments [1] were conducted on multisource remote sensing and geographic
data from Colorado. These data were originally acquired, preprocessed by Dr.
Roger Hoffer from the Colorado State University. Access to the data set is grate-
fully acknowledged.

The classification was performed on a data set consisting of the following four
data sources:

1. Landsat MSS data (4 spectral data channels).
2. Elevation data (in 10 m contour intervals, 1 data channel).
3. Slope data (0-90 degrees in 1 degree increments, 1 data channel).
4. Aspect data (1-180 degrees in 1 degree increments, 1 data channel).

Each channel comprised an image of 135 rows and 131 columns, and all chan-
nels were spatially co-registered. The area used for classification is a mountainous
area in Colorado. It has 10 ground-cover classes: one class is water; the others
are forest types (namely Colorado Blue Spruce, Mountane/Subalpine Meadow,
Aspen, Ponderosa Pine, Ponderosa Pine/Douglas Fir, Engelmann Spruce, Dou-
glas Fir/White Fir, Douglas Fir/Ponderosa Pine/Aspen and Douglas Fir/White
Fir/Aspen). It is very difficult to distinguish among the forest types using the
Landsat MSS data alone since the forest classes show very similar spectral re-
sponse. Reference data were compiled for the area by comparing a cartographic
map to a color composite of the Landsat data and also to a line printer output of
each Landsat channel. By this method, 2019 reference points (11.4% of the area)
were selected comprising two or more homogeneous fields in the imagery for each
class. Approximately 50% of the reference samples were used for training, and
the rest was used as a test set.
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Several single classifiers were applied to the data, namely the minimum Euclid-
ean Distance (MED) classifier and conjugate gradient backpropagation
(CGBP) with two and three layers. The base classifiers which were used for
bagging and boosting were also trained as single classifiers on the data. These
base classifiers were: a decision table, the j4.8 decision tree [19] and the simple
classifier 1R [20]. The results are summarized in Table 1.

Table 1. Training and Testing Accuracies in Percentage for the Different Classification
Methods

Method Average Overall Average Overall
Accuracy Accuracy Accuracy Accuracy

Training set Training set Test set Test set
MED 37.8 40.3 35.5 38.0

Decision Table 73.0 82.8 63.4 77.0
j4.8 81.3 88.0 63.4 77.4
1R 35.9 60.3 34.0 58.8

CGBP (40 hidden neurons) 95.6 96.3 67.0 78.4
LOP (equal weights) 49.3 68.1 46.5 66.4

LOP (heuristic weights) 55.8 74.2 54.9 73.4
LOP (optimal linear weights) 66.2 80.3 66.1 80.2
LOP (optimized with CGBP) 74.6 83.5 72.9 82.2

LOGP (equal weights) 69.2 79.0 69.0 78.7
LOGP (heuristic weights) 69.2 80.5 66.8 79.6

LOGP (optimal linear weights) 65.1 79.7 64.3 80.0
LOGP (optimized with CGBP) 89.1 91.4 75.1 82.3

Bagging with DecisionTable 79.5 88.3 69.3 82.5
Bagging with j4.8 84.3 90.4 69.5 81.7
Bagging with 1R 61.5 74.9 58.9 73.6

Boosting with Decision Table 89.6 91.4 76.1 83.8
Boosting with j4.8 97.6 97.5 72.6 81.5
Boosting with 1R 88.7 90.9 79.4 85.3

Number of Samples 1008 1011

For the LOP and LOGP, ten data classes were defined in each data source.
The multispectral remote sensing data sources were modeled to be Gaussian but
the topographic data sources were modeled by Parzen density estimation with
Gaussian kernels. Several different weighting schemes were used for the LOP and
LOGP.

In the case of bagging, 100 iterations were selected for the decision table, 10
iterations for j4.8 and 200 iterations for 1R. Adaboost.M1 was employed, with
50 iterations for the decision table, 200 iterations for j4.8 and 60 iterations for
1R. In each case, the 10 class problem was converted into multiple two class
problems.

The obtained overall and average accuracies are shown in Table 1 for both
the training and the test sets. The multiple classifiers show improvement over all
the single classifiers The highest training accuracies were obtained by boosting
the j4.8 decision tree. However, the highest overall and average test accuracies
were obtained by boosting the 1R base classifier, which gave far worse train-
ing and test accuracies on its own than the other base classifiers. In contrast,
bagging the 1R gave poor accuracies. The best overall and average accuracies
for consensus theoretic classifiers were achieved with the LOGP optimised by
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conjugate gradient backpropagation. Those results were comparable in terms of
overall accuracies to the best results achieved using bagging.

3 Random Forests

To further improve the classification performances and overcome the shortcom-
ings of the previous approaches (e.g., sensitivity to noise, computational load
and the need for parametric statistical modeling of each data source), random
forests have been proposed. Random forests are ensembles of tree-type classifiers,
that use a similar but improved method of bootstrapping as bagging, and can
be considered an improved version of bagging. Random forests have been shown
to be comparable to boosting in terms of accuracies, but without the drawbacks
of boosting [11]. In addition, the random forests are computationally much less
intensive than boosting. Recently, random forests have been applied to classifi-
cation of hyperspectral remote sensing data [10]. Their approach is implemented
within a multiclassifier system arranged as a binary hierarchy and provides good
results for a hyperspectral data set with limited training data. Here, we consider
random forests for classification of multisource remote sensing and geographic
data [2]. It is of great interest since it is not only nonparametric [12], but it also
provides a way of estimating the importance of the individual variables (data
channels) in the classification.

Random forest is a general term for ensemble methods using tree-type clas-
sifiers h(x, θk), k = 1, . . . where the θk are independent identically distributed
random vectors and x is an input pattern [11]. In training, the random forest
algorithm creates multiple CART-like trees, each trained on a bootstrapped sam-
ple of the original training data, and searches only across a randomly selected
subset of the input variables to determine a split (for each node). For classifica-
tion, each tree in the random forest casts a unit vote for the most popular class
at input x. The output of the classifier is determined by a majority vote of the
trees.

The number of variables is a user-defined parameter that is often blindly
selected to the square root of the number of inputs. By limiting the number
of variables used for a split, the computational complexity of the algorithm is
reduced, and the correlation between trees is also decreased. Finally, the trees
in random forests are not pruned, further reducing the computational load. As
a result, the random forest algorithm can handle high dimensional data and use
a large number of trees in the ensemble. As each tree is only using a portion
of the input variables in a random forest, the algorithm is considerably lighter
than conventional bagging with a comparable tree-type classifier.

A random forest classifier was applied to the same data set as boosting, bag-
ging and consensus theory, considering the same 10 classes (see Section 2.4). It
performed well (overall test set accuracy: 83%), outperforming the single CART
classifier (78%), and being comparable to the accuracies obtained by other en-
semble methods (Bagging: 83%-decision table, 82%-j4.8, 74%-1R ; Boosting:
84%-decision table, 82%-j4.8, 85%-1R) [2]. However, the random forest classifier
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was much faster in training when compared to the ensemble methods, especially
boosting. The random forest algorithm does not overfit, and it does not require
guidance (although its accuracy can be tweaked slightly by altering the num-
ber of variables used for a split). Furthermore, the algorithm can estimate the
importance of variables for the classification. Such estimation is of value for fea-
ture extraction and/or feature weighting in multisource data classification. The
random forest algorithm can also detect outliers, which can be very useful when
some of the cases may be mislabeled. With this combination of efficiency and
accuracy, along with very useful analytical tools, the random forest classifier is
very desirable for multisource classification of remote sensing and geographic
data, where no convenient statistical models are usually available.

4 Support Vector Machines (SVM) and Multiple
Classifier Systems

4.1 SVM Formulation and the Use of Different Kernel Functions

We first briefly recall the general formulation of SVM classifiers [13]. Let us first
consider a two-class problem in a n-dimensional space R

n. We assume that l
training samples, xi ∈ R

n (vector of attributes, or pixel vectors in the case of
hyperspectral analysis) are available with their corresponding class labels given
by yi = ±1, S = {(xi, yi) | i ∈ [1, l]}. The SVM method consists in finding
the hyperplane that maximizes the margin (see Fig. 1), i.e., the distance to the
closest training data points in both classes. Noting w ∈ R

n as the vector normal
to the hyperplane and b ∈ R as the bias, the hyperplane Hp is defined as

〈w,x〉 + b = 0, ∀x ∈ Hp (1)

where 〈w,x〉 is the inner product between w and x. If x /∈ Hp then f(x) =
〈w,x〉 + b is the distance of x to Hp. The sign of f corresponds to decision
function y = sgn (f(x)). Such a hyperplane has to satisfy:

yi(〈w,xi〉 + b) ≥ 1, ∀i ∈ [1, l]. (2)

For the non-linearly separable case, slack variables ξ are introduced to deal
with misclassified samples, and (2) becomes:

yi(〈w,xi〉 + b) ≥ 1 − ξi, ξi ≥ 0, ∀i ∈ [1, l]. (3)

Finally, the optimal hyperplane has to jointly maximize the margin 2/‖w‖ and

minimize the sum of errors
l∑

i=1

ξi. This is a convex optimization problem:

min
w,ξi,b

[
‖w‖2

2
+ C

l∑

i=1

ξi

]
, subject to (3) (4)
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Fig. 1. Classification of non-linearly data by SVMs

where the parameter C balances the minimization of errors and the smoothness
(regularization) of the solution, thus directly affecting the generalization capa-
bility of the classifier. This primal problem can be solved by considering the dual
optimization problem through the use of Lagrange multipliers αi:

max
α

l∑

i=1

αi − 1
2

l∑

i,j=1

αiαjyiyj〈xi,xj〉

subject to 0 ≤ αi ≤ C ∀i ∈ [1, l]
l∑

i=1

αiyi = 0.

(5)

The relation between the primal (w) and the dual parameters (αi) is given
by w =

∑l
i=1 αiyixi [14]. The solution vector is a linear combination of the

samples of the training set associated with non-null αi, which are called sup-
port vectors. The hyperplane decision function can thus be written as yu =
sgn

(∑l
i=1 yiαi〈xu,xi〉 + b

)
where xu is an unseen sample. To address non-

linear problems while preserving the simplicity of linear models, the input space
is projected in higher dimensional feature Hilbert space H according to a non-
linear mapping Φ [15]. The SVM algorithm can be simply considered with the
following training samples: Φ(S) = {(Φ(xi), yi) | i ∈ [1, l]}, which leads to a new
solution, in which the inner product is: 〈Φ(xi), Φ(xj)〉. Inner products in feature
spaces are computed using the kernel trick [13], which allows one to work in the
mapped kernel space without knowing explicitly the mapping Φ, but only the
kernel function k: 〈Φ(xi), Φ(xj)〉 = k (xi,xj). This way, the decision function is

given by yu = sgn
(∑l

i=1 yiαik(xu,xi) + b
)
.

The most kernels are presented below:

– Polynomial . The inner product is computed in the space of all monomials
up to degree d: kpoly (x, z) = (〈x, z〉 + θ)d. The parameter θ tunes the weight
of the higher order polynomial.



Multiple Classifier Systems in Remote Sensing 509

– Gaussian Radial Basis Functions. This kernel is given by kgauss (x, z) =
exp

(
−γ‖x − z‖2

)
. For this kernel, kgauss (x,x) = 1. The parameter γ tunes

the flexibility of the kernel.

SVMs are designed to solve binary classification problems. Two main ap-
proaches have been proposed to address multiclass (N classes) problems [14]:

– One versus the rest: N binary classifiers are applied to each class against
the others. Each sample is assigned to the class with the maximum output.

– Pairwise classification: N(N−1)
2 binary classifiers are applied on each pair of

classes. Each sample is assigned to the class getting the highest number of
votes.

The aforementioned multiclass architectures as well as other multicategory
strategies that can be applied to classification of hyperspectral images are pre-
sented and discussed in [16].

4.2 Joint Spatial and Spectral SVMs

A recent trend in multi- and hyperspectral remote sensing tends to use simultane-
ously spatial and spectral information, for improved classification performances.
One way to address this issue consists in designing a decision fusion scheme.
In [6], a landcover multiclass problem is considered on ROSIS data provided
by the German Aerospace Agency (DLR) from urban area (N=9 classes, 115
spectral bands ranging from 0.43 to 0.86 μm, 1.3 m per pixel for the spatial res-
olution). The hyperspectral images are first preprocessed to extract some spatial
information and the data are classified using Support Vector Machines (SVM).
Another SVM classifier is applied on the initial spectral values, with no spatial
information. As a matter of fact, it has been demonstrated that both the spatial
and the spectral information are required to actually achieve good classification
performances.

Using the one versus one classification strategy, 36 binary classifiers are used
for each classifier. The standard method consists in combining the results with a
majority voting scheme. However, a better multiclassifier system can be designed
by storing for each result the actual distance to the hyperplane, following the
general idea that it is more useful to have access to the belief of the classifiers
rather than the final decision [5]. For a given sample, the larger is the distance
to the hyperplane, the more reliable is the label. The most reliable source is thus
the one that gives the largest absolute distance.

Let us consider that m SVM classifiers are used (in our case 2 classifers:
one based on spatial features, one based on spectral information). We have the
following results: {S1, S2, . . . , Sm}, where S1 = d1

ij is the distance provided by the
first SVM classifier which separates class i from class j. The absolute maximum
decision rule is defined as follows:

Sf = AbsMax(S1, . . . , Sm) (6)
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where AbsMax is the logical rules:

if(|S1| > |S2| , . . . , |Sm|) then S1
else if(|S2| > |S1| , . . . , |Sm|) then S2

...
else if(|Sm| > |S1| , . . . , |Sm−1|) then Sm.

(7)

The agreement of the classifiers can also be taken into account. Each dis-
tance is multiplied by the maximum probability associated to the two considered
classes [21]: pi = 2

N(N−1)

∑N
j=0,j �=i I(dij),where I is the indicator function. The

absolute maximum rule is applied on these weighted results:

Sf = AbsMax
(
max(p1

i , p
1
j)S1, . . . , max(pm

i , pm
j )Sm

)
. (8)

A last approach consists in simply applying a majority voting on the m ∗
N(N − 1)/2 binary classifers used when each of the m classifiers uses the one
versus one strategy.

The results are summarized on Table 2: the overall and average accuracies are
clearly improved by the decision fusion, as well as the Kappa coefficient, with
some variations among the different classes.

Table 2. Classification accuracies (%) for the SVMs based on the spectral or the spatial
info, or with the 3 fusion operators

Spectral info. only Spatial info. only Abs. Max. Weighted Abs. max. Maj. Vot.
Overall Accuracy 81.0 85.2 89.6 89.7 86.1
Avergae Accuracy 88.3 90.8 93.6 93.7 88.5
Kappa Coefficient 76.2 80.9 86.6 86.7 81.8

Asphalt 83.7 95.4 93.2 93.0 94.0
Meadows 70.3 80.3 83.9 84.0 85.3
Gravel 70.3 87.6 82.1 82.2 64.9
Trees 97.8 98.4 99.7 99.7 99.67

Metalsheets 99.4 99.5 99.5 99.4 99.5
Bare soil 92.3 63.7 91.2 91.8 61.6
Bitumen 81.6 98.9 97.0 97.2 93.0
Bricks 92.6 95.4 96.4 96.4 98.8

Shadows 96.6 97.7 99.6 99.6 99.6

5 Conclusion and Future Trends

Over the past years, multiple classifiers systems have been designed to address
numerous applications in remote sensing. Dealing with land cover classification,
this paper briefly presented the use of standard algorithms (boosting, bagging
and consensus theory) in the case of multi-source data. Random forests is a
valuable extension of these algorithms. The focus was then on classifiers based
on Support Vector Machines. They provide very promising results in various
remote sensing applications and one application was presented in the frame of
hyperpsectral data from urban areas.

Future trends in the use of MCS in remote sensing arise from the three
following items:
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– Multi-sensor data: As stated in the introduction, numerous imaging satel-
lites have been launched in the last decades and a lot of new ones are sched-
uled for the next few years. As a consequence, in many applications, images
provided by different sensors are available and MCS can help taking ad-
vantage of their complementary characteristics. For instance, in [3], SVM
classifiers working on multitemporal radar and optical data, respectively,
are aggregated with excellent results.

– Multiple feature extraction: To address the difficulty and complexity of
the emerging remote sensing applications, such as the accurate classification
of very high resolution images from urban areas, multiple features are re-
quired. For instance, the spectral information (characterizing the physical
nature of the different materials) is complementary to the spatial informa-
tion (characterizing the shape and geometry of the different objects in the
picture). Again, MCS can help taking advantage of their complementary
characteristics. An example was described in section 4.2. Another strategy
is described in [4], i.e., the spatial features are aggregated with the spectral
information prior to classification using feature extraction and dimension
reduction techniques. More generally speaking, the joint use of spatial and
spectral features for a better understanding of the content of an image, be
it multi- or hyperspectral, is one of the key problems in the close future of
remote sensing.

– Fusion of multiple algorithms (decision fusion): Many different al-
gorithms have been proposed in remote sensing research to address various
applications. In most of the cases, none of these algorithms strictly outper-
forms all others. Every algorithm has its own merits, and, again, MCS can
help taking advantage of their complementary characteristics. A key issue
when designing a decision fusion scheme lies in the reliability of each source
(a source being the result of one algorithm). How can one assess this reliabil-
ity ? In the case of SVM classifiers, as previously described, the distance to
the separating hyperplane can be used. In [5], a general framework based on
fuzzy logic is presented. A fusion rule incorporating in a flexible way prior
knowledge on the different sources and local reliability estimated from the
classifiers outputs for each pixel is proposed and tested in the frame of urban
areas classification.

The future for novel remote sensing classifiers is closely tied to the design of
appropriate MCS, enabling an optimal use of all the available information, with
some key issues: 1) How can one handle very high dimensional data?, 2) How
can one assess the reliability of one given classifier?, and 3) How can one handle
temporal variability in the data?

Acknowledgement. This work was supported in part by the Research Fund of
the University of Iceland and in part by the Jules Verne Program of the French
and Icelandic governments.



512 J.A. Benediktsson, J. Chanussot, and M. Fauvel

References

[1] Briem G.J., Benediktsson J.A., Sveinsson J.R., Multiple classifiers applied to mul-
tisource remote sensing data. IEEE Trans. on Geoscience and Remote Sensing.
vol.40 n.10 (2002) 2291–2299

[2] Gislason P.O., Benediktsson J.A., Sveinsson J.R., Random forests for land cover
classification. Pattern Recognition Letters vol.27 (2006) 294–300

[3] Waske B., Benediktsson J.A., Fusion of support vector machines for classification
of multisensor data. to appear in IEEE Trans. on Geoscience and Remote Sensing

[4] Palmason J.A., Benediktsson J.A., Sveinsson J.R., Chanussot J., Fusion of mor-
phological and spectral information for classification of hyperspectral urban re-
mote sensing data. IEEE Geoscience and Remote Sensing Symposium (IEEE
IGARSS’06) (2006), Denver, Colorado

[5] Fauvel M., Chanussot J., Benediktsson J.A., Decision fusion for the classification
of urban remote sensing images. IEEE Trans. on Geoscience and Remote Sensing.
vol.44 n.10 (2006) 2828–2838

[6] Fauvel M., Chanussot J., Benediktsson J.A., A combined support vector machines
classification based on decision fusion. IEEE Geoscience and Remote Sensing Sym-
posium (2006), Denver, Colorado

[7] Benediktsson J.A., Swain P.H., Ersoy, O.K., Neural network approaches versus
statistical methods in classification of multisource remote sensing data. IEEE
Trans. on Geoscience and Remote Sensing. vol.28 (1990) 540–542

[8] Benediktsson J.A., Swain P.H., Consensus theoretic classification methods. IEEE
Trans. Systems, Man Cybernet.vol. 22 (1992) 688–704.

[9] Benediktsson J.A., Sveinsson J.R., Swain P.H., Hybrid consensus theoretic classi-
fication. IEEE Trans. on Geoscience and Remote Sensing. vol.35 (1997) 833–843.

[10] Ham J., Chen Y., Crawford M.M., Gosh J., Investigation of the random forest
framework for classification of hyperspectral data. IEEE Trans. on Geoscience and
Remote Sensing. vol.43 (2005) 492–501.

[11] Breiman L., Random Forests. Mach. Learn. vol.40 (2001) 5-32.
[12] Duda R.O., Hart P.E., Stork D., Pattern Classification, second ed. (2001) Wiley,

New York.
[13] Boser B. E., Guyon I. M., Vapnik V. N., A training algorithm for optimal margin

classifier. FifthACMAnnualWorkshop on Computational Learning (1992) 144–152.
[14] Scholkopf B., Smola J., Learning with kernels (2002) MIT Press.
[15] Muller K. R., Mika S., Ratsch G., Tsuda K., Scholkopf B., An introduction to

kernel-based learning algorithms. IEEE Trans. on Neural Networks. vol.12 (2001)
181–202.

[16] Melgani F., Bruzzone L., Classification of hyperspectral remote-sensing images
with support vector machines. IEEE Trans. on Geoscience and Remote Sensing.
vol.42 (2004) 1778–1790.

[17] Freund Y., Schapire R. E., Experiments with a new boosting algorithm. Proc.
13th Int. Conf. Machine Learning (1996).

[18] Breiman L., Bagging predictors. Univ. California, Dept. Stat., Berkeley, Tech.
Rep. 421 (1994).

[19] Witten I. H., Frank E., Data MiningPractical Machine Learning Tools With Java
Implementations. San Francisco, CA: Morgan Kaufmann (2000).

[20] Holte R. C., Very simple classification rules perform well on most commonly used
datasets. Mach. Learn. vol.11 (1993) 63-91.

[21] Wu T., Lin C., Weng R., Probability estimates for multiclass classification by
pairwise coupling. Journal of Machine Learning. vol.5 (2004) 975-1005.


	Introduction
	Boosting, Bagging and Consensus Theory for Multisource Data
	Boosting
	Bagging
	Consensus Theory
	Experimental Results

	Random Forests
	Support Vector Machines (SVM) and Multiple Classifier Systems
	SVM Formulation and the Use of Different Kernel Functions
	Joint Spatial and Spectral SVMs

	Conclusion and Future Trends


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


