Multimodal MRI segmentation of ischemicstroke lesions
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Abstract— The problem addressed in this paper is the
automatic segmentation of stroke lesions on MR muit
sequences. Lesions enhance differently depending ¢ime MR
modality and there is an obvious gain in trying toaccount for
various sources of information in a single procedws. To this
aim, we propose a multimodal Markov random field malel
which includes all MR modalities simultaneously. Tk results of
the multimodal method proposed are compared with thse
obtained with a mono-dimensional segmentation apmid on
each MRI sequence separately. We constructed an AH of
blood supply territories to help clinicians in the determination
of stroke subtypes and potential functional deficit

. INTRODUCTION

troke is a major cause of death and disabilitydthkthe

more developed and the less developed world [9]. [2
Stroke consumes an important part of the total theate
costs (i.e. excluding social care and indirect €oist Europe

0

traditional way for assessing stroke lesions isetbasn a
manual segmentation. It consists of a manual tgaointhe
stroke regions on all contiguous slices in which tesion
was judged to be present. This manual segmentegibath
time consuming and subject to manual variation. thAeo
disadvantage of these interventions is their rekanpon
subjective judgments, which raises the possibilihat
different observers will reach different conclusabout the
presence or absence of lesions, or even that the sa
observer will reach different conclusions on difet
occasions [9]. A computer automated algorithm taleate
MRI stroke images as they are obtained may haveftire
great clinical usefulness.

MRI Multimodal image segmentation attempts to take
advantage of the different kinds of anatomical tinfation
provided by different imaging modalities. There adveo
major difficulties in performing multimodal image
segmentation. First, multimodal data are not always

and the USA [8]Strokeis a vernacular term that denotes the, ~..-bie  Second. when the data are availablevamieus

sudden development of a neurological deficit.
overwhelming majority of strokes can be placed itw@
categories: haemorrhage (10% to 15%) and
(approximately 85%), we consider here only the farfB].

Ischemia is a physiological term indicating insciéint
blood flow for normal cellular function. Cerebrachemia
occurs when blood flow to the brain is reduced ithez a
global or a focal fashion.

Thﬁnages are typically not in the same alignment, thedefore

require registration.

ischemia

Il. RELATED WORK

A. Stroke lesion description

Ischemic stroke lesions in MR imaging are diffictrdt
segment for various reasons, which include espgchbpe

Magnetic resonance imaging (MRI) offers uniqugomplexity and ambiguity. Creating and evaluating

advantages for the evaluation of cerebral ischemldch

leads to alterations in the brain water contengnein its
earliest stages. Because of MRI's inherent seitgitio

depict alterations in tissue-free water contentaih detect
ischemic insult to the brain within 1 hour afterset (with a
diffusion sequence) [5].

automatic methods for segmenting such lesions fficult

because ground-truth is elusive and stroke lesaoasvidely
varied. In addition, accurate segmentation ofk&tri@sions
requires anatomical knowledge. In particular charigeMR
images due to ischemic stroke follow the vascdattory of
the occluded blood vessel, which is characterigtic

The standard questions that must be answered Whefieprovascular disease and helps in differengatirirom

imaging a patient with stroke by any method arethere
another lesion mimicking stroke? Is there a haenagjic or
ischemic stroke? Are there any clues as to theecatithe
ischemic stroke? What is the volume of stroke? Hbavis
the stroke? Is salvageable tissue present? [13].

In evaluating therapies for ischemic stroke pasientany
physicians are interested in finding consistentjabée

estimates of lesion volume from MR images [19]. The
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other disease entities.

As a matter of fact, in the literature devoted t@ t
segmentation of brain lesions, there has been ferk done
in the area of multimodal stroke segmentation [22].

Most of the work related concentrated on the dieteaif
tumors [17][2] and multiple sclerosis lesions [14].

. METHOD

A. Patients and MRI data acquisition

Our input is a series of slices taken from differsR
modalities of the same individual for 3 time poinf3
sessions) (fig.1).56 patients referred to our institution
(Neurology Department of Grenoble Hospital) forpacted



acute stroke. A examinations were performed on the samé2) is a regularization term that accounts for igpat

1.5-T imaging device (Philips) . dependencies between voxels. Denoting (i) the
neighbours of voxels i, we will consider a Pottsdelowith
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Fig 1. Time points acquisition correspongio 3 MRI sessions The second summation above tends to favour neighbou

that are in the same class when paranfgisrpositive. This
EG accounts for the strength of spatial interacti@ther
parameters are theys that are K-dimensional vectors
defining the so-called external field. In this cag{vy,...,
Vn, B} . Thevy’s can be related to a priori weights accounting
for the relative importance of the K classes at &itThe
introduction of these extra parameters in the stethdPotts
model enables us to integratepriori knowledge on classes.
B. Registration The second term in (2) is a data driven term based
A coregistration operation by affine transformatisas intensities. For MRI we generally consider a Gaarssi
used to correct the misalignment and mismatch antbeg Probability density function for the observed irgties y;
different imaging modalities caused by patient nrmeet or When the tissue class 1s. It follows thatp(y| Z=ey,®) =
other factors [4], we consider the T2 sequenceessisn 1  g(¥ilHZk) With
as a reference image for all other sequences sésaflions.

The MRI parameters were as follows: (1) axial T2FF
TR/TE: 4096.87 ms/105.0 ms; Voxel size: 0.9376.9375
x 5; Flip angle: 15° (2) axial DW: TR/TE: 4599msQ11ms;
Voxel size: 0.9375 0.9375x 5; Flip angle: 90° (3) axial
FLAIR: TR/TE, 10000 ms/140 ms; 0.93%50.9375x 5;
Flip angle: 90°.

Y di L ST sy — (4)
@5, |1/2eXF{( 2(yi ) Z7(y uk)}

C. Segmentation Where p ; and Z; are the mean vector and covariance
matrix of the j-th Gaussian. It follows tha®, -{|u,2x ,
k=1...K}. Segmentation is then performed accordinghe
Maximum A Posteriori principle (MAP) by maximizirgyer

z the probabilityp(z| Y=y @). This requires the evaluation of
an intractable normalizing constant,¥and the estimation
of unknown parametei®. A standard approach is to use the
ICM algorithm that alternates between parameteémesion
and segmentation but results in biased estimatésb&sed

Lesion voxels are assumed to be distinctly differieam algorithms and variants proposed by [11] can béerat

normal tissues and we consider K=4 correspondingt to conside_,-red: TheY are based on Mean-field like
classes, namely, White Matter (WM), Grey Matter (GM approximations which make the MRF_mod_eIs c_aseatmet
Cerebro-Spinal Fluid (CSF) and the lesion. Simjiaol [14] In all these approa_ches, MRF estimation is perfdrme
for Multiple Sclerosis data, we consider Strokedes as an 9/0Pally throw the entire volume.

additional class. D. Digital Atlas of Brain Blood supply territories

Both observed intensities and unknown classes areye constructed a digital Atlas of the Blood supply
co_nS|dered to be_random field denoted respectiBly (oritories of the brain (BST), derived from the péinted
Y={Yy,....\} and Z={Z,,....,4}. Each random variable; Z geig| sections in the axial plan developed by Eatal. [21].

takes its values in {¢...a} where & is a K-dimensional g atias fits the Talairach space, this 3D attassed to
binary vector corresponding to class k. Only th8 Kdetermine the stroke subtype.

component of this vector is non zero and is set.ttn a
traditional Markov model based segmentation franr&wid
is assumed that the conditional fiell given Y=y is a
Markov random field, ie.

a(Yi|thoZ,) =

Before performing the segmentation, the skull inoeed
from the images to keep brain tissues only [18].

We consider a finite set of N voxels V = {1,...,N} @
regular three dimensional (3D) grid. When consiurin
different sequences simultaneously, each vipiel/’{1, . . .,
N}, is described by ex+D intensity vectoy; = (Y1, . . ., Yni)-
Our aim is to assign each voxel i to one of K a&ass
considering the observed grey level intensitiesit voxel i.

IV. RESULTS

To assess the gain in considering multimodal daga w
compare the segmentations obtained with singleesems to

— — -1
p(Z|Y =y, ®) =W, , exp-H (Z|y, D)) (1) that obtained with multiple sequences (Fig. 2).g&in
whereH(zly®) is an energy function depending on somé&odality segmentations show as expected that sdntieeo
parametersd =(®,,®,) and given by: modalities are not or less informative in term efibn

detection and cannot therefore be considered altme.
H (Z'y’ CD) =H (Z'cbz) _%:log p(yi|zi ,ch) @) addition, the modalities information varies withethession.
1

This energy is a combination of two terms: thet fiesm in The multimodal approach has the advantage to ity



take that into account and to provide satisfactesults in
all cases. Further analysis is required. In paldic we
propose to use Blood Supply territories Atlas (F3).to
further assess the performance of the approach.

Fig.2. MRI sequences with a stroke lesion in thddi@ cerebral artery
territory (MCA)
(ai) T2 sequence, (bi) Flair sequence, (ci) Diffsssequence for the
session i,
(di),(ei) (fi) Segmentation of each sequence seplyra
(gi) Multimodal segmentation for session i
i=1, 2, 3 correspond to sessiors, €, € respectivel

We have normalized the segmented images obtaited in
Talairach space in order to superimpose them o#tlas of
flood supply territories, we can see clearly tha stroke
lesion is located in the Middle cerebral artery (MCsuch
information is very relevant in the functional ddfi
determination and medical prognostic (Fig. 4).

M
f

ket

iy
& o
d ®

| Leptomeningeal branches of the Al MCA perforating branches
[ | Leptomeningeal branches of the M PoCA perforating branches
Leptomeningeal branches of the PC= Thalamoperforating branches

L

B ICA perforating branches Thalamogeniculate branches
Il AChA Medial PChA
Il ACoA M Lateral PChA

ACA perforating branches M insular zone

Fig.3. Normalized Blood Supply Territories Atlagiged from [21]
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Fig.4. Use of the Blood Supply Territories Atlas foe determination
of stroke subtype on the segmented images, (toff)maadal
segmentation of the 3 MRI sessions, (middle) cpoeding Atlas
slice, (bottom) delineation of the lesion superisgubon the Atlas .
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In Figure 4, the lesion present in the three sasdid, h2 el

and h3 is mainly located in the MCA territory. Facute
stage and sub-early acute stage, hl and h2 resdgcthe [11]
lesion seems extended to the deep territory (MCA
perforating branches). However, for h3, the lesien [12]
restricted to the leptomeningeal branches of theAMthis
indicates that the infarct extension to the deegjitdey is due (13]
to a cytotoxic edema developped during acute stage.
This is confirmed by the clinician after an atteati [14]
examination on the images ai, bi, ci in Figure 2y B
combining all the available information, the muttedal |15
segmentation appears as a powerful tool to coyrectl
delineate the lesion, assign it the relevant vascidrritory

and provide a synthetic information to the clinitia [16]

[17]
V. SUMMARY AND CONCLUSION

An automatic MRI segmentation of stroke lesions wald8]
proposed, the algorithm is based on the simultamese of

different MRI sequences to get more efficiency emidn (el
assessment. Preliminary experiments show promissigjts.
Further algorithm refinements are required to obtaigh [20]
level of sensitivity and make our system clinicalligble.
The potential impact on health care is great antimoed [21]
efforts are warranted. Future work will focus o tisse of
Blood Supply Territories Atlas as a priori inforriat in the  [22]

segmentation process, in fact, a stroke lesioessicted to a
specific blood territory, this anatomical infornati can
therefore be used to constraint the segmentationegs to
be restricted to a specific territory. The time dimgion
should be introduced in the algorithm by using tiele
session series simultaneously.
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