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ABSTRACT
In the context of network traffic analysis, we address the
problem of estimating the tail index of flow (or more gener-
ally of any group) size distribution from the observation of
a sampled population of packets (individuals). We give an
exhaustive bibliography of the existing methods and show
the relations between them. The main contribution of this
work is then to propose a new method to estimate the tail
index from sampled data, based on the resolution of the
maximum likelihood problem. To assess the performance of
our method, we present a full performance evaluation based
on numerical simulations, and also on a real traffic trace
corresponding to internet traffic recently acquired.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring ; G.3 [Probability and
Statistics]

General Terms
Measurement, Theory

Keywords
Network Monitoring, Traffic Measurement, Heavy-Tailed Dis-
tribution, Packet Sampling, Maximum Likelihood Estima-
tion, Expectation-Maximization Algorithm

1. MOTIVATIONS
Comprehension and prediction of network traffic is a cen-

tral preoccupation for the Internet community, because it
is an important step in the improvement of the Quality of
Service (QoS). In the last decade, Long Range Dependence
(LRD) of aggregated traffic time series has been exhibited
as a characteristic capable of influencing the QoS in some
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particular situations [27, 23], and it has been shown that
a possible origin for this characteristic is the heavy-tail na-
ture of the flow size distributions [26, 31]. This makes of
LRD parameter and tail index estimation a primary issue.
Moreover, as the flow size distribution has been shown to be
heavy-tailed in many situations (see e.g. [11]), it is of pri-
mary interest to estimate the tail index parameter, in order
to have a complete knowledge of the system. Indeed, this
knowledge can be very usefull in problems such as character-
ization of the of the network resource usage, dimensioning
and scheduling.

Most proposed methods for estimating the LRD parame-
ter and the tail index (see [3] and references wherein, [30, 18,
12, 25, 17, 10]) rely on the full traffic observation, implying
every packets capture.

However, with very high speed networks, these methods
turn very demanding in terms of memory resources and
CPU consumption. It then becomes necessary to sample
the packet stream, retaining (deterministically or randomly)
only a subpart of the aggregated traffic going through the
link.

As LRD parameter estimation essentially involves large-
scale aggregation levels, its precision does not significantly
deteriorates with sub-sampled packets traffic. The situation
is more intricate with the estimation of the heavy-tail index
of a flow size distribution, from incomplete data. It is this
challenging question that we address in the present paper.

The more general problem of inferring the original flow
size distribution from sampled data has been extensively
studied in the literature [14, 19, 21, 28, 33]. However, and
despite its relatively simple formulation, no conclusive es-
timation procedure or closed form estimate expression has
been derived so far. All approaches undertake simplifying
assumptions that lead to approximate solutions only. In this
paper, we derive the exact solution of the maximum likeli-
hood problem, and provide an analytic expression for the
heavy-tail exponent estimate from a sub-sampled packet se-
ries. We also develop a corresponding estimation algorithm
whose performance is compared to the theoretical Cramér-
Rao bound and confronted to the performance of different
approximate solutions.

Without giving an exhaustive bibliography on the subject
(the interested reader can see the references within the cited
papers), let us mention that the impact of sampling has
recently been studied in many other contexts: In [24] and
[15], the authors tackle the problem of identifying elephant



flows from sampled data. In [4], the authors consider the
problem of ranking the largest flows on a link under packet
sampling. In [6] and [20], the authors study the impact of
sampling on anomaly detection methods. Furthermore, in
[19], the authors point out that flow sampling (i.e. the sam-
pling decision is made on the flows, and every packets of a
picked flow are collected) is a way to bypass the major diffi-
culties inherent to the packet sampling in the flow statistics
estimation. As a way to combine the good statistical prop-
erties of flow sampling with the low computational cost of
packet sampling, the authors in [32] propose Dual Sampling.
However, as it remains the most simple sampling procedure,
and as it is implemented in many routers [9], we will only
consider packet sampling in this work.

The article is organized as follows: Section 2 exposes the
mathematical formulation of the problem and sets the defi-
nitions and notation. Section 3 lists some of the previously
proposed solutions to the problem of tail index estimation
from sampled observations, and classes those into two cate-
gories: the two-steps solutions where the whole original flow
size distribution is inferred first, whereupon the tail index
is deduced; and the one-step solutions where the tail in-
dex of the original distribution is directly estimated from
the sampled flow size distribution. In Section 4, we state
and explicitly solve the maximum likelihood formulation of
the problem. The proposed MLE solution is given an en-
lightening interpretation in terms of a geometric solution
that we intuitively proposed in a former work. We complete
this section with the Cramér-Rao bound derivation. Section
5 shows the results of numerical simulations to assess and
rate MLE performance with respect to that of previous ap-
proaches; and then compares the performance of the MLE
to the performance of the other estimators on the basis of a
real internet traffic trace.

2. PROBLEM DEFINITION AND NOTATION
In this paper, we analyze traffic time series consisting of

a succession of TCP-IP packets, observed over a time du-
ration T . The strict notion of a flow still fuels an active
debate, which falls out of the scope of our present discus-
sion. Therefore, and without loss of generality, we adopt
the consensual definition that flows are reconstituted by re-
grouping packets sharing the same protocol, the same source
and destination IP addresses, and the same source and des-
tination ports. The flow size is then defined as the number
of packets therein. It is a discrete random variable that we
denote X. The original flow size distribution reads:

PX(X = i) = φi, i ∈ N. (1)

It can be empirically estimated as the normalized frequency
of flows with size i that are observed over the period T .

A heavy-tailed random variable Z with tail index α is
drawn from a distribution of the form

PZ(|Z| ≥ z) = z−αL(z), (2)

where L is a slowly varying function, i.e. L(tz)/L(z) → 1
as z →∞ for any t > 0. For discrete random variables, the
Zipf law is the paradigm of heavy-tailed distributions:

P (X = i;α) =
i−(α+1)

ζ(α+ 1)
; (3)

where

ζ(α+ 1) =

∞X
k=1

k−(α+1) (4)

is the Riemann zeta function. The Zipf distribution is the
discrete counterpart of the Pareto distribution. In our study,
we implicitly consider original flows whose sizes are i.i.d.
random variables drawn from a heavy-tailed distribution of
the form (3). Our goal is then to estimate the tail exponent
α of this underlying distribution.

Estimating the α index of heavy-tailed distributions from
a set of independent realizations of the random variable X
is a classical problem, broadly treated in the literature for
both continuous and discrete variables. For instance, Hill
[18] and Nolan [25], proposed maximum likelihood estima-
tors (MLE) for Pareto and alpha-stable laws respectively,
whereas Seal in [30], derived the discrete MLE counterpart
for a Zipf distribution, recently revisited in [10].

When the variable X is not directly observable, but only a
thinned version of it, things turn more complicated and the
proposed solutions not so conclusive. That is precisely the
case when memory and CPU consumption issues compel to
sample the packets streams. Thus, the observed flow size,
defined as the number of sampled packets within a flow, is a
random variable on its own, different from the original flow
size X, and following the new distribution:

PY (Y = j) = ηj . (5)

The simplest way to practically perform packet sampling
consists in sequentially picking one packet every K ∈ N,
where p = 1

K
is the sampling rate. However, for theoret-

ical development purposes, it is much simpler to consider
random sampling, which consists in randomly picking ev-
ery packet with a probability p. The two methods have
been proved equivalent when a sufficiently large number of
intertwined flows is assumed [7]. Thereafter, a probabilistic
sampling with sampling rate p is always assumed. Then, the
conditional probability that a sampled flow of size j comes
from an original flow of size i ≥ j is simply governed by a
binomial law:

PY |X(Y = j|X = i) = Bp(i, j) =

 
i

j

!
pj(1− p)i−j , (6)

From this, we get the sampled flow size distribution ex-
pressed in terms of the original flow size distribution:

PY (Y = j) = ηj =

∞X
i=j

Bp(i, j)φi. (7)

Let us notice that equation (7) is properly normalized pro-
vided that all sampled flow sizes, including j = 0, can be
observed. As this is generally unrealistic in practice1, we
are led to introduce the minimal observable size of a sam-
pled flow: jmin (so that P (Y = j) = 0 if j < jmin), and the
correct re-normalization of the sampled flows size distribu-

1With TCP protocol, the number of missed flows can be
estimated as the difference between the total number of ex-
pected flows, given by the counting of observed SYN packets
divided by p, and the number of actually observed flows.



tion is:

PY (Y = j) = ηj =

P∞
i=j Bp(i, j)PX(X = i)P∞

j′=jmin

P∞
l=j′ Bp(l, j

′)PX(X = l)

=

P∞
i=j Bp(i, j)φiP∞

j′=jmin

P∞
l=j′ Bp(l, j

′)φl
, (8)

for all j ≥ jmin. The normalization factor naturally reduces
to 1 when jmin = 0.

The problem we address in this paper is the following:
how can we estimate the tail index α of the original flow
size distribution PX from a finite set of sampled flow sizes
observations {yk}k=1,...,m?

3. RELATED WORK
In this Section, we provide a comprehensive survey of the

major methods existing to estimate the flow size distribu-
tion tail index from sampled data, clarifying their different
nature and their common features.

One can tackle this estimation issue from two distinct per-
spectives: (a) by applying a standard tail index estimator to
the flow size distribution which has been priorly estimated
from the sampled observations (2-steps methods); or (b)
by directly inferring the tail index from the sampled ob-
servations (without estimating the underlying distribution).
These approaches are respectively described in Sections 3.1
and 3.2.

3.1 Two-steps methods
In the presence of fully observed data, tail index estima-

tion has been largely investigated and the 2-steps procedures
share the same estimation choice given below (Section 3.1.1).
Regarding the inference of the unknown flow size distribu-
tion, several possibilities are listed in Section 3.1.2.

3.1.1 Tail exponent estimation
Let us assume that we were able to properly estimate the

original flow size distribution beyond a minimal size imin

from the observed sampled flows. If this latter obeys a power
law model of the form (2), estimating the tail index α is not
plagued by the sampling obstacle anymore, and classical es-
timators can directly apply. In this study, we choose to
use a Hill-type method [18], whose good performance is no-
toriously reckoned by the statistical community. The Hill
estimator from the inferred original flow size distribution

{bφi}i=imin,...,∞ reads:

bαHill =

 
∞X

i=imin

bφi ln
i

imin

!−1

. (9)

A slightly modified Hill estimation procedure has been
proposed in [10] as a more appropriate procedure than the
classical Hill estimator for discrete random variables:

bαDiscrete =

 
∞X

i=imin

bφi ln
i

imin − 1
2

!−1

. (10)

Note that these two procedures leads to the same estima-
tion if imin is sufficiently large.

Next Section details some proposed methods to estimate
the original flow size distribution from a sampled packet
sequence.

3.1.2 Flow size distribution inference

Inverse approximation using an a priori.
The basic idea behind inverse approximation is to recover

the original distribution via the sum and product rules:

PX(X = i) =

∞X
j=0

PX|Y (X = i|Y = j)PY (Y = j), (11)

where the conditional probability PX|Y needs first to be es-
timated. To this end, we use the Bayes formula where we
initialize the unknown distribution PX to an a priori distri-
bution P ap

X , and get:

PX|Y (X = i|Y = j) =
PY |X(Y = j|X = i)P ap

X (X = i)

PY (Y = j)

=
Bp(i, j)P

ap
X (X = i)P∞

l=j Bp(l, j)P
ap
X (X = l)

. (12)

In this approach, the estimation accuracy of PX essentially
depends on a relevant choice of P ap

X .
Uniform a priori with rectangular approximation of the

conditional probability – scaling method. The simplest a pri-
ori distribution that we can plug in equation (12) corre-
sponds to a uniform a priori : P ap

X (X = i) = C, ∀i, which
yields the conditional probability:

PX|Y (X = i|Y = j) =
Bp(i, j)P∞
l=j Bp(l, j)

= p ·Bp(i, j). (13)

We can further simplify this expression, approximating the
binomial function by a simplistic rectangular window:

PX|Y (X = i|Y = j) = p, for i =
j

p
+ 1, . . . ,

j + 1

p

= 0, otherwise, (14)

which finally leads to the original distribution estimate:bφi = p ηbipc, ∀i. (15)

This expression was originally proposed in [14] and called
scaling estimator, as it simply corresponds to the sampled
flow size distribution, re-scaled by a factor p.

Zipf a priori with geometric mean approximation. As we
are interested in heavy-tailed distributions, a more natural
choice for the a priori distribution P ap

X is the Zipf law of
equation (3) with pre-fixed tail index αap . Under this as-
sumption, the conditional probability (12) becomes:

PX|Y (X = i|Y = j) =
Bp(i, j)i

−(αap+1)P∞
l=j Bp(l, j)l

−(αap+1)
. (16)

Then, as suggested in [22], instead of distributing the
binomial mass Bp(i, j) uniformly on the interval [jp−1 +
1, (j+ 1)p−1], we concentrate all the conditional probability
mass corresponding to a given j, on a unique point denoted
〈i〉(αap)(j):

PX|Y (X = i|Y = j) = 1, for i = 〈i〉(αap)(j)

= 0, otherwise. (17)

It was heuristically proposed in [22] to choose 〈i〉(αap)(j) as
the geometric mean of the sequence i = j, . . . ,∞, weighted
by the conditional probability (16):

〈i〉(αap)(j) = exp

 P∞
i=j ln(i)Bp(i, j)i

−(αap+1)P∞
l=j Bp(l, j)l

−(αap+1)

!
. (18)



A possible justification for this approximation lies in the
fact that geometric means are naturally adapted to hyper-
bolic functions such as the power law decay of heavy-tailed
distributions. In Section 4, we will demonstrate that the
expression 〈i〉 consistently arises when deriving the exact
solution of the maximum likelihood estimator.

In contrast with the scaling method of [14], the proposed
Zipf a priori depends on the tail exponent αap that is pre-
cisely to be estimated. In [22], the authors suggest an iter-
ative procedure which uses the tail index estimated at step
k − 1 to set the a priori αap of step k.

Maximum likelihood estimation of the original distri-
bution.

In [14] also, Duffield et al. tackle the direct estimation
of the φi’s in equation (1), solving the maximum likelihood
formulation of the problem. However, as this approach is
highly sensible to the variance of the observations (i.e. to
the sampled flow size frequencies), they show that maxi-
mizing the likelihood function yields negative frequencies.
Therefore, imposing a positive constraint on the φi’s, they
resorted to an iterative Expectation-Maximization (EM) al-
gorithm [13] whose output converges towards the ML solu-
tion. Notwithstanding its persuasive interest, the difficulty
to define a relevant criterion to stop the EM iterations, in-
duces oscillating phenomena that drastically distort the tail
decay of the inferred distribution, and lead to highly biased
tail index estimates. For this reason, we discard this method
from our numerical evaluation in Section 5.

This approach from Duffield et al. has recently been im-
proved in two different ways: In [28], the authors propose a
method taking advantage of the protocol informations con-
tained in a packet (mainly the TCP sequence numbers) to
improve the accuracy of the estimation. In [33], the authors
use a mixture model for the original flow size distribution,
separating small and large flows, and jointly estimate the
mixture coefficient and the distribution. However, as we
consider here a rigorous Zipf law for the flow size distribu-
tion, and we assume no knowledge about the protocol infor-
mations, these methods, despite their natural interest fall
out of the scope of this paper.

Expansion of the probability generating function.
In [19], the authors propose an original spectral approach

to recover the probability densities of the original flows size
from the thinned packets distributions. The central idea re-
lies on the one-to-one correspondence between the density
function and the probability generating function of a ran-
dom variable. Then, due to the analyticity properties of
this latter, theoretical results from complex analysis can di-
rectly apply to infer the original flows size distribution from
the probability generating function of the sampled packets
time series. Two distinct methods are devised: The first one
constructs a power series expansion of the thinned probabil-
ity generating function about the origin, and finds its non-
trivial analytic continuation to the entire analytic domain
of the original flows size random variable. The second one
is based on the Cauchy integral formula, whose evaluation
on any closed contour including the origin can lead to the
desired φi’s.

According to the author’s own evaluation, both meth-
ods perform fairly well only for values of the sampling rate
p > 0.5. As we are interested in a sparser packet thinning

(typically p < 0.1), we will not proceed with this approach.
This limitation notwithstanding, its elegant theoretical for-
mulation is deemed to be stressed here.

3.2 Direct tail index estimation
Although more straightforward, methods which do not im-

ply prior estimation of the underlying heavy-tailed flow size
distribution (or characteristic function), but directly deduce
the tail index α from the sampled packet series have received
much less attention. To our knowledge, the only existing ap-
proach of this kind was proposed in [8].

The method relies on stochastic counting. Under the same
sampling conditions, let Wk be a random variable defined as
the number of sampled flows observed k times during a given
observation period ∆. Using a Poisson approximation, and
assuming (i) that the total number of packets is much larger
than p−1, and (ii) that the number of flows is large enough,
the authors in [8] analytically prove that a relation between
E{Wk} and E{Wk+1} holds, leading to the following esti-
mate of α:

bαk = (k + 1)

„
1− E{Wk+1}

E{Wk}

«
− 1, for k ≥ k0. (19)

In this expression, k0 is a threshold defined to ensure that
the counting process only comprises flow sizes lying in the
power law decay of the distribution, and beyond which bαk
converges to the expected value of the tail index.

In practice, the duration ∆ is divided into non-overlapping
shorter time intervals of size ∆/M . For each segment m =

1, . . . ,M , the counts W
(m)
k simulates independent realiza-

tions of the random variable Wk. The empirical mean

M−1PM
m=1W

(m)
k then substitutes the ensemble average E{Wk}

in (19).

4. MAXIMUM LIKELIHOOD ESTIMATION
OF THE TAIL INDEX

We now elaborate on the direct estimation of the tail index
α, from a statistical angle. This Section constitutes the main
contribution of our work.

4.1 Formulation
In the sequel, we assume that the original flow sizes dis-

tribution follows a heavy-tailed Zipf law of the form (3).
Under this condition, the sampled flow size distribution (7)
becomes:

PY (Y = j|α) =
1

ζ(α+ 1)

∞X
i=j

Bp(i, j)i
−(α+1), (20)

where all sampled flow sizes, including j = 0, are implicitly
observed (jmin = 0). Then, bypassing the unstable estima-
tion of the underlying original flows size distribution PX , we
can directly express the log-likelihood function as:

L(α) = −n ln ζ(α+ 1) + n

∞X
j=0

ηj ln

 
∞X
i=j

Bp(i, j)i
−(α+1)

!
,

(21)
where n is the number of observed sampled flow sizes. In
practice, when not all the sampled flow sizes are observed
(i.e. jmin > 0), it is the properly normalized form (8) that
needs to be adopted and accordingly, equations (20) and
(21) take on the form given in Appendix A.



Formally, the maximum likelihood estimate of the tail in-
dex α is solution of the following maximization problem:dαML = argmax

α
L(α), (22)

and is asymptotically unbiased.

4.2 Resolution and interpretation
Differentiating the log-likelihood function (21) and equal-

ing the result to zero readily brings out the quantity 〈i〉(α)(j)
that was intuitively introduced in [22] (see Section 3.1.2):

ζ′(α+ 1)

ζ(α+ 1)
= −

∞X
j=0

ηj ln〈i〉(α)(j). (23)

A closed-form solution to this equation is not available and
we adopted a fixed-point resolution technique. We numer-
ically checked that such a fixed point iteration converges
toward the maximum likelihood estimate dαML within a rea-
sonable number of iterations (see Section 5.1.2). In addition,
following the lines of [14], we found that solving this ML
problem via an Expectation-Maximization algorithm leads
to the exact same iterated procedure, whose solution then
coincides with the MLE.

This striking accordance draws an indirect justification for
the geometric transformation of relation (18). Indeed, let us
suppose that, regardless of the choice αap , the transformed
variable 〈i〉(αap)(Y ) does follow a heavy-tailed Pareto distri-
bution with tail exponent α. This assertion can be justified
as follows. Firstly, given that the random variable X fol-
lows a Pareto distribution with tail exponent α, the random
variable Y is asymptotically heavy-tailed with the same ex-
ponent α. This is proved in two different ways in [19] and
[7]. In [19], the proof is based on the study of the gen-
erating functions of X and Y with a Tauberian Theorem
(see [5, p. 333]). In [7], the proof is based on a Berry-
Esséen Theorem (see [16, p. 542]). Then, given that the
random variable Y is asymptotically heavy-tailed with tail
exponent α, equation (44) of appendix B clearly shows that
the transformed variable 〈i〉(αap)(Y ) is also asymptotically
heavy-tailed with the same exponent α. Experimentally, we
checked that this heavy-tailness of 〈i〉(αap)(Y ) indeed holds
when considering only the observations yk larger than some
threshold jmin rarely exceeding 3 or so. Under this hypothe-
sis, maximization of the corresponding maximum likelihood
principle leads to the equation

χ′(α+ 1, jmin)

χ(α+ 1, jmin)
= −

∞X
j=jmin

ηj ln〈i〉(αap)(j), (24)

where

χ(α+ 1, jmin) =

∞X
j=jmin

`
〈i〉(αap)(j)

´−(α+1)
. (25)

In appendix B, we show that for large values of jmin:

χ(α+ 1, jmin) ' p · ζ(α+ 1, 〈i〉(α)(jmin)), (26)

where

ζ(α+ 1, imin) =

∞X
i=0

(i+ imin)−(α+1) , (27)

which clearly implies:

χ′(α+ 1, jmin)

χ(α+ 1, jmin)
=
ζ′(α+ 1, 〈i〉(α)(jmin))

ζ(α+ 1, 〈i〉(α)(jmin))
. (28)

This shows that applying directly a maximum likelihood
principle to the transformed random variable 〈i〉(αap)(Y ) for
the tail index estimation with a heavy-tailed Pareto hypoth-
esis (i.e. using equation (24), and iterating), leads to the ex-
act same procedure as applying a fixed point method to solve
the initial maximum likelihood problem (equation (23)).

In appendix B, we also show that for large values of jmin:

χ(α+ 1, jmin) ' p ·
(〈i〉(α)(jmin))−α

α
. (29)

Plugging equation (29) into equation (24) yields after differ-
entiation to

bα =

 
∞X

j=jmin

ηj ln
〈i〉(αap)(j)

〈i〉(αap)(jmin)

!−1

, (30)

which is a classical Hill estimation applied to the random
variable 〈i〉(αap)(Y ) (see equation (9)). Note that as previ-
ously mentioned, a classical Hill estimation (equation (9),
[18]) and a modified estimation (equation (10), [10]) leads
to the same result because in our case the practical values
of 〈i〉(αap)(jmin) are sufficiently large.

4.3 Properties of the MLE
One additional feature of our approach is that being sta-

tistically well-based, theoretical properties of the proposed
estimator are accessible and allow us to evaluate its perfor-
mance in terms of bias and variance.

As previously mentioned, the ML estimator is asymptot-
ically unbiased. In addition, we can derive the theoretical
Cramér-Rao bound fixing, for a given sample size, the min-
imum variance that an estimator can achieve, that is:

Var(bα) ≥ 1

I(bα)
, (31)

with Fisher information:

I(bα) = −E

∂2

∂α2
L(α)

ff˛̨̨̨
α=bα . (32)

We recall that an unbiased estimator is said efficient if its
variance attains the Cramér-Rao bound, and if such estima-
tor exists, then the MLE is necessarily efficient.

In our case, straightforward differentiation of equation
(21) gives

I(α) = n

 
ζ′′(α+1)ζ(α+1)−ζ′2(α+1)

ζ2(α+1)

+EY

“P∞
i=1 ln iBp(i,Y )i−(α+1)P∞
l=1 Bp(l,Y )l−(α+1)

”2
ff

−EY
nP∞

i=1(ln i)2Bp(i,Y )i−(α+1)P∞
l=1 Bp(l,Y )l−(α+1)

o!
, (33)

where, again jmin = 0 is implicit. A different value of jmin

essentially modifies the first term of this sum, where the Rie-
mann zeta functions undergo the same change as in equation
(8). The equation corresponding to jmin > 0 is given in Ap-
pendix A (eq. (36)). In equation (36), both n and its mul-
tiplicative factor depend on jmin. However, as illustrated
by the plots of Figure 1, the decrease of n with jmin always
dominates the non monotonous variations of the other term.
Therefore, the Cramér-Rao bound, as the Fisher informa-
tion, is essentially controlled by n, the number of observed
sampled flows.



Note that the minimal index in the summations have been
set to 1 in these equations instead of the realization yk of
the random variable Y . Since Bp(i, j) is equal to zero for
i < j, the sum remains unchanged.

Notably, we find that the second term of the rhs of the
sum simply reduces to EY {ln2〈i〉(α)(Y )}, where 〈i〉(α) was
heuristically defined in (18).

5. RESULTS

5.1 Performance evaluation using numerical
simulations

5.1.1 Simulation scheme
We numerically evaluate the performances of the maxi-

mum likelihood estimator dαML derived in the previous Sec-
tion, and draw up a comparative study with the other esti-
mators itemized in Section 3. Our study relies on synthetic
traffic generated under Matlab R©. This allows us to flexibly
adjust the different influencing parameters such as the tail
exponent of the prescribed flow size distributions.

The traffic simulator we designed reproduces the aggre-
gated traffic generated byNsources = 100 homogeneous sources
on a core link. Each source emits packets’ bursts according
to a ON/OFF model: two consecutive flows (ON period) are
separated by an idle time (OFF period).

The flow size distribution is prescribed to a Zipf law (3),
with tail index α. In addition, we fixed the following traffic
characteristics:

• OFF periods are exponentially distributed. OFF and
ON durations have the same mean;

• Each source rate is set to 10 Mb/s, resulting in a mean
aggregated traffic of 500 Mb/s;

• The packet size is constant and fixed to 1500 Bytes;

• Experimental data correspond to a stationary packets
series generated over a T = 300 s period.

The tail index α takes on five possible values: 1.1, 1.3, 1.5,
1.7 and 1.9. For each of those, we generated 50 independent
time series, that we randomly thinned afterwards, imposing
three different values for the sampling rate p: 1/10, 1/100
and 1/1000. For each combination of α and p, bias and
variance of all studied estimators are empirically evaluated
from the 50 independent realizations.

5.1.2 Comparison between the different estimators
Under the experimental conditions described above, Fig-

ure 2 displays the statistical performances of the different
tail index estimators: the scaling method, the inverse ap-
proximation with a Zipf a priori, the stochastic counting
and the MLE. Every experimental result was obtained after
we manually optimized each methods’ parameters, so that
it reaches the minimum mean square error (MSE).

As a general remark, let us notice that all estimators’ per-
formance systematically degrades with α. We put forward
two causes to explain this. In the one hand, the estimation
difficulty is inherently increasing with growing scarcity of
large flows (as α gets close to 2). On the other hand, as
we consider a fixed length observation window, the number
of original flows during this period grows as the tail dis-
tribution gets lighter (i.e. α goes towards 2). These two
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Figure 1: Variations of the Fisher information
(eq.(36)) with jmin for three different values of p:
(©, blue) p = 1

10
– (3, red) p = 1

100
– (×, black)

p = 1
1000

. The three graphs shows the variations of:
(a) the pre-factor of the Fisher information – (b) n
(the number of sampled flows) – (c) the total Fisher
information. The number of original flows is fixed
to N = 107 and α is fixed to 1.5. The graphs are ob-
tained with the numerical simulation described in
Section 5.1.
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Figure 2: Comparison of the different tail index es-
timation methods for five values of α: 1.1, 1.3, 1.5,
1.7, 1.9 (a small horizontal shift is introduced for
clarity purposes): (blue) MLE – (red) Zipf a pri-
ori method – (green) scaling method – (magenta)
stochastic counting method. The error bars are cen-
tered on the bias and their length correspond to one
standard deviation from the mean.

competing phenomena should somehow balance. However,
as we mentioned it, jmin > 0 is an important tuning pa-
rameter in all the methods, that forces to discard the small
sampled flows. Given that its effect is more penalizing for
large values of α than for small ones, the number of ob-
served flows effectively drops when α tends to 2, hence an
increasing estimation variance.

Scaling method. This estimator shows a systematic
bias which increases both with the tail index α and as the
sampling rate p gets smaller. As reported in [22], this poor
performances certainly come from the crude uniform a pri-
ori density choice and from the finite support boxcar ap-
proximation. In practice then, the scaling method cannot
be reliably used when p ≤ 1/10.

Inverse approximation with Zipf a priori. We had
to select a sensible criterion to stop this iterative procedure:
Convergence is supposedly attained when the difference be-
tween two consecutive estimates of α becomes smaller than
0.005. In practice this leads, in most cases, to a number of
iterations between 10 to 100 iterations.

As expected, compared to the scaling method, a more
appropriate choice of the a priori law, along with a more
adapted approximation of the binomial mass, sensibly re-
duces the estimation bias and variance. For p ≥ 1/100, the
bias even stabilizes with α. Still, for p ≤ 1/1000, the influ-
ence of jmin > 1 becomes too penalizing and the estimates
turn rapidly unreliable for large values of α.

Stochastic counting method. Practical relevance of equa-
tion (19) depends on a correct choice of the threshold k0. As
for the other methods, this parameter was systematically
tuned so as to minimize the MSE for each combination of
the pair α and p. The observation period ∆ is set to ∆ = 5 s.

Compared to the previous approach, both bias and vari-
ance go up for almost all configurations. Yet, they remark-
ably remain steady as p goes from 1/10 to 1/100. Even
more, the variance remains roughly constant with α and al-
most unchanged when the sampling rate falls to 1/1000. Its

relatively poor performances notwithstanding, this striking
stability is a valuable asset that prompts the use of stochas-
tic counting with sparse thinning. Moreover, the extreme
simplicity of the method allows for a responsive implemen-
tation at a very low computational cost.

MLE. For the sake of fairness, we discarded from this
analysis the particular choice jmin = 0, as it would involve
non observable data, only retrievable from a deeper TCP
packet inspection. Then, as the thorough MLE study of the
next Section will show, MSE systematically increases with
jmin, and so we keep this index constant and equal to 1 in
the following experiments.

It is clear from Figure 2, that MLE outperforms all the
other methods. The variance of estimation is not only an
order of magnitude below that of the inverse approximation
with a Zipf a priori, but also remains perfectly acceptable
at very loose sampling rates. More precisely, we attain a
precision up to the second decimal for p = 1/100, and up
to the first decimal in the worse case corresponding to p =
1/1000 and α = 1.9. Regarding the bias, the estimates
of Figure 2 show no visible deviation from the theoretical
values of α. The next Section reports on a more systematic
evaluation of the MLE solution.

5.1.3 MLE performances
Maximum likelihood estimators are, by nature, asymp-

totically unbiased, as the numerical simulations of Figure 2
seem to confirm. We undertook a complementary series of
experiments to precisely evaluate the evolution of the van-
ishing bias when the number N of original flows grows to
infinity, and for different sampling rates p. Fixing α = 1.5,
we then observed that beyond a number of original flows
N ≥ 106 the bias stays below 0.003 for all thinning cases
(p ≥ 1/1000) and for jmin = 0. Under the same conditions
though, it raises to 0.005 if, shifting jmin to 1, we discard
the smallest sampled flows and reduce the number of ef-
fective observations. Numerical approximations needed to
implement the MLE can also partially explain the residual
bias.

We derived in Section 4.3 the Cramér-Rao bound associ-
ated to the estimation of the tail index α, from a sequence of
n sampled flows. As n varies with jmin, (n = N if jmin = 0,
n ≤ N otherwise), it is empirically estimated for N , p and
jmin fixed, and then used to evaluate the theoretical bound
of inequality (31). For different values of p and jmin, Figure
3 plots as a function of N , the empirical variances obtained
from numerical simulations. Experimental points overlay al-
most perfectly with the theoretical limits, and prompt to the
conclusion that the proposed MLE is efficient, even though
we have no rigorous proof of this claim.

Now, analyzing the plots for N fixed, the variance of es-
timation naturally increases as the sampling process gets
looser (i.e. p gets smaller). It also increases with jmin. This
is clear from Figure 1 (c), which shows that the Fisher infor-
mation is a decreasing function of jmin and thus the Cramér-
Rao bound is an increasing function of jmin. Let us recall
here that the dominant effect in the deterioration of the vari-
ance when jmin increases is the consequent decrease of the
number of observed flows (see Section 4.3 and Figure 1).

Compared to the variance amplitude, the bias of estima-
tion is clearly negligible. Then, regarding the mean square
error (defined as the sum of squared bias and variance),
it is primarily governed by the variance and behaves like
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. In particular, experimental results show that for

a number of original flows larger than 106, the MSE does
not exceed 10−4 when p ≥ 1

100
, leading to a two decimal

accuracy on the tail index estimate. Obviously, this out-
standing precision, albeit very loose sampling, stems from a
perfect match between data and the Zipf model. In the more
general case though, where distributions are only asymptot-
ically heavy-tailed, we are led to choose a larger value for
jmin. As a consequence, the effective number of sampled
observed flows reduces accordingly and the performances of
the MLE estimator can notably degrade.

Finally, let us stress that the computational cost of MLE,
is an important drawback that can seriously hamper its use
with real time constraints.

5.2 Confrontation to real traces
To evaluate the robustness of our maximum likelihood es-

timation of α in the context of real traffic traces, we estimate
α from an artificially sampled trace of internet traffic, cap-
tured on a real network link.

Our trace comes from a university environment: the 1Gb s
output link of the campus site of École Normale Supérieure
de Lyon is monitored. The bidirectional traffic (input and
output traffic) going through this link is optically splitted
and captured with an appropriate DAG card [1] (see [29] for
a more complete description of the system). The trace we
consider here was acquired on March 4, 2007, 16:30 pm to
17:30 pm. It mainly consists in HTTP traffic, achieving a
mean throughput of 87.7 Mb/s.

The trace is first processed with ipsumdump, a program
developed at UCLA [2], able to read the dag format and to
summarize TCP/IP dump files into a self-describing binary
format. The output file is then processed with IPTools, an
original set of tools that is able to reconstruct the flows
from the packet trace, based on their definition as groups
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Figure 4: Flow size distribution for the internet traf-
fic in a university context.

of packets sharing the same source and destination IPs, as
well as the same source and destination ports. In addition,
a timeout can be set such that two consecutive packets of a
flow cannot be separated by more than timeout. A timeout
has been chosen and set to 1 s.

The corresponding flow size distribution displayed in Fig-
ure 4 in log-log coordinates, clearly shows a heavy tail be-
havior, and a Zipf model reasonably fits the data, provided
that we discard flows of size smaller than some threshold
imin. In our experiment, setting imin to 35, we obtained
a maximum likelihood estimate of the tail index equal to
α̂ = 0.9047. We will use this value as our benchmark to
compare the different sampling approaches.

To evaluate the accuracy of the different methods of es-
timating the flow size distribution tail index from sampled
data, we artificially perform sampling on the previously de-
scribed traffic trace with three different sampling rates: p =
1/10, p = 1/100 and p = 1/1000. Again, flows of size smaller
than some threshold jmin are discarded for the estimation
of α. This threshold is set as follows: jmin is the smallest
value of j verifying Bp(imin, j) < ε where j ≥ pimin and ε
is a threshold set to 0.05. Thus, every considered flow of
size j ≥ jmin is guaranteed to be the sampled version of
an original flow of size i ≥ imin with a probability greater
than (1 − ε). Practically, in our case, the values of jmin

are jmin = 7 for p = 1/10 and jmin = 2 for p = 1/100
and p = 1/1000. For the estimations based on the stochas-
tic counting method, the parameters k0 and ∆ are set to
k0 = jmin and ∆ = 30 s respectively.

Table 1 reports the estimated tail indices obtained with
the different methods previously considered. Although all
the methods give estimates of α roughly coherent with the
expected value, two methods clearly stand out.

Firstly, the MLE clearly outperforms all the other meth-
ods in any situation. This is a direct consequence of the
maximum likelihood principle which yields an adapted esti-
mator, and it shows the relevance of the Zipf model utiliza-
tion. Then, the inverse approximation method using a Zipf
a priori with a geometric mean approximation yields the
closest estimates. This concordance is naturally interpreted
by the fact that, as shown in Section 4.2, the Zipf a pri-



MLE Zipf a p. Scaling Stochastic
with geom. counting

p mean approx.
1 0.9047 - - -

1/10 0.9196 0.9281 0.9861 0.8413
1/100 0.9216 0.9935 1.2741 0.7050
1/1000 0.9572 1.0042 1.3160 1.0407

Table 1: Tail index parameter estimation for the
internet trace.

ori with geometric mean approximation method shares the
same basic estimation quantities (〈i〉(αap)(j)) as the MLE,
and gives a good approximation of the exact maximum like-
lihood solution. Table 1 for this method reveals a small bias
increasing as the sampling gets looser (p gets smaller), which
is fully consistent with the results of Section 5.1.2 (Figure 2),
for small values of α.

The last two methods give less accurate estimates. In ad-
equacy to the results of Section 5.1.2 (Figure 2) for small
values of α, the scaling method shows a positive bias, in-
creasing as the sampling gets looser. This bias practically
makes the use of the scaling method impossible for p ≤ 1/10.
The stochastic counting method seems to give reasonable es-
timates for any value of p. However, let us stress here that
this method relies on an appropriate choice of the observa-
tion period ∆, which has to be made with respect to a bias-
variance tradeoff (a too large value of ∆ deteriorates the
estimation of E{Wk}, thus increasing the variance, whereas
a too small value of ∆ might introduce an important bias).
An inappropriate choice might make the estimation unstable
and hamper practical use of this method.

Finally, let us stress again that the oustanding perfor-
mance of the MLE comes at a high computational cost,
whereas the stochastic counting method has a very low cost.

6. CONCLUSION
In the context of network traffic analysis, a common as-

sumption is that relevant characteristics of traffic time series
originate from the heavy-tailed nature of flow size distribu-
tions. In this paper we considered Zipf models as a paradigm
of heavy-tailed distributions in order to address a number
of central questions in a theoretically well-based framework.
Zipf distributions depend on a so-called tail index parameter
whose estimation from realistic data is not straightforward.
More particularly, we addressed the challenging question of
estimating this index when the traffic data is not fully ob-
served but only made of a sampled population of individuals
(packets). Most existing methods, in this case, are based on
approximations induced by simplifying assumptions to make
the algorithms tractable.

A first contribution of this paper was then to provide bet-
ter insights into the nature of these approximations and to
highlight the relationships between the different methods.
In particular, we provided a theoretical justification for the
(binomial) weighted geometric mean, a heavy-tailed data
mapping initially proposed in [22] in a ad-hoc manner. A
second contribution was then to go beyond approximated so-
lutions by deriving the exact maximum likelihood estimation
of the tail index. Our analytic solution was clearly shown to
outperform other estimation variants and we reported very
good results on simulated data as an illustration.

For higher practical capabilities, further investigation is
required to make our maximum likelihood approach more
efficient. Although theoretically sub-optimal some approx-
imated methods are much faster in term of computational
time and the possibility to find a good compromise between
optimality and computational efficiency should be consid-
ered. Indeed, a computationally efficient estimation pro-
cedure using sampled data could prove very useful in the
context of real time adaptive protocols and network mech-
anisms, where the time constraint makes long computation
based on the entire traffic observation impossible. Further-
more, the design of more robust estimators is also an in-
teresting direction of research as maximum likelihood ap-
proaches are likely to be very sensitive to data model mis-
matches.

Finally, even if our ML estimator was developed within
the specific context of network monitoring, it can readily
apply to other situations of the same kind. For instance,
this is the case with social networks where individuals are
clustered into groups of heavy-tailed distributed sizes, and
while only a cross-section of the population is observed.
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[17] Paulo Gonçalves and Rudolf Riedi. Diverging
moments and parameter estimation. J. American Stat.
Assoc., 100(472):1382–1393, December 2005.

[18] Bruce M. Hill. A simple general approach to inference
about the tail of a distribution. The Annals of
Statistics, 3(5):1163–1174, September 1975.

[19] Nicolas Hohn and Darryl Veitch. Inverting sampled
traffic. IEEE/ACM Trans. Netw., 14(1):68–80, 2006.

[20] Ryoichi Kawahara, Tatsuya Mori, Noriaki Kamiyama,
Shigeaki Harada, and Shoichiro Asano. A study on
detecting network anomalies using sampled flow
statistics. In SAINT-W ’07: Proceedings of the 2007
International Symposium on Applications and the
Internet Workshops, page 81, Washington, DC, USA,
2007. IEEE Computer Society.

[21] Weijiang Liu, Jian Gong, Wei Ding, and Guang
Cheng. A method for estimation of flow length
distributions from sampled flow statistics. In ICOIN,
2006.

[22] Patrick Loiseau, Paulo Gonçalves, and Pascale Primet
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APPENDIX
A. FORMULAS OF THE SAMPLED FLOW

SIZE DISTRIBUTION, LOG-LIKELIHOOD
AND FISHER INFORMATION FOR AN
ARBITRARY VALUE OF jmin

With an arbitrary value of the minimal sampled size ob-
served jmin, the sampled flow size distribution (eq. (20))
becomes when using the proper normalization (eq. (8)):

PY (Y = j|α) =

P∞
i=j Bp(i, j)i

−(α+1)P∞
j=jmin

P∞
l=j Bp(l, j)l

−(α+1)
, (34)

The log-likelihood function can then be written:

L(α) = −n ln
“P∞

j=jmin

P∞
l=j Bp(l, j)l

−(α+1)
”

+n
P∞
j=jmin

ηj ln
“P∞

i=j Bp(i, j)i
−(α+1)

”
. (35)

Finally, by differentiation of eq. (35), the Fisher informa-
tion for an arbitrary jmin is obtained:

I(α) = n
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. (36)

B. ASYMPTOTIC RELATIONS BETWEEN
SOME NORMALIZATION SUMS

In this appendix, we show a few relation between the nor-
malization sums of the following distributions: Zipf, Pareto,
distribution of 〈i〉(αap) assumed to be algebraically decreas-
ing. The tail index of these distributions is denoted α.

Let us first stand and recall a few notations:

ζ(α+ 1, imin) =

∞X
i=0

(i+ imin)−(α+1) =

∞X
i=imin

i−(α+1), (37)

ψ(α+ 1, xmin) =

Z ∞
xmin

x−(α+1)dx =
x−αmin

α
, (38)

χ(α+ 1, jmin) =

∞X
j=jmin

`
〈i〉(αap)(j)

´−(α+1)
, (39)

where

〈i〉(αap)(j) = exp

 P∞
i=j ln(i)Bp(i, j)i

−(αap+1)P∞
l=j Bp(l, j)l

−(αap+1)

!
. (40)

Considering that ζ(α + 1, imin) is the Riemann sum ap-
proximating the integral ψ(α + 1, imin), we can easily see
that:

ζ(α+ 1, imin − 1) ≤ ψ(α+ 1, imin) ≤ ζ(α+ 1, imin). (41)

As we also have:

ζ(α+1, imin)−ζ(α+1, imin−1) =
1

imin − 1
−→

imin→∞
0, (42)

we conclude that

ζ(α+ 1, imin) '
imin→∞

ψ(α+ 1, imin). (43)

We give now an approximation of 〈i〉(αap)(j) when j is

large: First note that the function Bp(i, j)i
−(αap+1) (con-

sidered as a function of i) mainly takes non null values in
an interval centered on the value i = j

p
(where the function

is maximal) and of width a few times
√
jpq. If j is large,

the function ln(i) is approximately constant in this interval,
equal to ln( j

p
). Then we can rewrite 〈i〉(αap)(j) by putting

the ln function out of the summation:

〈i〉(αap)(j) ' exp

 
ln(

j

p
)

P∞
i=j Bp(i, j)i

−(αap+1)P∞
l=j Bp(l, j)l

−(αap+1)

!

' j

p
. (44)

Note that this approximation can be used to reduce drasti-
cally the computational cost for the computation of 〈i〉(αap)(j)
for large values of j.

Direct plug of equation (44) into equation (39) leads to
the approximation

χ(α+ 1, jmin) '
„

1

p

«−(α+1) ∞X
j=jmin

(j)−(α+1)

'
„

1

p

«−(α+1)

ζ(α+ 1, jmin). (45)

Using the approximation of equation (43) then leads to

χ(α+ 1, jmin) '
„

1

p

«−(α+1)
j−αmin

α

' 1

p

( jmin
p

)−α

α

' 1

p
ψ(α+ 1,

jmin

p
). (46)

As 〈i〉(αap)(jmin) ' jmin
p

, the overall conclusion then reads:

χ (α+ 1, jmin) '
jmin→∞

1

p
ψ
`
α+ 1, 〈i〉(αap)(jmin)

´
(47)

'
jmin→∞

1

p
ζ
`
α+ 1, 〈i〉(αap)(jmin)

´
.(48)


