
LOCUS: LOcal Cooperative Unified
Segmentation of MRI Brain Scans

-, -, -, -

1 -
2 -
3 -

Abstract. We propose to carry out cooperatively both tissue and struc-
ture segmentations by distributing a set of local and cooperative models
in a unified MRF framework. Tissue segmentation is performed by par-
titionning the volume into subvolumes where local MRFs are estimated
in cooperation with their neighbors to ensure consistency. Local estima-
tion fits precisely to the local intensity distribution and thus handles
nonuniformity of intensity without any bias field modelization. Struc-
ture segmentation is performed via local MRFs that integrate localiza-
tion constraints provided by a priori general fuzzy description of brain
anatomy. Structure segmentation is not reduced to a postprocessing step
but cooperates with tissue segmentation to gradually and conjointly im-
prove models accuracy. The evaluation was performed using phantoms
and real 3T brain scans. It shows good results and in particular robust-
ness to nonuniformity and noise with a low computational cost.

1 Introduction

MRI brain scan segmentation is a challenging task and has been widely addressed
in the last 15 years. Difficulties in automatic segmentation arise from various
sources including the size of the data, the low contrast between tissues, the lim-
itations of available a priori knowledge, local perturbations such as noise or
global perturbations such as intensity nonuniformity. Current approaches share
three main characteristics: first, tissue and structure segmentations are consid-
ered as two separate tasks whereas they are clearly linked. Second, for a robust
to noise segmentation, the Markov Random Field (MRF) probabilistic frame-
work is classically used to introduce spatial dependencies between voxels [1, 2].
Third, tissue models are generally estimated globally through the entire volume
and do not reflect spatial intensity variations within each tissue. It requires the
introduction of an explicit so called “bias field” model to account for intensity
nonuniformity. Local segmentation is an attractive alternative. The principle is
to compute models in various subvolumes to fit better to local image properties.
However, the few local approaches proposed to date are clearly limited: either
they use local estimation as a preprocessing step only to estimate a bias field
model [3], or they use redondant information to ensure consistency and smooth-
nesss between local estimated models [4, 5], greedily increasing computational



cost. We present in this paper an original LOcal Cooperative Unified Segmen-
tation (LOCUS) approach which 1) performs tissue and structure segmentation
by distributing a set of cooperating local MRF models through the volume,
2) segments structures by introducing prior localization constraints in a MRF
framework and 3) ensures local models consistency and tractable computational
time via specific cooperation and coordination mechanisms.

2 Method

2.1 MRF Segmentation

We consider a finite set of N voxels V = {1, ...N} on a regular 3-D grid. Our aim
is to assign each voxel i to one of K classes considering the observed greylevel
intensity yi at voxel i. Both observed intensities and unknown classes are con-
sidered to be random fields denoted respectively by Y = {Y1, ..., YN} and Z =
{Z1, ..., ZN}. Each random variable Zi takes its value in {e1, ..., eK} where ek is
a K-dimensional binary vector corresponding to class k. Only the kth component
of this vector is non zero and is set to 1. In a traditionnal Markov model based
segmentation framework, it is assumed that the conditional field Z given Y = y
is a Markov random field, ie. p (z |Y = y,Φ ) = W−1

y,Φ exp (−H (z |y, Φ )), where
H (z |y, Φ ) is an energy function depending on some parameters Φ = (Φy, Φz)
and given by:

H (z |y, Φ ) = H (z |Φz )−
∑
i∈V

log p (yi |zi, Φy ). (1)

This energy is a combination of two terms: the first term is a regularization
term that accounts for spatial dependencies between voxels. Denoting by N (i)
the neighbors of voxel i and by tzi the transpose of vector zi, we will consider a
Potts model with external field:

H(z |Φz ) =
∑
i∈V

(tzivi −
β

2

∑
j∈N (i)

tzizj). (2)

The second summation in (2) tends to favor neighbors that are in the same class
when β is positive. This β parameter accounts for the strengh of spatial interac-
tion. Other parameters are the vi´s that are K-dimensional vectors defining the
so-called external field. In this case Φz = {v1, ..., vN , β}. The vi’s can be related
to a priori weights accounting for the relative importance of the K classes at
site i. The introduction of these extra parameters in the standard Potts model
enables us to integrate a priori knowledge on classes. The second term in (1) is
a data-driven term based on intensities. For MRI we generally consider Gaus-
sian probability density functions for each k, p (yi |zi = ek, Φy ) = gµk,σk

(yi),
with Φy = {µk, σk, k = 1...K}. Segmentation is then performed according to the
Maximum A Posteriori principle (MAP) by maximizing over z the probability
p (z |y, Φ ). This requires the evaluation of an intractable normalizing constant



Wy,Φ and the estimation of the unknown parameters Φ. A standard approach is
to use EM-based algorithms to globally estimate the parameters through the en-
tire volume. We propose in the next subsection a LOcal and Cooperative version
of EM (LOC-EM) for local segmentation approaches.

2.2 Local Cooperative Tissue Segmentation (LOCUS-T).

We partition the volume into a set of C non-overlapping local subvolumes Vc, c ∈
C and distribute one local MRF model Mc per subvolume. We consider K = 3
tissue classes: CSF (Cephalo-Spinal Fluid), GM (Grey Matter) and WM (White
Matter). The hidden tissue classes ti’s take their values in {e1, e2, e3} respectively
for classes {eCSF , eGM , eWM}. Each local MRF model Mc is defined by the Gibbs
distribution of energy (see Section 2.1):

Hc(t |y, Φc ) =
∑
i∈Vc

ttiλ
c
i −

βc

2

∑
j∈N (i)

ttitj − log p
(
yi

∣∣ti, Φc
y

), (3)

where the parameters Φc =
{
Φc

t , Φ
c
y

}
have to be estimated. However, the external

field denoted by {λc
1, ...λ

c
N} is not estimated but used to incorporate information

coming from structure segmentation to perform cooperation. Φc
t reduces then

to {βc}, while Φc
y are the estimated parameters of the local Gaussian tissue

intensity models. The MRF model Mc introduces spatial dependencies between
voxels in its subvolume Vc, providing consistent neighboring labels. Because the
estimation is local, some tissue classes are likely to be under-represented in some
subvolumes, leading to poor model estimations with a classical EM scheme.
We propose a LOcal and Cooperative version of EM (LOC-EM) for spatially
organized subvolumes to ensure a global consistency of local models. We denote
by N (Mc) the set of MRF models neighbouring Mc and introduce in EM a set
of cooperation and coordination mechanisms as follows:
Cooperation between Mc and N (Mc).
- Model Checking: we compute for each Mc a model M̃c averaging the models
of N (Mc). Then, for each class k, we compute the KullBack-Leibler distance Dc

k

between intensity models of Mc and M̃c.
- Model Correction: if Dc

k is larger than a given threshold, we compute the
corrected mean and variance of class k from a linear combination of intensity
models in Mc and M̃c using Dc

k to determine the linear coefficients.
- Model Interpolation: from local estimations in neighbouring subvolumes we get
then one intensity model per voxel by using cubic splines interpolation between
corrected models of Mc and of N (Mc). This results in a non-stationary field-
like approach and has the advantage to ensure smooth model variation between
neighboring subvolumes and to intrinsically handle nonuniformity of intensity
inside each subvolume.
Coordination between MRF models.
- System starting: each local EM enters in idle mode after its local initialization.
A global intensity model is computed using the Fuzzy C-Mean algorithm and



then only the MRF models closest to the global model are activated.
- Knowledge spreading: when the EM algorithm for Mc is stabilized, its neigh-
bors are activated to perform estimation in turn. For already stabilized EM,
model checking is performed. If it results in model correction and model inter-
polation, the corresponding EM are restarted to take into account the updated
models modifications.

2.3 Cooperative Tissue and Structure Segmentation (LOCUS-TS).

We extend the approach above to segment both tissues and structures. We cur-
rently consider L = 9 subcortical structures: the ventricular system, the Frontal
Horns, the Caudate Nuclei, the Thalamus, and the Putamens. For each target
structure l we define a local Markov model Ml that labels voxels of its subvol-
ume Vl in K = 2 classes referred to as structure and background. Denoting by
s = {si, i ∈ Vl} the hidden classes, the energy function of Ml is given by:

H l
(
s
∣∣y, Ψ l

)
=

∑
i∈Vl

tsiα
l
i −

βl

2

∑
j∈N (i)

tsisj − log p
(
yi

∣∣si, Ψ
l
y,i

), (4)

with Ψ l =
{
βl, αl

i, Ψ
l
y,i, i ∈ Vl

}
and si ∈ {e1, e2} = {eB , eS} for a voxel of the

background or a voxel belonging to structure l.
Integration of prior localization constraints in the MRF.
Automatic structure segmentation cannot rely only on radiometry information
because intensity distributions of grey nuclei are largely overlapping. A priori
knowledge should be introduced. A recent way to provide it is to describe brain
anatomy with generic fuzzy spatial relations [6, 7]. Three kind of relations are
generally considered: distance, symmetry and orientation relations. They are
expressed as 3D fuzzy maps to take into account the generic nature of the pro-
vided knowledge. Each subcortical structure is described by a set of such generic
fuzzy spatial relations provided by a brain anatomist. Fusion operators between
fuzzy sets are then used to combine the knowledge provided by each spatial
relation and provide a generic Fuzzy Localization Map (FLM) of the structure
in the volume. The FLM f l of structure l is used in two ways: first it dynami-
cally provides the structure subvolume Vl containing the structure l by a simple
thresholding. Second, it can be integrated as an a priori anatomical knowledge
in the MRF framework via the external field {αi, i ∈ Vl}. We denote by f l

i the
value of f l at voxel i and propose to introduce the prior fuzzy knowledge of the
FLM as relative prior weights for each voxel i, by setting αl

i = t[αl
i(eB), αl

i(eS)]
to αl

i = γ t[− log
(
1− f l

i

)
, − log f l

i ], where γ > 0 adjusts the influence of the
external field. When f l

i ≈ 0, voxel i is unlikely to belong to the structure. It
follows αl

i(eB) < αl
i(eS) which favors in (4) the background class. When f l

i ≈ 1,
voxel i is likely to belong to the structure. In that case αl

i(eB) > αl
i(eS) and the

class structure is favored.
Cooperation and coordination mechanisms between MRF models.
Let CT→S(l) (resp. CS→T (c)) denotes the tissue (resp. structure) subvolumes that



Fig. 1. Cooperative LOCUS-TS approach: for tissues (left), a LOC-EM cycle is dis-
tributed to each subvolume. For structures (right), each structure subvolume is asso-
ciated to an EM cycle which cooperates with tissues.

overlap with the structure subvolume Vl (resp. tissue subvolume Vc). CS→S (l)
denotes structures using l as a reference in a spatial relation. MRF models co-
operate to make the segmentations gradually more accurate as described below.

- Updating structure models via tissue models: each structure l being composed
of a single tissue T l ∈ {eCSF , eGM , eWM}, we do not estimate intensity models
of class structure and class background. We rather compute them from tissue
intensity models by setting for i ∈ Vl:{

p
(
yi

∣∣si = eS , Ψ l
y,i

)
= p

(
yi

∣∣ti = T l, Ψy,i

)
p

(
yi

∣∣si = eB , Ψ l
y,i

)
= max

t∈{eCSF ,eGM ,eW M}
p (yi |ti = t, Ψy,i ) ,

so that improvements in tissue intensity models estimation are dynamically taken
into account by structure models.
- Feedback of Structure Segmentation on Tissue Segmentation: conversely, re-
sults from structure models are integrated in the tissue model via the external
field λc (see Eq. 3). We express it as the disjunctive fusion over l of posteriori
probabilities p

(
s
∣∣y, Ψ l

)
coming from structures l of CS→T (c). It follows that

structure segmentation is not reduced to a second step but is combined to tissue
segmentation to improve their performances.



- Updating Fuzzy Maps: when the segmentation of structure l is updated the
structure models of CS→S (l) take it into account by re-computing their spatial
relations with respect to l, making the knowledge gradually more accurate.
A synthetic view of our approach is given in Fig 1.

3 Results

The evaluation was performed using both phantoms and real 3T brain scans. We
first quantitatively compared LOCUS-T to two well known approaches, FAST [2]
of FSL and SPM5 [8], with the Dice similarity metric on the BrainWeb phantoms
[9] with 40% of nonuniformity and different noise values (see Fig. 2). Fig. 3 shows
a visual evaluation on a very high bias field real 3Tesla brain scan4. Next, we
evaluated the cooperative tissue and structure segmentations. Three experts have
manually segmented on BrainWeb the left caudate nucleus, the left putamen and
the left thalamus, from which we computed a ground truth segmentation using
STAPLE [10]. Fig. 4 illustrates the gradual improvements of tissue and structure
segmentations provided by LOCUS-TS. At the first convergence (time t0) of EM,
the Dice index is respectively 0.76, 0.77 and 0.72 for the caudate nucleus, the
putamen and the thalamus. At the end, it reaches 0.76, 0.79 and 0.80. Fig. 5
shows qualitative evaluation of LOCUS-TS on a real 3T brain scan.

4 This image was acquired with a surface coil which provides a high sensitivity in a
small region (here the occipital lobe) for functional imaging applications.

Fig. 2. Comparison of LOCUS-T, FSL and SPM5 on the BrainWeb phantoms.

(a) (b) (c) (d)

Fig. 3. Tissue segmentations provided by SPM5 (b), FSL (c) and LOCUS-T (d).



(a) (b) (c) (d)

Fig. 4. Segmentation by LOCUS-TS on BrainWeb(a), 3D structure reconstruction(b),
gradual improvement of putamen segmentation(c) and corresponding tissue segmenta-
tion(d).

(a) (b) (c) (d)

Fig. 5. Segmentation by LOCUS-TS on a real 3T image(a), 3D structure reconstruc-
tion(b), gradual improvement of thalamus segmentation(c) and tissue segmentation(d).

4 Discussion

Classical global approaches require to estimate an explicit bias field model to
take into account the tissue intensity inhomogeneities [8, 11]. This model relies
on the non realistic assumption of a single multiplicative bias field affecting all
tissue classes equally. In contrast, the local estimation of MRF parameters in
different subvolumes intrinsically handles tissue intensity inhomogeneities. Our
approach, with specific cooperation mechanisms between local models, appears
to be an elegant and time efficient way to ensure global consistency of local
models for tissue segmentation. It shows a significantly higher robustness to
noise when compared to SPM5 (see Fig. 2), and more generally comparable
results for a reduced computing time, namely, approximately 4min for LOCUS-
T and respectively 8min and 14min for FSL and SPM5 on a 4Ghz Pentium, 1Go
RAM. It illustrates that easy-to-segment subvolumes converge quickly, allowing
the system to focus on other areas. LOCUS-T appears to be robust to very high
intensity inhomogeneities as well (see Fig. 3), while SPM5, which uses an a priori
atlas, fails in the segmentation and FSL does not estimate a correct bias field.
In addition, instead of considering structure segmentation as a postprocessing,
we propose to combine tissue and structure segmentations in a cooperative way:
tissue and structure models are mutually updated, making both models gradually
more accurate and providing optimal results (see Fig. 4 and 5). Improvements



are particularly significant for structures such as thalamus or putamen for which
contrast to noise ratio is low (see Dice index improvement in Section 3). As
regards the additional use of a priori anatomical knowledge, standard structure
segmentation approaches rely on global atlas and atlas warping methods which
are very time consuming and limited due to inter-subject variability. We consider
instead an a priori description of brain anatomy based on fuzzy spatial relations.
This was introduced in [6] with a region-based approach, while it is used in [7] in
a deformable model framework. However, the image preprocessing steps required
to ensure the stabilization of the deformable model on the true frontiers of the
objects make their approaches difficult to apply on high field images, with high
intensity nonuniformity, or on non homogeneous structures such as putamen.
Our solution consists in introducing fuzzy localization constraints as relative
prior weights for each voxel in the MRF framework. It does not suffer from
such difficulties as can be illustrated on structures such as putamen, and is
still time efficient (10 to 15min). To conclude, the robustness and modularity
of our LOCUS approach appear as interesting features when handling complex
segmentation tasks. Efficiency is improved both in term of results quality and
computing time.
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