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ABSTRACT

Feature extraction of hyperspectral remote sensing data is in-
vestigated. Principal component analysis (PCA) has shown
to be a good unsupervised feature extraction. On the other
hand, this methods only focus on second orders statistics. By
mapping the data onto another feature space and using non-
linear function, Kernel PCA (KPCA) can extract higher order
statistics. Using kernel methods, all computation are done in
the original space, thus saving computing time. In this pa-
per, KPCA is used has a preprocessing step to extract rele-
vant feature for classification and to prevent from the Hughes
phenomenon. Then the classification was done with a back-
propagation neural network on real hyperspectral ROSIS data
from urban area. Results were positively compared to the lin-
ear version (PCA) and to a version of a algorithm specially
designed to be use with neural network (DBFE).

1. INTRODUCTION

In the last decades, various kernel methods were applied suc-
cessfully in pattern analysis, as well as in classification as in
regression [1]. Ones of them are the well know Support Vec-
tor Machines [2]. The main idea is kernels allow to work
in some feature space implicitly, while all computations are
done in the input space. In practice, dot products in feature
space is expressed in terms of kernel functions in input space.
The major consequence from this is that any algorithm which
only uses scalar product can be turn to nonlinear version of
it, using kernel methods [3].
Principal Component Analysis (PCA) is classic linear tech-
niques in statistical analysis. Given a set of multivariate mea-
surements, PCA finds, using only second-order statistics, a
smaller set where the feature are uncorrelated to each others.
The nonlinear version of PCA, namely Kernel Principal Com-
ponent Analysis (KPCA), is capable of capturing part of the
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high order statistics, thus provides more information from the
original data set.
In the field of remote sensing, especially in hyperspectral im-
agery, reduction of the dimensionality is a key point for data
analysis to prevent from Hughes phenomenon [4]. Typical
method in hyperspectral processing are Discriminant Analy-
sis (DAFE), which is a method that is intended to enhance
class separability, and Decision Boundary (DBFE), which is
a method that is extracted discriminately feature from the de-
cision boundary between classes [5]. These method are linear,
as PCA, but they are also focused on discriminating between
classes. By definitions, both of them are supervised methods,
i.e. some a priori informations are needed. However, these
algorithms could be computationally intensive and their per-
formance depend strongly on the training samples [5]. Unsu-
pervised learning algorithms are an alternative way to reduce
the dimensionality without any a priori information. Our in-
terest in this paper lies in the application of KPCA in high
dimensional space, such as hyperspectral images. Its influ-
ence on classification accuracy with neural network is thus
investigated.
We start by recalling PCA and its nonlinear version KPCA.
Then we describe the hyperspectral data and the experiments.
The obtained results are compared to these obtained with PCA
and DBFE. Finally conclusions are drawn.

2. KERNEL PRINCIPAL COMPONENT ANALYSIS

The starting point is a random vector x ∈ Rn with N ob-
servations xi, i ∈ [1, . . . , N ]. In PCA, data are first centered
x ⇐ x−E{x}. Then PCA diagonalizes the covariance matrix
Cx:

Cx =
1
N

N∑
i=1

xixT
i . (1)

This problem leads to solve the eigenvalue equation [6]:

λv = Cxv
‖v‖ = 1 (2)



where λ ≥ 0 are eigenvalues and v ∈ Rn are eigenvectors.
The projection on the eigenvector vk is done by:

xk
pc = vk · x. (3)

Now, suppose we first map the data onto another dot prod-
uct space H:

Φ : Rn → H
x → Φ(x) (4)

Here, Φ could be a nonlinear function and H could have infi-
nite dimensionality. PCA can be perform in H with the same
procedure as previously: the data is centered and the covari-
ance matrix is defined as:

CΦ(x) =
1
N

N∑
i=1

Φ(xi)Φ(xi)T . (5)

Similarly to PCA, one as to solve:

λvΦ = CΦ(x)vΦ =

(
1
N

N∑
i=1

Φ(xi)Φ(xi)T

)
vΦ

=
1
N

N∑
i=1

(Φ(xi) · vΦ)Φ(xi).

(6)

From (6), it is clear that vΦ is lying in the span of Φ(x1) . . .Φ(xN ),
thus each eigenvector can be written as:

vΦ =
N∑

i=1

αiΦ(xi). (7)

By multiplying (6) with Φ(xk) from the left and substituting
(7) into it, we get:

λ

N∑
i=1

αi (Φ(xk) · Φ(xi)) =

1
N

N∑
i=1

αi

Φ(xk) ·
N∑

j=1

(Φ(xj) · Φ(xi))Φ(xj)


for k ∈ [1, N ].

(8)

Defining the N×N Gram matrix K by Kij := (Φ(xi) · Φ(xj)),
the above equation turns to:

λKα =
1
N

K2α (9)

where α = (α1, . . . , αN )T . The solution of (9) is found by
solving the eigenvalue problem:

Nλα = Kα (10)

for nonzero eigenvalues. Clearly, all solutions of (10) satisfy
(9). However, it does not give all the solutions, eigenvector
associate to zero eigenvalue is solution of (9) which is not a

solution of (10). But, it can be shown that these solutions lead
to null expansion of (7) and thus are irrelevant for the consid-
ered problem. Finally, to solve CΦ(x)’s eigenvalue equation is
equivalent to solve K’s eigenvalue equation.
The unitary norm condition from (2) is translated in H into
λk(αk · αk) = 1 (details in [7]). The projection in H is
simply done by:

Φ(x)k
kpc = vk

Φ · Φ(x) =
N∑

i=1

αk
i (Φ(xi) · Φ(x)). (11)

However, compute PCA in H has a high computational cost.
Using kernel trick, it is possible to work implicitly in H while
all computations is done in the input space. Using kernel
function, the dot product in feature space is reduced to a (pos-
sibly nonlinear) function in input space:

Φ(xi) · Φ(xj) = K(xi, xj). (12)

The kernel function has to satisfy the Mercer’s theorem to
ensure that it is possible to construct a mapping into a space
where K acts as a dot product. The polynomial kernel and the
Gaussian kernel are ones of the most used kernel:

Kpoly(xi, xj) = (xi · xj + r)d

Kgauss(xi, xj) = exp
(
−γ ‖xi − xj‖2

)
.

(13)

When builds with kernel functions, Gram matrix is also known
as Kernel Matrix. Finally, the KPCA is done in the original
space as follows:

1. Compute the Kernel Matrix: Kij = K(xi, xj).

2. Center K (see [3, 7] for details):

Kc = K − 1NK −K1N + 1NK1N

where 1N is a N square matrix for which (1N )ij = 1
N ,

for all (i,j) in [1, . . . , N ].

3. Diagonalize Kc and normalize eigenvectors:

λk(αk ·αk) = 1.

4. Extract the k first principal components:

Φ(x)k
kpc =

N∑
i=1

αk
i (Φ(xi) · Φ(x)).

3. HYPERSPECTRAL DATA SET &
FEATURE EXTRACTION

Hyperspectral images are characterized by a high number of
bands, which are highly correlated side by side (Fig. 1, the



Table 1. Eigenvalues in percentage of variance for principal
and kernel principal components.

1 2 3 4 5 6 7
PCA (%) 65.10 94.19 98.33 98.88 99.17 99.37 99.53

KPCA (%) 25.55 43.59 59 .60 68.42 73.98 78.30 81.02

whiteness indicate the correlation). Due to the high correla-
tion for neighboring bands, it is possible to reduce the dimen-
sionality without losing significant information and separabil-
ity. Our test image are from the ROSIS 03 sensor, the number
of band is 103 with spectral coverage is from 0.43 through
0.86µm. The image area is 610 by 340 pixels. PCA and
KPCA were applied on that data. The kernel function used
was the Gaussian kernel, where the parameter γ were set to
0.01. The Kernel Matrix were computed with 50% of the total
number of pixel in the image, pixels were selected randomly.
The results for the eigenvalues are shown in Table 1 and the
first principal components are shown in Fig. 2.
The correlation between the first principal component extracted
with PCA and KPCA is −0.54, which is significantly dif-
ferent. The variance of principal components provided by
KPCA is smaller than those provides by the PCA. In a sense,
it proves that the information of hyperspectral data could not
be reduced to a very few number of bands without discarding
information. By requiring higher order statistics, the number
of principal components is increased, and more information
are extracted.
Note that in PCA 95% of the total eigenvalue sum is achieved
with the first three components while with KPCA 28 com-
ponents are needed. However, the total number of compo-
nents with PCA is equal to the number of channel, while
with KPCA it is equal to the size of the Kernel Matrix, i.e.
the number of training samples used, which is significantly
higher.
The PCA and KPCA were computed using C++ and GSL li-
brary. KPCA was more time consuming, since the matrix to
diagonalize was in general bigger. If a too large kernel matrix
is defined, some memory problem could appear with KPCA.
Anyway, this problem could be solve by selecting less pixels
to build the kernel matrix.

4. EXPERIMENTS

In this experiment, the features extracted previously were used
as an input of a back-propagation neural network classifier
with one hidden layer. The number of neurons in the hid-
den layer is twice the number of outputs, i.e. the number of
classes. A neural classifier was used to compare KPCA to
other feature extraction methods designed for a neural net-
work (DBFE [5]). The training set was composed of 3921
pixels with labels. 9 classes were used in the classification:
asphalt, meadow, gravel, tree, metal sheet, bare soil, bitumen,
brick and shadow. A quarter of the labeled samples were uses

Fig. 1. Correlation image for the 103 bands in the ROSIS im-
agery for image Fig. 2. The correlation image was computed
using (1) with N equal to number of pixels in the image.

for training, the others samples were used for testing. The
result were compared with classification of the full spectrum
and DBFE’s transformed formats.
The results are listed in Table 2. The classification of the
full spectrum enlighten the Hughes phenomenon: the num-
ber of training samples (980) was to small with ratio to the
dimensionality of the data (103), this leads to a bad classifi-
cation in terms of accuracy: 27.3%. The classification with 1
principal component gave slightly better results for PCA and
KPCA. For PCA, with 3 principals components (correspond-
ing to 95% of the total variance) the overall classification ac-
curacy on the testing set is 73.1%, adding more band does not
improve significantly the classification accuracy and adding
too many bands deteriorated the classification, as expected
with the Hughes phenomenon. For the KPCA, the classifica-
tion accuracy reached to 74.5% with 7 features correspond-
ing to 81.02% of the variance. For 6 to 10 bands, the re-
sults remained nearly equal (≈ 74.5%) and then decreased.
For DBFE, with 8 features, corresponding to 62.2% of the to-
tal variance, the classification is slightly worse than with two
principal components, while with 26 feature, corresponding
to 95% of the variance, the classification is even worse. Nev-
ertheless, with more training samples, the DBFE should give
better results.
Using KPCAs’ first principal components improved a few the
classification accuracy, but contrary to PCA, 95% does not
seem to be the best value of variance which led to the best
classification accuracy. In these experiments, 80% of the vari-
ance gave best results. However, this value is kernel function
dependant, i.e. if polynomial kernels were used, the percent-
age of the variance that lead to the best classification accuracy
should change.



(a) (b) (c) (d)

Fig. 2. Rosis University area: (a) is the original image, (b) is the first pc, (c) is the first kpc and (d) is the classified image
with the 7 first kpc with the neural network. Classes description: asphalt, meadow, gravel, tree, metal sheet, bare soil, bitumen,
brick, shadow.

Table 2. Overall classification accuracy for Image 2.(a)
Testing Set (%) Training Set (%)

1 pca 37.7 39.4
2 pca 69.9 71.2
3 pca 73.1 74.1
1 kpca 37.3 39.4
2 kpca 66.0 66.6
3 kpca 72.4 75.3
4 kpca 73.1 76.8
5 kpca 74.4 77.9
6 kpca 74.9 79.1
7 kpca 74.5 78.1

28 kpca 55.1 55.9
8 dbfe 64.1 68.2
26 dbfe 43.4 43.6

ALL 27.3 30.4

5. CONCLUSION

A unsupervised nonlinear feature extraction method was in-
vestigated. Based on kernel methods, linear PCA was turn
to nonlinear KPCA. This method was used to extract features
that are uncorrelated in some feature space. In the experi-
ment, KPCA used as feature extraction on hyperspectral data,
performed well in terms of accuracy. However, more devel-
opments are needed to define the amount of variance which is
optimal for classification.
In this article, we use the Gaussian kernel which has the prop-
erty that the projection is done on infinite dimensional space;
but another kernel functions could be use. For example, ker-
nels defined for hyperspectral data [8] could be specially used
for remotely sensed images.
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