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Combining Monte Carlo and Mean-Field-Like
Methods for Inference in Hidden

Markov Random Fields
Florence Forbes and Gersende Fort

Abstract—Issues involving missing data are typical settings
where exact inference is not tractable as soon as nontrivial in-
teractions occur between the missing variables. Approximations
are required, and most of them are based either on simulation
methods or on deterministic variational methods. While varia-
tional methods provide fast and reasonable approximate estimates
in many scenarios, simulation methods offer more consideration of
important theoretical issues such as accuracy of the approximation
and convergence of the algorithms but at a much higher compu-
tational cost. In this work, we propose a new class of algorithms
that combine the main features and advantages of both simulation
and deterministic methods and consider applications to inference
in hidden Markov random fields (HMRFs). These algorithms can
be viewed as stochastic perturbations of variational expectation
maximization (VEM) algorithms, which are not tractable for
HMRF. We focus more specifically on one of these perturbations
and we prove their (almost sure) convergence to the same limit
set as the limit set of VEM. In addition, experiments on synthetic
and real-world images show that the algorithm performance
is very close and sometimes better than that of other existing
simulation-based and variational EM-like algorithms.

Index Terms—Hidden Markov random fields (HMRFs), image
segmentation, Markov chain Monte Carlo-based approximations,
variational expectation maximization (VEM).

I. INTRODUCTION

MISSING data models are commonly used in various
applications including areas as diverse as signal and

image processing, genetics and epidemiology. They are very
useful in modeling variability and heterogeneity in data and in
solving various labeling or clustering issues. Due to the missing
data structure, inference, and parameter estimation, tasks in
such models often yield procedures that are intractable as soon
as nontrivial interactions in the data are taken into account. In
most applications, their complexity requires the development
of approximations techniques. These techniques are usually
based either on deterministic numerical methods such as vari-
ational methods (e.g., [1] and [2]) or on simulation methods
such as Markov chain Monte Carlo (MCMC) techniques (e.g.,
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[3]). Choosing one or other approach can be advantageous
depending on the context and the goal in mind. Inference prob-
lems are usually formulated as the computation of a quantity of
interest (e.g., a probability distribution) defined as the solution
to an optimization problem specified through a cost function
and a constraint set over which the optimization takes place.
Variational methods then arise as relaxations, that is, simplified
optimization problems that involve some approximation of the
constraint set, the cost function or both. The original issue is
replaced by an easier optimization problem and variational
methods have been shown to provide fast and reasonable ap-
proximate estimates in many scenarios [1]. However, it appears
frequently that these approximations are being used on practical
problems with little consideration of important issues such as
the accuracy of the approximation, convergence of the algo-
rithms and so on. Convergence results exist for the so-called
variational expectation maximization (VEM) algorithms (see
[4]), but their application is restricted to specific settings which
limit the kind of interactions allowed between the missing data
to very simple ones. Variants to extend the application domain
of algorithms such as VEM have been proposed (see, e.g.,
[5] and [6] in an image segmentation framework), but they
did not succeed in preserving the convergence results. As a
matter of fact, in most settings of practical interest, theoretical
results regarding accuracy and convergence properties are still
missing. Simulation methods appear then as natural candidates
to make algorithms tractable for a wider class of problems while
providing tools to study their convergence. As an example,
the convergence of MCMC based algorithms has been widely
studied and a lot of tools are now available that make various
convergence results available or at least easy to derive (see, for
instance, [7] for a convergence proof of the Monte Carlo EM
algorithm of [8] based on Monte Carlo integration procedure
with MCMC sampling techniques). In this paper, our aim is to
show that combining both type of methods to design new algo-
rithms can greatly improve accuracy and modeling flexibility in
missing data settings. The main idea is that algorithms resulting
from such a combination will benefit from the good features
of both approaches simultaneously. Deterministic schemes
are easy to implement and can provide fast estimates while
simulation methods often lead to more accurate results with
guaranteed convergence. There have been other attempts at
combining approximation techniques and simulation methods.
The closest in spirit to our approach is that in [9]. The authors
introduce a class of MCMC algorithms that use variational
approximations as initial proposal distributions and consider an
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application to sigmoidal belief networks. In our work, we use a
different approach and different tools. We incorporate MCMC
simulation into variational algorithms and focus on a different
application. Other attempts in the statistics community include
the use of Laplace approximation with simulation techniques
[10], the Gibbsian-EM [11], the restoration-maximization
algorithm [12], the Monte Carlo approximations by [13], and,
more recently, the simulated field algorithm of [6]. However,
most of these procedures were not originally designed with
this combining idea in mind and no convergence results are
available for them. A detailed comparison of some of these
algorithms, for the case of hidden binary isotropic Markov
chains, can be found in [14].

Image segmentation and hidden Markov random fields
(HMRF) estimation is a typical setting where one encounters
these tradeoffs between accuracy, convergence guarantees and
reasonable computing time. The expectation maximization
(EM) algorithm [15], typically used in missing data cases,
yields update procedures that do not have a closed form expres-
sion and is intractable analytically. Different algorithms have
been proposed to overcome this intractability of EM. Among
pure simulation techniques, a straightforward variant of the
Monte Carlo EM algorithm can be used (see Section V) while
variational versions of EM are deterministic alternatives. In
particular, VEM algorithms have been popular in cases where
the E-step of EM is intractable [1]. The most popular class
of VEM procedures is certainly the mean-field EM one. The
mean field approach consists in computing quantities related to
a complex probability distribution, by using a simple tractable
model such as the family of independent distributions. How-
ever, introducing relaxation in the E-step does not fully answer
the question of inference in cases where the M-step remains
intractable due to the complex structure of dependence between
the hidden variables. It follows that VEM algorithms cannot
be directly applied in the HMRF segmentation framework
where additional approximations are required in the M-step.
Further algorithms have then been designed that propagate
the relaxation in the E-step to the M-step. The combination in
such a way of the mean field theory and the EM procedures
for HMRF is due to [5]. Using ideas from this principle, [6]
proposed, in the context of Markovian image segmentation,
a class of EM-like algorithms generalizing [5] which show
good performance in practice. In this work, we present another
way to overcome the intractability of VEM based on the idea
of combining deterministic and simulation-based approxima-
tions. We start (Section II) from VEM procedures for which
convergence properties are well established and introduce sim-
ulations in these algorithms. In addition to make the algorithms
tractable, we claim that the introduction of a small perturbation
at each iteration of VEM, yields algorithms with the same
asymptotic behavior as VEM. More specifically, we propose a
class of (stochastically) perturbed VEM algorithms where the
noise at each iteration is controlled so that it gets negligible,
in a sense to be specified, when the number of iterations tends
to infinity. We prove our claim by adapting the results of [7]
relative to perturbed iterative maps. We propose (Section III)
an example of such a stochastic VEM algorithm, the Monte
Carlo VEM algorithm (MCVEM) which is tractable in practice

and for which we prove convergence results (Section IV). In
addition, the algorithm performance is compared (Section V),
on synthetic and real-world images, with various other algo-
rithms that are typical of one of the approach separately. For
deterministic algorithms, we report the comparison with the
mean field algorithm of [6] while for pure MCMC techniques,
we consider a simple extension of the MCEM algorithm, the
later being intractable in the HMRF setting. As an illustration,
we also compare with two other algorithms among the ones
that combine simulation and deterministic methods, namely
the Gibbsian-EM and the simulated field algorithms, chosen
for their flexibility in missing data problems. We observe that
the MCVEM algorithm provides the best (or is very close to
the best) results for most of our test images. Our algorithm has,
thus, many advantages: a) it is tractable in practice, b) we are
able to prove convergence results so that the set of its limit
points is identified (as being the set of the limit points of VEM),
and c) it is efficient when applied to image segmentation. It
illustrates how combining deterministic and simulation tech-
niques can result in improved algorithms.

II. MARKOV MODEL-BASED IMAGE SEGMENTATION

AND VEM ALGORITHMS

Let be a finite set of sites with a neighborhood system de-
fined on it. Let denote the number of sites. A typical
example in image analysis is the 2-D lattice with a first-order
neighborhood system: for each site, the neighbors are the four
sites surrounding it. A set of sites is called a clique if it con-
tains sites that are all neighbors. Let be a finite set with
elements. Each of them will be represented by a binary vector
of length with one component being 1, all others being 0, so
that will be seen as included in and its elements
denoted by . We define a discrete Markov random
field as a collection of discrete random variables,

, defined on , each taking values in , whose joint prob-
ability distribution is a Gibbs distribution given by

(1)

where is the energy function ; denotes
a realization of the field restricted to clique and the ’s are the
clique potentials that may depend on parameters, not specified in
the notation. is the normalizing factor
also called the partition function; denotes a sum over all
possible values of . The computation of involves all possible
realizations of the Markov field. Therefore, it is, in general,
exponentially complex, and not computationally feasible. This
can be an issue when using these models in situations where an
expression of the joint distribution is required. We will
denote by the set in which takes values and by
the set of probability distributions on .

In this paper, we focus on Markov model-based image
segmentation. Image segmentation involves observed variables
(e.g., noisy image pixels) and unobserved variables (e.g.,
unknown class assignments) which have to be recovered. The
hidden variables are modeled as a discrete Markov random
field, , with distribution as defined in (1) and an energy
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function depending on a parameter and hence-
forth denoted by . It is assumed that the observations

are conditionally independent given the Markov random
field , with conditional distribution parameterized by

, where is the dimension of depending on the
model under consideration. In the general case, the likelihood
of ( , ) , called the complete likelihood, is given by

(2)

Then the conditional likelihood of the hidden variables
given the observations , is given by where

is the likelihood of the observations (called the incomplete
likelihood). It is easy to see that, for such a hidden Markov field
model, the conditional field given is a Markov field as

is with energy function . Hereafter,
we will refer to the Markov fields and given as the
marginal and the conditional fields.

In image segmentation problems, the question of interest is
generally to recover the unknown image , interpreted as a clas-
sification into a finite number of labels. This classification
usually requires values for the vector parameter . If
unknown, the parameters are usually estimated in the maximum
likelihood sense

(3)

where is the parameter space. This optimization is
usually solved by the iterative EM procedure [15]. Any iteration
may be formally decomposed into two steps: given the current
value of the parameter , the so-called E-step consists in com-
puting the expectation of the complete log-likelihood knowing
the observations and the current estimate . In the M-step,
the parameter is then updated by maximizing this expected com-
plete log-likelihood

(4)
It is known that, under mild regularity conditions, EM converges
to the set of the stationary points of the incomplete likelihood

[16]. As discussed in [17] and [18], EM can be
viewed as an alternating maximization procedure of a function

defined, for any probability distribution , by

(5)

Starting from the current value , set

(6)

and

(7)

The first optimization (6) has an explicit solution
so that the optimization in (4) and (7) are

equal. Hence, the “marginal” sequence of the sequence
produced by the alternating maximization pro-

cedure is an EM path. The maximization (7) can also be
understood as the minimization of a Kullback–Leibler diver-
gence, up to some convention on , thus justifying the name of
alternating minimization procedure often found in the literature
(e.g., [4] and [17]).

There exist different generalizations of EM when the M-step
(4) is intractable; it can be relaxed by requiring just an increase
rather than an optimum. This yields Generalized EM (GEM)
procedures ([19]; see also [20] for a convergence result).

Unfortunately, EM (or GEM) is not appropriate for solving
the optimization problem (3) in HMRF due to the complex
structure of the hidden variables ; the distribution
is only known up to a multiplicative constant (the partition
function) that depends upon the parameter of interest and
the domain is too large so that the E-step is intractable.
Alternative approaches were proposed and they can be un-
derstood as generalizations of the alternating maximization
procedures mentioned above: the optimization (6) is solved
over a restricted class of probability distribution on and
the M-step (7) remains unchanged. This yields the variational
EM (VEM) algorithms [1]. VEM can also be introduced as
resulting from a relaxation of a convex optimization problem;
the objective function is re-written as the ratio of two
partition functions and VEM results from the approximation
of one of them using the notion of conjugate duality in convex
analysis (see [21] and [2] for details).

Reference [4] proved that, under mild regularity conditions,
VEM converges to the set of the stationary points of the func-
tion in . Here, again, generalizations of VEM can be defined
by requiring an increase rather that an optimum in the M-step
(7), thus defining generalized VEM procedures. These relax-
ation methods are part of the generalized alternating minimiza-
tion procedures [4]. The most popular form of VEM is the case
when is the set of the independent probability distributions
on so that is a factorized distribution .
Optimizing (6) with regard to , and leads
to a fixed-point equation

(8)

where is the normalizing constant and denotes the Dirac
mass at point . The Markov property implies that the right-hand
side of the equation only involves the probability distributions

, for all in the neighborhood of . Existence and uniqueness
of a solution to (8) are properties that have not yet been fully
understood and will not be discussed here. We refer to [22] for
a better insight into the properties of the (potentially multiple)
solutions of the mean field equations. Such solutions are usually
computed iteratively (see [23]–[25] and an erratum [26]). We
will discuss in Section V the consequences of the nonunicity
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of the solution when running mean-field based procedures for
image segmentation.

Despite the relaxation which may make the summation of
the VEM E-step explicit for a convenient choice of [i.e., the
computation of in (7)], VEM remains intractable for
hidden Markov random fields. From (2) and (7), and are
updated independently, given . Under additional commonly
used assumptions on , is computed in closed form (see
for example Section V). The issue is the update of since it
requires an explicit expression of the partition function or an
explicit expression of some related quantities (its gradient for
example).

To overcome this difficulty, different approaches have been
proposed. The Mean Field and Simulated Field algorithms pro-
posed in [6] are alternatives to VEM that propagate the approx-
imation of to . The approach we
propose here differs in that the approximation method does not
lead to a simple valid model but appears as a succession of
approximations to overcome successive computational difficul-
ties. We now turn to this new method.

III. MONTE CARLO VEM ALGORITHM

The theoretical contribution of this paper states that intro-
ducing noise at each VEM iteration in such a way that this per-
turbation goes to zero (in a sense to be specified) as the number
of iterations increases, yields an algorithm which has the same
asymptotic behavior as VEM (see Section IV). This noise is
defined in order to make VEM tractable for solving inference
in hidden MRF. We propose an example of such procedures:
our stochastically perturbed version of VEM consists in ap-
proximating the partition function by some Monte Carlo
sum. This yields the so-called Monte Carlo VEM (MCVEM)
algorithm. Due to the simulation step, MCVEM is a stochastic
algorithm. A difficulty, when dealing with random sequences

is to guarantee the almost-sure boundedness. Under
suitable assumptions (see Appendix I-A), the VEM sequence
remains compact so that MCVEM sequences are almost surely
bounded provided the Monte Carlo approximations are good
enough. The stabilization of MCVEM can be done as described
in [7] for the stabilization of the Monte Carlo EM. This corre-
sponds to Step iv) below. The step consists in introducing a vari-
able which counts the number of re-projections from time 0
to time (see comments below).

Let be the set of independent probability distributions on
and be the set of independent probability distributions on
such that implies that , ;
contains the independent probability distributions on such

that the probability that no pixels are labeled is zero.
Fix a positive sequence such that , a se-

quence of nondecreasing positive integers and a sequence
of probability distributions on . Let be a sequence
of compact subsets such that for any

(9)

and set . For the current value ( , ) of the parameter.

i) Update the -component

ii) Update the -component

iii) Sample a Markov random field with in-
variant distribution . Set

(10)

where

and .
iv) If , re-initialize the parameter by set-

ting and ; and increment the counter
. Otherwise, set .

In practice, Step i) is implemented directly by iteratively solving
a nonlinear system given by the mean field (8) (see [25]).

Step iii) looks like the algorithm proposed in [27] for max-
imum likelihood parameter estimation of exponential families,
except that, in [27], it is assumed that the samples are indepen-
dent and identically distributed. In (10), when the maximum
is unique, the -update follows the MCMCML algorithm
proposed in [28] for the estimation of fully observed Markov
Random Field prior parameters. We will describe in Section V
models for which the maximum is unique.

In MCVEM, the idea is that the partition function is ap-
proximated by a Monte Carlo sampling from some distribution

, thus using an importance sampling estimator (or possibly
a self-normalized importance sampling estimator [29]). If the
sampler is good enough so that a law of large numbers holds,

, and one can expect that by
choosing large enough, provides a good approx-
imation of . As discussed in [30], the best choice for
approximating is . This is useless for our
purposes since we want a good approximation of what-
ever , for a given distribution . Nevertheless, by choosing

, it can be expected that for some sufficiently
large, is a good approximation of the partition func-
tion in a neighborhood of . This explains the local
optimization in (10) and the introduction of the domain .

is a deterministic sequence uniformly bounded away
from zero. One could be interested in choosing as a function
of the Hessian of the quantity optimized in (10); in that case,

is a random sequence and the study of the asymptotic
behavior of MCVEM is slightly more complex. This extension
is left to the interested reader.
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In practice, we choose and sample the Markov
random field by using Markov chain Monte Carlo samplers.
Given a distribution known up to a scaling factor, MCMC
samplers consist in sampling a Markov chain from a transi-
tion kernel defined such that is its unique stationary distri-
bution. Under suitable conditions on and on the transition
kernel, a strong law of large numbers holds for a large family
of functions [3]. Among the most usual MCMC samplers when

is a Gibbs distribution, are the Gibbs sampler [31], the Hast-
ings–Metropolis sampler [32], or the Swendsen–Wang sampler
[33]. Observe that can be known up to a multiplica-
tive constant independent of : this allows the choice

which is known up to the partition function .
Hereafter, we will simply write as a shorthand notation
for . We have found this simple method for esti-
mating easy to use and very satisfying in our experiments
that we chose as typical segmentation problems (see Section V).
However, we are aware of possible limitations of such MCMC
samplers. In practice our numerical results could certainly be
further improved by using more sophisticated methods. A full
analysis of the problem of estimating normalizing constants has
been given in [34]. They discussed several methods that are
more sophisticated but also more cumbersome. In this paper,
our focus is mainly on convergence results and on showing that
it is advantageous to combine variational and MCMC methods.
We did not investigate further the possibility of using better
samplers.

Step iv) can be understood as a random re-initialization of the
algorithm. At iteration , the candidate has to
be in the compact set ; otherwise, the sequence
is re-initialized and the counter incremented, so that for the next
step, the parameter sequence is allowed to be in a larger com-
pact set. Observe that each time the counter is incremented, the
sequences and are not re-initialized: since is
nondecreasing, it follows a larger number of simulations at each
iteration. We can, thus, expect a better Monte Carlo approxi-
mation, thus explaining that the MCVEM sequences inherit the
boundedness property of the VEM sequences.

We refer to Section V for an illustration of a suitable choice
of the different implementation parameters (such as ,

).

IV. CONVERGENCE THEOREMS FOR STOCHASTICALLY

PERTURBED VEM ALGORITHMS

We provide sufficient conditions on the model and on the
Monte Carlo approximations ensuring that MCVEM and VEM
have the same asymptotic behavior: the set of the limit points of
MCVEM is the set of the limit points of VEM. The conditions
and the proofs of our claims are quite technical. For clarity, we
postpone in Appendix I the assumptions and a rigorous state-
ment of our results, while the detailed proofs are given in [35].
In this section, we comment the assumptions and the theoretical
results. We also give pointers to the key elements that need to
be considered for the proof of convergence to still hold when
deriving algorithms that can be read as stochastically perturbed
VEM algorithms. We show in Appendix II how the assumptions
are satisfied when MCVEM is used for a nontrivial application.

The key idea of the proof of convergence of MCVEM is
that this algorithm is a stochastically perturbed VEM algorithm:
the perturbations come from the Monte Carlo approximations.
Under a convenient choice of MCMC samplers, these pertur-
bations vanish as the number of iterations goes to infinity since
the number of simulations per iteration increases. Conver-
gence of VEM relies on the existence of a Lyapunov function
(see, e.g., [36] for a definition), namely where

is given by (5). This remains true for the generalized VEM
algorithm obtained by replacing, in the update of the compo-
nent, the global optimization by a local one on the domain .
Furthermore, this generalized VEM and VEM have the same
limit points. Unfortunately, due to the introduction of a pertur-
bation at every iteration of the (generalized) VEM algorithm,
the function is not a Lyapunov function for MCVEM. Never-
theless, since the perturbation vanishes, we expect MCVEM to
inherit the asymptotic behavior of the generalized VEM. The
first set of conditions (see A1–A3 in Appendix I) is relative
to the model and ensures that the function is a Lyapunov
function for the generalized VEM algorithm. This implies that

where is a generalized
VEM sequence. Since is assumed
to be compact, the sequence converges to some
point of the form where is in ,
the set of fixed points of the VEM algorithm

and (11)

The second set of conditions (see A5 and A6 in Appendix I)
is relative to the Monte Carlo approximations. We require the
MCMC samplers to be such that the -errors when approxi-
mating exact expectations by Monte Carlo sums with terms,
decrease to zero at rate (for some , see A5). Fur-
thermore, the number of simulations has to increase all the
more so as is small (see A6). Condition A4 is to quantify the
increase of the Lyapunov function after one iteration of VEM,
when started outside any open neighborhood of the limit set .
Under these conditions, we can apply a result provided in [7],
which is the central tool of our proof. Let in be a
compact set, and starting from , denote by
the new parameter after one iteration of MCVEM (respectively,

, after one iteration of the generalized VEM algo-
rithm). The result states that if

(12)

almost surely when the perturbation is stochastic, (a) the
number of re-projections in Step iv) is almost surely finite and
(b), MCVEM and VEM have the same asymptotic behavior
(in some sense). Condition (12) means that the perturbation
vanishes along the compact path, when measured in terms of
the error induced on the Lyapunov function. The main step of
our proof consists in proving that under the stated assumptions
on the Monte Carlo approximations, this condition is satisfied.
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We provide two convergence results. The first one (Theorem
1 in Appendix I) shows that the generalized VEM algorithm and
the VEM algorithm have the same limit points. The second one
(Theorem 2 in Appendix I), which is the original theoretical con-
tribution of this paper, states that for almost all trajectories of
MCVEM, (a) the number of re-projections is finite and the path
remains in a compact set and (b), the sequence con-
verges to a subset of . Combined with Theorem 1, it also implies
that under a suitable condition on the interior of the set ,
the MCVEM algorithm, the generalized VEM algorithm and the
VEM algorithm have the same asymptotic behavior. In all cases,
the sequence converges to for
some in the solution set , and the paths
produced by the MCVEM procedure, the generalized VEM one
or the VEM one, converge to some subset of .

As already mentioned (see also the comments in Appendix I),
the convergence claims for MCVEM are based on an extension
of the results in [7]. These results could be applied to address
the convergence of any (stochastic) perturbation of an iterative
algorithm that admits a Lyapunov function. More specifically,
we denote by the point-to-set map associated to the iterative
procedure having a Lyapunov function relative to a set . Let

be the (possibly stochastic) sequence produced by the per-
turbed algorithm. If satisfies the three conditions of
[7, Proposition 10], then (a) the sequence is compact (say,
in ), (b) the sequence converges to a connected com-
ponent of , and (c) if this set has an empty interior, the
sequence converges to a subset of . The first two con-
ditions of [7, Proposition 10] are relative to the Lyapunov func-
tion. The third condition requires to be infinitely often in a
compact set and, for any compact set ,
tends to zero for some . These convergences are
almost sure when is a random sequence. When applied
to MCVEM, this corresponds, respectively, to A1–A4 in Ap-
pendix I, to the recurrence condition implied by Step iv) and to
(12). As a conclusion, we point out that the main assumption to
address the convergence of an iterative algorithm, understood
as a perturbation of a procedure having a Lyapunov function, is
condition (12).

V. APPLICATION TO IMAGE SEGMENTATION

In this section, we turn more specifically to the applications.
MATLAB codes for MCVEM are available on the web page of
the authors. We consider simple models and use a -color Potts
model as the distribution of the hidden fields. Each takes one
of states, which can represent different class assignments.
Each of them is represented by a binary vector of length with
one component being 1, all others being 0. The distribution of a

-color Potts model is defined by

where the notation represents all couples of sites
which are neighbors. Parameter is a spatial parameter that con-
trols the strength of the interaction between neighboring sites.
In a segmentation framework, the Potts model acts as a regu-
larizing (smoothing) term. The lower , the weaker the regu-

larization. The factorized conditional distribution
is of the form where is
a univariate Gaussian distribution: if is in class , is the
Gaussian distribution with parameters and , and
being the mean and the standard deviation. The parameter to be
estimated is then with .

For the simulation step of MCVEM, we use the Gibbs sam-
pler. For such models and this sampler, we show in Appendix II
that the various assumptions are satisfied so that the previous
convergence results apply : any MCVEM path converges, and
the set of the limiting values is the set of the limiting values
of VEM. Furthermore, assumption A5 is actually satisfied with
any initial distribution and any . Hence, there are no
restrictions for the initialization of the Markov chains at each
iteration, and suitable choices of are any polynomially in-
creasing sequences.

We compare MCVEM to different algorithms when applied
to parameter estimations and image segmentations. We first
run an EM procedure (hereafter called ind-EM), assuming that
missing data are independent, in order to illustrate the gain in
taking into account the spatial information. The following other
procedures are based on models assuming dependencies. As a
typical simulation method, we run a kind of Monte Carlo EM
(hereafter MC2-EM) where two Monte Carlo approximations
are introduced at each iteration. The first one corresponds to
the MCEM algorithm [8] and the second one makes the M-step
tractable by approximating the partition function as in
MCVEM. By combining the convergence results of MCVEM
(Section IV) and of MCEM [7], it can be established that
MC2-EM converges almost-surely to the stationary points of
the incomplete log-likelihood and due to its sto-
chastic nature, converges to a (local) maximum [7]. MC2-EM
has a much higher computational cost but it provides reference
solutions to assess the proximity of the MCVEM limiting
values to the maxima of the incomplete log-likelihood. We
then compare to the Mean Field algorithm of [6], as a typical
deterministic variational algorithms. Finally, we run two other
algorithms designed to overcome the intractability of EM in
hidden MRF, the Gibbsian-EM [11] that combines Monte
Carlo techniques and pseudo-likelihood approximation and the
Simulated Field of [6]. The latter two can also be seen as com-
binations of simulations and deterministic approximations but
are not part of the novel strategy we propose. No convergence
results are available for them.

In addition to parameter estimation, the way the segmenta-
tion task is carried out in the different procedures can vary.
For MCVEM, Mean Field, and Simulated Field algorithms, im-
ages are restored by using the maximum a posteriori (MAP)
principle based on the factorized distribution that approxi-
mates the conditional distribution . Gibbsian-EM
and MC2-EM both generate realizations of the conditional field
and the image reconstruction is performed using the maximizer
of the posterior marginal (MPM) decision rule [37]. Note that,
for the first three algorithms, the MAP and MPM rules coincide
when applied to since is a factorized distribution.

For the Potts models, we assumed a first-order neighborhood
(four neighbors per pixel). For the stochastic algorithms (i.e.,
all but ind-EM and Mean Field), we report the mean values of
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the estimates along the random path, where the mean is over the
iterations after the burn-in period. Regarding the segmentation
results, the error rate (i.e., the proportion of misclassified pixels)
corresponds to the mean error rate computed after the burn-in
period.

A. Practical Implementation of MCVEM

Prior to any performance comparison, we discuss imple-
mentation details of MCVEM such as the initialization of the
Markov chain at each iteration, the choice of the simulation
scheme and of the sequence . As an illustration,
the algorithm is run on a 133 142 noise-corrupted two-color
image (shown in Fig. 3). We used Gaussian densities with
class-dependent means and standard deviation so that the true
noise parameters and are known. We then
consider the parameters estimates as a function of the number
of iterations when the Markov chain is, at each iteration, initial-
ized at the same point or at the last sample drawn at the previous
iteration. The considered is . In the two cases,
the results, in terms of parameter estimation and segmentation,
are similar but the convergence when using the first strategy is
very slow. The same observation holds for other choices of
so that in what follows, only the second strategy will be kept.

We then consider different schemes for , namely
, , and . All schemes result in a

convergence to the same value of . The value of in average
is not sensitive to the scheme but its variation is all the smaller
as the rate is higher (a phenomenon already mentioned in [7]).
For the image in Fig. 3, the mean values, computed when the
curves stabilize, are equal to 0.93 while the standard deviations
are respectively 0.0017, 0.0009, and 0.0006. Similar behavior
was observed on other images suggesting not surprisingly that
limiting the number of simulations has a cost in that it produces
paths with higher variations. In the following developments, we
will consider .

We then study the robustness of MCVEM to the choice of the
starting parameter values and to the choice of the se-
quence . We consider a constant over the iterations.
We consider in turn three cases ( , , ),
( , , ), and ( , ,

), where and denote respectively the empir-
ical means and standard deviation corresponding to a -means
classification (displayed in Fig. 3) and those corresponding to
a two-color classification obtained by simple thresholding of
the image pixels values. The path of successive estima-
tions of is plotted in Fig. 1. We observe that the estimation of

is well performed whatever the
algorithm. The plots show that the limiting behavior of MCVEM
(dotted lines) does not depend on , at least when is small
enough. For large values of (say ), the sequence
may oscillate for a long time between two values of the form
and . This illustrates the fact that can be consid-
ered as a reasonable approximation of in a neighborhood
of , and justifies the introduction of a local optimization do-
main in the update of . This local optimization explains the
linear path of MCVEM in the first iterations. These plots illus-
trate that MCVEM is very robust to initialization.

Fig. 1. Logo image: � trajectory versus the number of iterations for different
parameter starting values, with (dashed-dotted line) Mean Field, (solid line)
Simulated Field, and (dotted line) MCVEM.

For comparison with the two other variational methods we
consider, we also run the Mean Field and Simulated Field algo-
rithms and show the results on the same Fig. 1. It appears that
the starting value is crucial for the limiting behavior of Mean
Field (dashed-dotted lines). On some other synthetic images
(not shown here), Mean Field actually fails to converge even
with reasonable initializations such as those provided by run-
ning a -means algorithm. The trajectories of Simulated Field
(solid lines) do not converge to some fixed limiting value but
the behavior of the different trajectories is similar. The same
kind of phenomenon was already pointed out in [14] for the
Restoration-Maximization algorithm close in spirit to the Simu-
lated Field algorithm. We believe that convergence of the Sim-
ulated Field algorithm has to be understood in a different way.
An approach similar to what is done for the so-called stochastic
EM algorithm is more appropriate (see [38] and [39]). The se-
quence is a realization of a Markov chain and the
asymptotic behavior of this sequence is related to the ergodic
behavior of this Markov chain. Hence, averages of the param-
eters should converge and this suggests to replace the current
implementation of Simulated Field algorithm by an averaging
procedure [40]. However, such extensions are beyond the scope
of this paper and we run the algorithm as described in [6]. De-
spite the variations in the estimation of the spatial parameter ,
the corresponding segmentations are quite stable: the mean error
rate is in the range (2.86%, 2.92%) for MCVEM [respectively,
(2.82%, 3.10%) for Mean Field and (3.42%, 3.65%) for Simu-
lated Field].

We finally discuss how the possible nonunicity of , the
mean-field approximation of the conditional field ,
may affect the resulting image segmentations. To that goal, we
compute the mean error rates for the segmented images when

is assumed to be known but
is unknown. In Fig. 2, we plot these mean error rates versus
for two different starting points corresponding respectively to a

-means and a thresholding classification as above. These plots
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Fig. 2. Logo image : Error rate versus � obtained by (dashed-dotted line) Mean
Field, (solid line) Simulated Field, and (dotted line) MCVEM, when the segmen-
tation algorithm is started from two different initial classifications.

show that for large values of , the segmentation is greatly de-
pendent of the initial segmentation. In addition, the curves give
an idea of the value that corresponds to the minimum error
rate. For MCVEM and Simulated Field, this naive computation
is not far from the estimates obtained by running the full algo-
rithms when all the parameters are unknown (these esti-
mations are reported in Table IV). MCVEM converges to a lim-
iting value and Simulated Field fluctuates around a mean value
such that the segmentation is not affected by the nonunicity of

. This is not the case for Mean Field, thus showing that the
Mean Field segmentation may depend on the implementation of
the algorithm.

B. Synthetic and Real Images

We now compare in more detail the algorithms’ perfor-
mance when applied to parameter estimation and image
segmentation. We report the estimations of and

and the mean segmentation error
rates when a ground truth is available. For comparison, we also
indicate in column ref. the error rates when the parameters are
not estimated but fixed to their true values if known. When
given, the corresponding segmentations are computed after
the same fixed number of iterations (200) for each iterative
algorithm. Three types of test images are presented. Com-
ments on the results are postponed after the description of all
experiments.

The algorithms are first tested on images simulated from
hidden Potts models for which the true parameters and
are known. We created 100 100 images by simulating 2-D

-color Potts models for 2, 3, 4 and different values
of (lower than the critical value ), and
then adding a Gaussian noise. For each set of parameters we
investigate, 20 realizations of each corresponding Potts model
are simulated. We then run the different algorithms on these 20
simulations. The results are reported in Tables I–III. The values
reported are the mean and standard deviation values over the 20

TABLE I
PARAMETER ESTIMATES AND ERROR RATES FOR THE HIDDEN TWO-COLOR

POTTS MODEL WITH � = 0:78 (FIRST-ORDER NEIGHBORHOOD).
THE RESULTS ARE MEAN VALUES OVER 20 RUNS; THE

STANDARD DEVIATIONS ARE ALSO REPORTED IN PARENTHESIS

TABLE II
ESTIMATES OF � AND ERROR RATES FOR THE HIDDEN THREE-COLOR POTTS

MODEL WITH � = 0:9 (FIRST-ORDER NEIGHBORHOOD). THE RESULTS

ARE MEAN VALUES OVER 20 RUNS; THE STANDARD DEVIATIONS

ARE ALSO REPORTED IN PARENTHESIS

TABLE III
ESTIMATES OF � AND ERROR RATES FOR THE FOUR-COLOR POTTS MODEL

WITH � = 1 (FIRST-ORDER NEIGHBORHOOD). THE RESULTS ARE

MEAN VALUES OVER 20 RUNS; THE STANDARD DEVIATIONS

ARE ALSO REPORTED IN PARENTHESIS

runs. We note that the estimation of the parameter is always
satisfying and only the results on are reported.

The following test images are noise-corrupted images corre-
sponding to known values of . These images before degra-
dation are not realizations from a known Markov field model.
The first image is the logo image described in V-A and shown
in Fig. 3. The other example is a 128 128 image obtained by
adding some Gaussian noise to the four-color top left image of
Fig. 4. The noise parameters are given by

with and for . The
results are reported in Tables IV and V. The corresponding seg-
mentations are shown in Figs. 3 and 4.

We finally run the algorithms on real images for which a true
value of does not exist (in real life, it is usually part of the
problem to assess its value) but for which intuition or expert
knowledge could give an indication of what would be a reason-
able value. As an illustration, the top left image in Fig. 5 is a 76

91 PET image of a dog lung (see [41] for more details on its
nature and origin) and the top left image in Fig. 6 is a 256 256
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Fig. 3. Logo image: (top, from left to right) original image, noise-corrupted image, initial segmentation using k-means, ind-EM, MC2-EM; (bottom, from left to
right) Gibbsian-EM, Simulated Field, Mean Field, MCVEM, MCVEM + Median Filter.

Fig. 4. Triangle image: (top, from left to right) original image, noise-corrupted image, initial segmentation using k-means, ind-EM, MC2-EM; (bottom, from left
to right) Gibbsian-EM, Simulated Field, Mean Field, MCVEM, MCVEM + Median Filter.

TABLE IV
PARAMETER ESTIMATES AND ERROR RATES FOR

THE DEGRADED TWO-COLOR LOGO IMAGE

satellite image. They have been chosen because they correspond
to rather different application domains and because nonexpert
users can easily assess the quality of their segmentations.

For the dog lung image, the aim is to distinguish the lung from
the rest of the image in order to measure the heterogeneity of the
tissue in the region of interest. Only pixels in this delimited area
are then considered to compute a heterogeneity measure, such
as a coefficient of variation. The interpretation of the image sug-
gests that three-color segmentations are reasonable. The image
is constructed based on radioactive emissions from gas in the
lung. Ideally, the background should correspond to one color
and two other colors should account for the high gas density
in the interior of the lung and the somewhat lower gas density
around the periphery. The resulting segmentations are shown in
Fig. 5.

Fig. 6 is a SPOT satellite image representing part of the
Aquitaine region in France. It contains large homogeneous
regions (large fields, woods), precise contours (rivers, roads)
and more heterogeneous areas (houses, small fields) or textured

parts. Whether relevant segmentations should focus on contours
or regions may depend on the application in mind.

All tables show that ind-EM differs from the other algorithms:
the estimates are somewhat poor (see, e.g., Table V) and the
error rates are much higher. The gain in taking into account
spatial dependencies clearly appears.

We observe that the estimation of the means and standard de-
viations is an easy task in the sense
that all algorithms (except ind-EM) have similar good perfor-
mances. We then focus our comments on the estimation of the
spatial parameter which is more critical. When the true value
is lower than the critical value , MCVEM seems to underesti-
mate (see Tables I–III). More generally, MCVEM provides the
lowest estimates, while Mean Field provides the highest ones.
The Mean Field algorithm systematically overestimates . It is
quite difficult to determine which approach is the best, since the
value of the spatial parameter acts upon the image segmenta-
tion. Nevertheless, the results of MC2-EM which converges to
the (local) maxima of the incomplete log-likelihood
can be taken as reference values. It appears that MCVEM and
MC2-EM are very close (see Tables IV and V) while Mean Field
and Simulated Field and Gibbsian-EM are of a different kind.
For the estimation, Simulated Field is close to Gibbsian-EM
while Mean Field is the most atypical. Despite Simulated Field
and Gibbsian-EM rely on different tools (mean-field based vari-
ational technique on one hand, pseudo-likelihood approxima-
tion on the other hand), they are numerically close. We believe
that, due to the ergodicity of the discrete-valued Markov chain
which admits the conditional field as invariant distribution,
they have indeed very similar asymptotic behaviors.

In terms of segmentation results, MCVEM leads to very sat-
isfying error rates: for the hidden Potts images, the error rates
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TABLE V
PARAMETER ESTIMATES AND ERROR RATES FOR THE DEGRADED FOUR-COLOR IMAGE

Fig. 5. PET image of a dog lung: (top, from left to right) original image, initial segmentation, ind-EM, MC2-EM; (bottom, from left to right) Gibbsian-EM,
Simulated Field, Mean Field, MCVEM.

Fig. 6. Satellite image: (top, from left to right) original image, initial segmentation, ind-EM, MC2-EM; (bottom, from left to right) Gibbsian-EM, Simulated Field,
Mean Field, MCVEM.

are close to the minimal error rates (achieved with MC2-EM
and Gibbsian-EM) even though the estimate is poorer. The
algorithms divide into two groups: on one hand, MCVEM and
MC2-EM which provide lower values of and consequently im-
ages with possibly more isolated points (Figs. 3 and 4); on the
other hand, the Mean Field, Simulated Field, and Gibbsian-EM
algorithms that provide larger estimates and smoother images.
We observe that the algorithms provide values larger than the
critical value . The later is often considered as a reasonable
guess for a fixed in natural imagery but, as illustrated in Fig. 2,
running MCVEM and MC2-EM with fixed to (0.88) results
in higher error rates. Also it appears clearly, e.g., on the logo
image, that MCVEM tends to better preserve fine structures, the
continuous lines in the original image being less interrupted in
various locations (see also the satellite image in Fig. 6). It per-
forms slightly better than Simulated Field and Mean Field. The
triangle image with no such fine structures cannot illustrate this
ability of the algorithm. However, we observed the same phe-

nomenon on various other synthetic images with fine structures.
On the contrary, when large homogeneous area exists, MCVEM
and MC2-EM segmentations are not smooth enough and iso-
lated points are still visible, producing consequently slightly
higher error rates (Fig. 4 and Table V). Note that, in practice,
such points are not an issue since they can be easily dealt with
afterwards using some simple morphological operator leading
to potentially further improved error rates. For example, appli-
cation of a median filter on the MCVEM image reconstruction
improves the error rate, 2.73% instead of 2.89% for the logo
image (Fig. 3, bottom right), 0.63% instead of 0.81% for the tri-
angle image (Fig. 4, bottom right). Similar conclusions can be
drawn from the real image experiments. For the dog lung image
(Fig. 5), the MCVEM and MC2-EM segmentations are not as
smooth when considering the light grey region but provide a
more accurate segmentation of the white region. For instance,
the segmentation of the upper and central parts of the right lung
looks better. All spatial algorithms provide, however, smoother
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segmentations than -means and ind-EM. For the Simulated
Field algorithm, we report the segmentations corresponding to
the implementation of [6] as specified at the end of Section II;
however, for this image, 200 iterations are not enough for con-
vergence. We observe that when carrying out more simulations
at each iteration or similarly when performing more iterations,
the Simulated Field algorithm tends to loose the small regions
(e.g., the central and background small regions in Fig. 5) so that
the segmentations are then very close to the Gibbsian-EM ones.

As mentioned earlier, for each algorithm, the displayed seg-
mentation is computed using the current state of the algorithm
after a fixed number of iterations. The error rate computed at each
iteration, after the burn-in period, stabilizes for Mean Field and
MCVEM. For example, on the logo image of Fig. 3, the error rate
is almost always constant. For fixed values of the parameters, the
MCVEM segmentation procedure does not require simulations
any more and is equivalent to the Mean Field segmentation pro-
cedure. This is not true for the MC2-EM, Gibbsian-EM, and the
Simulated Field procedures which remain stochastic since even
for fixed values of the parameters, the segmentation step still re-
lies on samples drawn from the conditional field. Nevertheless,
for MC2-EM and Gibbsian-EM, the error rate has a small varia-
tion along the path (0.04 for the logo image) while the Simulated
Field algorithm provides the most unstableprocedure since, as al-
ready mentioned, its paths do not converge. For the logo image,
the error rate variation is 0.11. More complex segmentation rules
could be considered to overcome this instability. For example,
the different segmentations that can be computed along the it-
erations can be seen as successive votes, and the final image
reconstruction based on the mean value of these votes. For the
logo image, this yields for, respectively, the Simulated Field, the
Gibbsian-EM and the MC2-EM algorithms a mean error rate of
3.18%, 2.94%, 2.83%, and a lower variation along the path (re-
spectively, 0.0240, 0.0170, and 0.0125).

VI. DISCUSSION AND FUTURE WORK

In this paper, we proposed a new algorithm to carry out
Markov model-based segmentation in practice, combining
variational and MCMC ideas. This combination allowed us to
prove the first, to our best knowledge, convergence result for
this kind of algorithm. This result extends to a whole new class
of algorithms. It is based on the idea of seeing the algorithm
under study as a perturbed version of a reference algorithm
for which convergence results are well established and usually
based on a well identified Lyapunov function. For instance, this
applies when the model complexity leads to an exact determin-
istic algorithm which is intractable and must be replaced for
practical implementation by an approximate version. The key
idea in our contribution, is that although a Lyapunov function
does not usually exist for the perturbed algorithm, it is possible
to control the distance to this Lyapunov function. Studying its
limit set is then made possible through the definition of a set
such as in Section IV, which defines the algorithm solutions
as satisfying an optimality criterion. These observations open
the way to a general approach to implement intractable (deter-
ministic) algorithms in practice through adequately designed
stochastically perturbed versions. In the hidden Markov random
fields context, a natural development of the present work would

then be to further study other noisy EM versions with preserved
limit sets.

Regarding the MCVEM algorithm we focused on, we showed
that in addition to guaranteed convergence properties, it pro-
vided good segmentation results and compared favorably to
other approximated algorithms. Various experiments pointed
out that MCVEM was close to the MC2-EM algorithm based
on the MCEM algorithm which is known to converge to local
maxima of the incomplete log-likelihood. MCVEM is then
clearly to be favored since it has a much lower computational
cost than MC2-EM. In particular, the segmentation step in
MCVEM is simple and does not require the additional compu-
tations needed in MC2-EM. Also, MCVEM tends to provide
adequate regularizations through values of which are not too
large and has this way the ability to preserve fine structures.
This characteristic can also be responsible for misclassified
pixels but they mainly correspond to isolated points. These
points can be easily dealt with using some straightforward
postprocessing procedure. The performance of MCVEM is
then very satisfying, all the more so as the results could be
further improved by more focus on the use of better sampling
techniques. For illustration purpose, we restricted to a simple
Gibbs sampler but investigating the use of more sophisticated
methods (e.g., [42] and [43]) would be worthwhile. More
generally, an alternative approach of the sampling problem
would be to consider stochastic approximation techniques such
as presented and used in [44] and [45]. We suspect the same
kind of convergence results could follow using the same idea
of controlling the distance to a reference Lyapunov function.

In this paper, comparison with other existing EM-like proce-
dures showed that the relationship between our algorithm and
the former was not obvious. Our study revealed three groups.
MC2-EM and MCVEM distinguish from the Gibbsian-EM of
[11] and from the Mean Field and Simulated Field algorithms
of [6]. Simulated Field does not converge in the same sense
and is closer to the Gibbsian-EM. It tends to produce smoother
segmentations but more unstable trajectories. Mean Field has a
third specific behavior. Its convergence is not always guaranteed
and when observed, the resulting segmentations are very smooth.
Further comparisons and investigations would be useful. We
believe this first effective step opens the way to a better under-
standing of the behavior and theoretical properties of a lot of
Markov model based algorithms. In particular, analyzing how
simulation steps should be incorporated so as to interact advanta-
geously with deterministic approximations seems promising.

APPENDIX I
CONVERGENCE THEOREMS

A. Model Assumptions

We assume that
A1: is finite, , and .
A2:

i) The function is continuous
on .

ii) For all , the set
is

not empty.
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iii) For any , is twice-continu-
ously differentiable on .
The function

is strictly concave and admits a unique
maximum in for any .

iv) The function
is strictly concave and admits a

unique maximum in , for any , any in-
teger and any .

Define the function on by
where is given by (5).

A3: For any , the level set
is bounded.

A4: Assume either that i) the set is compact, or ii)
for all compact , is finite, where
is defined by (11).

Under A1 and A2i), is a continuous function and the level
set is a closed subset of . Hence, it is compact in

. Furthermore, is a closed subset of . Hence, A4 is
satisfied whenever is bounded.

B. Monte Carlo Approximations

We formulate sufficient conditions that imply a local uniform
control of the difference between the gradient and its
Monte Carlo approximation. Let be the expectation on the
canonical space associated to the Markov chain with initial dis-
tribution and stationary distribution . Let be
the closure of the -neighborhood of some (bounded) set .

A5: There exist and a probability distribution on
such that for any compact subset and any

is finite.
A5 is satisfied whenever

is finite and

is finite. Observe that both of these integrals are on the form

where is the invariant probability distribution of the
Markov chain with initial distribution . Sufficient con-
ditions implying this uniform control of the -norm difference
for a Markov chain can be found in [7] (see Section V for an

example). Finally, we assume that the number of simulations
increases at a rate such that the larger , the weaker the

rate.
A6: is a positive integer-valued sequence such that

where is given by A5.

C. Convergence Theorems

Consider the generalized VEM algorithm that replaces in the
-update, the global optimization by a local one on . The

proof of Theorem 1 is along the same lines as the proof of [4,
Theorem 2(i)] (see also [36]) and is, thus, omitted.

Theorem 1: Assume A1, A2i)–A2iii) and A3. Fix a positive
sequence such that and let be the
generalized VEM path started at .

The sequence converges monotonically to
for some . Furthermore, the sequence
converges to the set .

The convergence of the random trajectories of MCVEM is
established almost surely with respect to , the probability on
the canonical space associated to the trajectories started at ( ,

), given the initial distribution of the Markov chain, the
sequence of compact sets satisfying (9) and the sequence

.
Theorem 2: Assume A1–A6. Let be a sequence of

compact sets satisfying (9), and be given
in A5. Fix a positive sequence such that .
Consider the MCVEM random sequence . Then,

w.p.1 and w.p.1. and
converges w.p.1 to a connected component of

. If in addition has an empty inte-
rior, then converges w.p.1 to and
converges to the set .

Observe that if A4ii) is satisfied, is
finite, thus having an empty interior. The proof of Theorem
2 is very close to the proof of [7, Theorem 3]. The first step
consists in an extension of some deterministic results ([7,
Propositions 9, 10, 11]) in order to take into account that in the
present case, any MCVEM iteration corresponds to an inho-
mogeneous point-to-set map (in [7], only point-to-point maps
are addressed). These deterministic results provide sufficient
conditions for convergence of some iterated perturbed map
that approximates, in the sense given by (12), an iterative map
having a Lyapunov function. Convergence of MCVEM then
results from an application of these propositions. The most
technical step is to prove that (12) holds —a.s. It is sufficient
to prove that for all , the random series with general
term is finite a.s.
Following the same lines as in the proof of [7, Theorem 3],
this series is finite whenever, for some depending upon
, is finite a.s.

which is true under A5. Here, is the -field that contains
the random variables , is the
maximum of over

, is the maximum of
over , and is given by Step i) of

MCVEM. The interested reader will refer to [35] for a detailed
proof.
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APPENDIX II
APPLICATION TO IMAGE SEGMENTATION

We show that the model described in Section V satisfies the
conditions A1–A6. We assumed that at each pixel, the observa-
tions are univariate; this is not at all restrictive and the multidi-
mensional case could be considered in the same way.

Conditions A1 and A2 are easily checked; for A2, we use
the strict concavity of . Details are omitted. Re-
garding assumption A3, since is a continuous positive func-
tion and is bounded it is enough to show that for ,
tends to 0 on the boundaries of . Let be divided in three
parts, , where (up to an
additive constant independent of the parameters)

For , for all there exist such that
. Then whenever there exists such that tends to

0 or tends to , part is the most significant
term in expression . If tends to , then the most sig-
nificant term in is . In all cases tends to 0.
When tends to (respectively, ), then tends to
0 except in (respectively, )

so that clearly tends to 0. It follows that A3 is satisfied.
For A4, we show that is compact which implies that

is compact since is continuous. Under the stated assumptions,
is closed and it remains to prove that is bounded. Let us first

observe that for , is included in a compact set
and satisfies , which leads to closed-form
expressions

hence, and are linked through a continuous and bounded
function on and is bounded. By applying the implicit func-
tion theorem we prove that the same holds for which shows
that is bounded.

For A5, we can actually show that a more general condition
holds: applying the results by [7], we can deduce that the con-
ditions in A5 hold for all and any initial distribution .
Referring to [7, Proposition 1], it is enough to show that for
the Markov chain used in the approximation of , the state
space is small (see, e.g., [46]). The Gibbs sampler is a Markov
chain with kernel where replaces the
pixel with a draw from the conditional leaving

unchanged. Since is a product space with
finite, the small set property follows.
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