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ABSTRACT

We address the issue of jointly detecting brain activity and esti-
mating brain hemodynamics from functional MRI data. To this end,
we adopt the so-called Joint-Detection-Estimation (JDE) framework
introduced in [?] and augmented in [?]. An inherent difficulty is to
find the right spatial scale at which brain hemodynamics estimation
makes sense. The voxel level is clearly not appropriate as estimating
a full hemodynamic response function (HRF) from a single voxel
time course may suffer from a poor signal-to-noise-ratio and lead
to potentially misleading results (non-physiological HRF shapes).
More robust estimation can be obtained by considering groups of
voxels (i.e. parcels) with some functional homogeneity properties.
Current JDE approaches are therefore based on an initial parcella-
tion but with no guarantee of its optimality or goodness. In this work,
we propose a joint parcellation-detection-estimation (JPDE) proce-
dure that incorporates an additional parcel estimation step solving
this way both the parcellation choice and robust HRF estimation is-
sues. As in [?], inference is carried out in a Bayesian setting using
variational approximation techniques for computational efficiency.

Index Terms— Variational EM, MRF, Biomedical signal detection,
Magnetic resonance imaging.

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is a powerful tool
to non-invasively study the relation between cognitive task and cere-
bral activity through the analysis of the hemodynamic BOLD sig-
nal [?]. Within-subject analysis in event-related fMRI first relies
on (i) a detection step to localize which parts of the brain are acti-
vated by a given stimulus type, and second on (ii) an estimation step
to recover the temporal dynamics of the brain response. Most ap-
proaches to detect neural activity rely on a single a priori model for
the temporal dynamics of activated voxels also known as the hemo-
dynamic response function (HRF) [?]. A canonical HRF is usu-
ally assumed for the whole brain although there has been evidence
that this response can vary with space or region, across subjects and
groups [?]. In addition, a robust and accurate estimation of the HRF
is possible only in regions that elicit an evoked response to an ex-
perimental stimulus [?]. Both issues of properly detecting evoked
activity and estimating the HRF then play a central role in fMRI
data analysis. They are usually dealt with independently with no
possible feedback although both issues are strongly connected one
to another. To introduce more flexibility regarding the assumptions
on the HRF model, a novel approach referred to as the Joint De-
tection Estimation(JDE) framework has been introduced in [?] and
extended in [?] to account for spatial correlation between neighbor-
ing voxels in the brain volume (regular lattice in 3D). In this latter
approach, the HRF can be estimated while simultaneously detecting
activity, in a region-based analysis, that is on a set of pre-specified re-
gions of interest (ROI), also named parcels. This approach is mainly
based on: (i) the non-parametric modelling of the HRF at a regional
spatial scale (parcel-level) that provides a fair compromise between

homogeneity of the BOLD signal and reproducibility of the HRF
estimate; (ii) prior information about the temporal smoothness of
the HRF to be estimated; and (iii) the modelling of spatial correla-
tion between neighboring voxels within each parcel using condition-
specific hidden Markov fields. In [?,?], posterior inference is carried
out in a Bayesian setting using Monte Carlo Markov Chain (MCMC)
methods. In order to overcome the high computational cost of this
MCMC-based approach, an alternative with similar performance has
been proposed in [?] based on Variational Expectation Maximization
(VEM) algorithm. However, one current limitation of all these JDE
approaches lies in the prior decomposition of the brain into func-
tionally homogeneous regions (parcels) required so as to estimate
parcel-based HRFs. Those parcels should be small enough to guar-
antee the invariance of the HRF within each parcel but large enough
to contain reliable information for the estimation. This spatial scale
trade-off is currently decided on an appropriate external a priori par-
cellation. Ideally, the parcellation should instead be dictated by the
data under consideration. We propose then to further constrain the
HRF estimation by incorporating for parcel estimation an additional
layer in the model and to carry out inference in a variational set-
ting. In this novel Joint-Parcellation-Detection-Estimation (JPDE)
model, a parcel is a set of connected voxels with different individual
HRFs but that can be seen as local perturbations of the same parcel-
specific HRF pattern. The hemodynamics estimation reduces then to
the identification of a limited number (say K) of such HRF patterns.
This amounts to reformulating parcel identification as a clustering
problem where each voxel is assigned an HRF group among K pos-
sible groups. Equivalently, we relax the assumption of a unique HRF
model by parcel by considering voxel-varying HRFs but to reduce
the number of parameters to be estimated, these HRFs are modelled
as realizations of a K-component mixture model. As a by product,
a parcellation estimation can be derived by considering that each
set of connected voxels in the same HRF group defines a parcel.
The group variables will be governed by a hidden Markov Model
to enforce spatial correlation, i.e. favor group assignments to vary
smoothly. Finally, the overall scheme will iteratively and alternately
identify parcels and HRF groups. The proposed approach makes the
JDE framework fully automatic and more flexible. It is based on a
VEM algorithm to derive estimates of the HRF, the Neural Response
Levels (NRLs), the corresponding labels (activating/non-activating
voxels) and the HRF group labels.

The rest of this paper is organized as follows. In Section 2, the
JDE framework is presented and extended to JPDE with a whole-
brain model. The new model inference is detailed in Section 3. Fi-
nally, results on realistic artificial fMRI data are reported in Sec-
tion 4, and some conclusions are drawn in Section 5.

2. A JOINT DETECTION-ESTIMATION MODEL
Matrices (resp. vectors) are denoted with bold upper (resp. lower)
case letters such as P (resp. h). A vector is by convention a column
vector. The transpose is denoted by t. Unless stated otherwise, sub-
scripts j,m, k, i and n are respectively indexes over voxels, stimulus



types, HRF groups, activation classes and time point. The Gaussian
distribution with mean µ and variance Σ is denoted usingN (µ,Σ).

2.1. Observation BOLD model
We first extend the parcel-based JDE model of [?,?] to a whole-brain
one and recast it in a missing data framework. Let us partition the
set of voxels (P) in the brain into K groups, each of them having
homogeneous functional properties, i.e a unique HRF model: P =
(Pk)k=1:K . At avoxel j, the fMRI time series yj is measured at
times (nTR)n=1:N , N being the number of scans and TR the time
of repetition. The number of different stimulus types or experimental
conditions is M . For a given voxel, a BOLD signal model (the same
for all voxels) is used in order to link the observed data Y = {yj ∈
RN , j ∈ P} to the voxel-dependent HRFs hj ∈ RD+1 and to the
response amplitudesA = {am,m = 1 : M} with am = {amj , j ∈
P} and amj being the amplitude at voxel j for condition m. More
specifically, the observation model at each voxel j ∈ P is expressed
as follows:

yj = Sjhj + P `j + εj , with Sj =

M∑
m=1

amj Xm (1)

where Sjhj is the summation of the stimulus-induced components
of the BOLD signal. The binary matrix Xm = {xn−d∆t

m , n = 1 :
N, d = 0 : D} is of size N × (D + 1) and provides informa-
tion on the stimuli occurrences for the m-th experimental condi-
tion, ∆t < TR being the sampling period of the unknown HRFs
hj = (hd∆t)d=0:D . We denote by H = {hj , j ∈ P} the set
of all HRFs. The scalar amj ’s are weight that model the transition
between stimulations and the vascular response. This response is a
consequence of the neuronal excitation which is commonly assumed
to occur with stimulations. It follows that the amj ’s are generally re-
ferred to as Neural Response Levels (NRL). The rest of the signal is
made of matrix P , which corresponds to physiological artifacts ac-
counted for via a low frequency orthonormal function basis of size
N×O. At each voxel j is associated a vector of low frequency drifts
`j ∈ RO which has to be estimated. These vectors may be grouped
into the same matrix L = {`j , j ∈ P}. Regarding the observation
noise, the εj’s are assumed to be independent with εj ∼ N (0,Γ−1

j )
at voxel j (see Section 2.2.1 for more details). The set of all unknown
precision matrices is denoted by Γ = {Γj , j ∈ P}.
Detection is handled through the introduction of activation class as-
signmentsQ = {qm,m = 1 : M} where qm =

{
qmj , j ∈ P

}
and

qmj represents the activation class at voxel j for experimental condi-
tion m. Without loss of generality, the number of classes considered
here is I = 2 for activated (i = 2) and non-activated (i = 1) vox-
els. Finally, parcellation is performed by introducing another set of
hidden variablesZ = {zj , j ∈ P} where zj ∈ {1 : K} denotes the
group or HRF class at voxel j (zj = k means that voxel j belongs
to the k-th group).

2.2. Hierarchical model of the complete data distribution
With standard additional assumptions [?, ?, ?], and omitting the
dependence on the parameters to be specified later, the distribution
of both the observed and hidden variables can be decomposed as
p(Y ,A,H,Z,Q) = p(Y |A,H) p(A |Q) p(H |Z) p(Q) p(Z).

2.2.1. Likelihood

In [?], an autoregressive (AR) noise model has been adopted to ac-
count for serial correlations in fMRI time series. It has also been
show in [?] that a spatially-varying AR noise model helped to con-
trol false positive rate. In the same context, we will therefore assume
εj ∼ N (0,Γ−1

j ) with Γj = σ−2
j Λj where Λj is a tridiagonal

symmetric matrix which depends on the AR(1) parameter ρj [?]:
(Λj)1,1 = (Λj)N,N = 1, (Λj)n,n = 1+ρ2

j for n = 2 : N −1 and
(Λj)n+1,n = (Λj)n,n+1 = −ρj for n = 1 : N−1. The likelihood
can therefore be written as:

p(Y |A,H;L,θ0) ∝
∏
j∈P

|Γj |1/2 exp
(
−1

2
yt
jΓjyj

)
, (2)

where |Γj | = σ−2N
j |Λj | and |Λj | = 1−ρ2

j , θ0 = {ρj , σ2
j , j ∈ P}

and yj = yj − P `j − Sjhj .

2.2.2. Model priors

Neuronal response levels. Akin to [?, ?, ?], the NRLs are as-
sumed to be statistically independent across conditions: p(A;θa) =∏
m

p(am;θm) where θa = {θm,m = 1 : M} and θm gathers

the parameters for the m-th condition. A mixture model is then
adopted by using the allocation variables qmj to segregate acti-
vated voxels (qmj = 2) from non-activated ones (qmj = 1). For
the m-th condition, and conditionally to the assignment variables
qm, the NRLs are assumed to be independent: p(am | qm;θm) =∏
j∈P

p(amj | qmj ;θm) with p(amj | qmj = i;θm) ∼ N (µmi, vmi) and

θm = {µmi, vmi, i = 1, 2}. We also write µ={µm,m = 1 : M}
with µm = {µm1, µm2} and v = {vm,m = 1 : M} with
vm = {vm1, vm2}. For non-activating voxels we set for all m,
µm1 =0. The other parameters have to be estimated.
Activation classes. As in [?, ?], we assume prior independence be-
tween the M experimental conditions regarding the activation class

assignments. It follows that p(Q) =
M∏

m=1

p(qm;βm) where we as-

sumed in addition that p(qm;βm) is a spatial Markov prior, namely
an Ising model with interaction parameter βm [?]:

p(qm;βm) ∝ exp
(
βmU(qm)

)
, (3)

where U(qm) =
∑

j∼j′ δ(q
m
j , q

m
j′ ) and ∀(a, b) ∈ R2 , δ(a, b) =

1 if a = b and 0 otherwise. The notation j ∼ j′ means that the
summation is over all neighboring voxels. The neighboring system
covers a 3D scheme through the brain. The unknown parameters
are denoted by β = {βm,m = 1 : M}. In what follows, we will
consider a 6-connexity 3D neighboring system.
HRF groups. In order to promote parcellation regularity, we use
here a spatial Markov prior, namely an Ising model with interaction
parameter βz:

p(Z;βz) ∝ exp
(
βzU(Z)

)
, (4)

where U(Z) =
∑

j∼j′ δ(zj , zj′). We use here the same 6-
connexity 3D neighboring system as before.
HRF. In contrast to [?, ?, ?] where a unique HRF is used for a
whole parcel and where a smoothness constraint is imposed for
the HRF by controlling its second order derivative, we define here
p(H|Z) =

∏
j∈P

p(hj | zj) where p(hj | zj = k) ∼ N (h̄k, Σ̄k).

The distribution on hj is expressed conditionally to the HRF group
variable zj . Regularity across neighbouring voxels is then favored
via the Markov prior on Z.

For the complete model, the whole set of parameters is denoted by
Θ =

{
Γ,L,µ,v,β, βz, (h̄k, Σ̄k)1≤k≤K

}
and belong to a set Θ.



3. ESTIMATION BY VARIATIONAL EM

We propose to use an Expectation-Maximization (EM) framework to
deal with the missing data namely, A ∈ A, H ∈ H, Q ∈ Q, Z ∈
Z . LetD be the set of all probability distributions onA×H×Q×Z .
EM can be viewed as an alternating maximization procedure of a
function F on D, F(p,Θ) = Ep

[
log p(Y ,A,H,Q,Z |Θ)

]
+

G(p) where Ep

[
.
]

denotes the expectation with respect to p and
G(p) = −Ep

[
log p(A,H,Q,Z)

]
is the entropy of p. At iteration

(r), denoting the current parameter values by Θ(r−1), the alternat-
ing procedure proceeds as follows:

E-step: p(r)
A,H,Q,Z = arg max

p∈D
F(p,Θ(r−1)) (5)

M-step: Θ(r) = arg max
Θ∈Θ

F(p
(r)
A,H,Q,Z ,Θ) (6)

However, the optimization step in Eq. (5) leads to p
(r)
A,H,Q,Z =

p(A,H,Q,Z |Y ,Θ(r−1)), which is intractable for our model.
Hence, we resort to a variational EM variant in which the intractable
posterior is approximated as a product of four pdfs on A, H, Q
and Z respectively. The intractable E-step is instead solved over
D̃, a restricted class of probability distributions chosen as the set
of distributions that factorize as p̃A,H,Q,Z = p̃Ap̃H p̃Qp̃Z where
p̃A, p̃H , p̃Q and p̃Z are probability distributions on A, H, Q and
Z respectively. It follows then that our E-step becomes an approxi-
mate E-step, which can be further decomposed into four stages that
consist of updating the four pdfs, p̃H , p̃A, p̃Q and p̃Z , in turn using
four equivalent expressions of F when p factorizes as in D̃. At iter-
ation (r), with current estimates denoted by q(r−1)

A , q
(r−1)
Q , q(r−1)

Z

and Θ(r−1), the updating rules become (using the Kullback-Leibler
divergence properties):

E-H: p̃(r)
H (h) ∝ exp

(
E

p̃
(r−1)
A

p̃
(r−1)
Z

[
log p(h |Y ,A,Z; Θ(r−1)])

(7)

E-A: p̃(r)
A (A) ∝ exp

(
E

p̃
(r)
H

p̃
(r−1)
Q

[
log p(A |Y ,H,Q; Θ(r−1))

])
(8)

E-Q: p̃(r)
Q (Q) ∝ exp

(
E

p̃
(r)
A

[
log p(Q |Y ,A; Θ(r−1))

])
(9)

E-Z: p̃(r)
Z (Z) ∝ exp

(
E

p̃
(r)
H

[
log p(Z |Y ,H; Θ(r−1)]) . (10)

The M-step writes (since Θ and G(p
(r)
A,H,Q,Z) are independent):

M: Θ(r) = arg max
Θ

E
p̃
(r)
A

p̃
(r)
H

p̃
(r)
Q

p̃
(r)
Z

[
log p(Y ,A,H,Q,Z; Θ)

]
.

(11)

For the E-H and E-A steps it follows from standard algebra that
q

(r)
H and q

(r)
A are both Gaussian distributions: p̃

(r)
H =

∏
j∈P

p̃
(r)
Hj

and p̃(r)
A =

∏
j∈P

p̃
(r)
Aj

, where p̃(r)
Hj
∼ N (m

(r)
Hj
,Σ

(r)
Hj

) and q(r)
Aj
∼

N (m
(r)
Aj
,Σ

(r)
Aj

). More specifically, assuming current values for the

m
(r−1)
Aj

, Σ
(r−1)
Aj

and p̃(r−1)
Qm

j
, the rth iteration starts with:

• E-H step: Compute

Σ
(r)−1
Hj

= V1 + V2 (12)

m
(r)
Hj

= Σ
(r)
Hj

(m1 +m2), (13)

where V1 =
∑

m,m′
Σ

(r−1)
Aj

(m,m′)Xt
mΓ

(r−1)
j Xm′ + S̃t

jΓ
(r−1)
j S̃j ,

V2 =
K∑

k=1

p̃
(r−1)
Zj

(k)Σ̄
−1
k , m1 = S̃t

jΓ
(r−1)
j (yj − P `(r−1)

j ) and

m2 =
K∑

k=1

Σ̄
−1
k p̃

(r−1)
Zj

(k)h̄k. Hereabove, S̃j =
M∑

m=1

m
(r−1)
Am

j
Xm

andm(r−1)
Am

j
, Σ(r−1)

Aj
(m,m′) denote respectively them and (m,m′)

entries of the mean vectorm(r−1)
Aj

and covariance matrix Σ
(r−1)
Aj

of

the current p̃(r−1)
Aj

.

• E-A step: Compute Σ
(r)
Aj

= (
I∑

i=1

∆
(r)
ij + H̃

(r)
j )−1 and

m
(r)
Aj

= Σ
(r)
Aj

(
∑I

i=1 ∆
(r)
ij µ

(r)
i + X̃

(r)t

j m
(r)
Hj

)

with µ(r)
i =

[
µ

(r)
1i . . . µ

(r)
Mi

]t
and ∆

(r)
ij = diagM

[
p̃

(r−1)

Q1
j

(i)/v
(r)
1i , . . . , p̃

(r−1)

QM
j

(i)/v
(r)
Mi

]
where

X̃
(r)
j =

[
gt

1 | · · · | gt
M

]t with gm = Γ
(r)
j (yj − P `(r)

j )tXm and

H̃
(r)
j is a M ×M matrix whose (m,m′) entry is

H̃
(r)
j (m,m′) = trace (Σ

(r)
Hj
Xm

tΓ
(r)
j Xm′)

+m
(r)t

Hj
Xt

mΓ
(r)
j Xm′m

(r)
Hj

• E-Q step: It comes
p̃

(r)
Q (Q) =

M∏
m=1

p̃
(r)
Qm(qm) (14)

with p̃
(r)
Qm

(qm) = pm(qm |am = m
(r)
A (m);v(r)

m , β(r)
m )

where pm is a Potts model with interaction parameter β(r)
m and ex-

ternal field α(r)
m = {α(r)

mj , j ∈ P}

with α(r)
mj = −1

2
Σ

(r)
Aj

(m,m)
[
1/v

(r)
m1, 1/v

(r)
m2

]t
i.e.

pm(qm;v(r)
m , β(r)

m ) ∝ exp{
∑
j∈P

(
α

(r)
mj(q

m
j ) +

β
(r)
m

2

∑
j∼i

δ(qmi , q
m
j )
)
} .

The expression in (14) is intractable but a number of approxi-
mation techniques are available. In particular, we can use a
mean-field like algorithm (fixing the neighbours to their mean
value) as described in [?] in which q̃Qm(qm) can be approxi-
mated by q̃Qm(qm) =

∏
j∈P

q̃Qm
j

(qmj ) with, if qmj = i, q̃Qm
j

(i) ∝

N (mAj (m);µmi, vmi)pm(Qm
j = i | q̃m∼j ;βm,vm), where q̃m is

a particular configuration of qm updated at each iteration according
to a specific scheme, ∼ j denotes neighbouring voxels to j, and
pm(qmj | q̃m∼j);βm,vm) ∝ exp{αmj(q

m
j ) + βm

∑
l∼j

δ(q̃mj , q
m
l )}.

See [?] for details.
• E-Z step: This step is similar to the E-Q one. Calculations
yield to similar form of p̃Z(z) =

∏
j∈P

p̃Zj (zj) where p̃Zj (k) ∝

N (mHj ; h̄
(r−1)
k , Σ̄

(r−1)
k )pm(Zj = k | z̃∼j ;βz) where z̃ is a par-

ticular configuration of z updated at each iteration according to a
specific scheme and pm(zj | z̃∼j ;βz) ∝
exp{− 1

2
trace(Σ

(r)
Hj

Σ̄
(r−1)−1
zj ) + βz

∑
j∼l

δ(zj , z̃l)}.

• M step:The maximization step can also be divided into four sub-
steps involving separately (µ,σ), β, (`,Γ) and (h̄k, Σ̄k)1≤k≤K .
For the (µ,σ) and (h̄k, Σ̄k)1≤k≤K sub-steps, closed forms can be
analytically derived for the updates. However, numerical resolution
is required for the other sub-steps. For more details, the interested
reader can refer to [?].



4. ILLUSTRATIONS

In this section, the JPDE is validated and compared to the parcel-
based JDE approach. Experiments have been conducted on artificial
fMRI signal generated according to the observation model in Eq. (1).
We simulated a random mixed sequence of indexes coding for M =
2 different stimuli. These two sets of trials (30 trials per stimu-
lus) were then multiplied by stimulus-dependent and space-varying
NRLs, which were generated according to the prior distribution in
Section 2.2.2. To this end, we generated 2D slices composed of 20 x
20 binary labels Qm (activating and non-activating voxels) for each
stimulus type m. Then, we simulated normally-distributed NRLs:
a1
j | q1

j = 1 ∼ N (0, 0.5), a1
j | q1

j = 2 ∼ N (2, 0.5), a2
j | q2

j =

1 ∼ N (0, 0.5), and a1
j | q2

j = 2 ∼ N (2.8, 0.5). HRFs have been
also simulated for each voxel conditionally to a parcellation mask
and according to the prior distribution in Section 2.2.2. This par-
cellation mask (Z) is composed of two parcels having the same
size. Within each parcel, all voxels share the same HRF prior pa-
rameters h̄k and Σ̄k. The first experiment conducted here aims at
demonstrating the robustness of the proposed approach especially in
estimating the HRFs in comparison with parcel-based JDE. In this
simulation, the same HRF prior parameters have been used for both
parcels (1 actual HRF group). For estimation we assume two HRF
groups (one for each parcel) for JPDE. For JDE, the two parcels are
considered as one parcel (with a single HRF model). Regarding es-
timated NRLs, results (not displayed here) show that JDE is more
robust in terms of Mean Square Error (MSE), which was expected
due to the model mis-specification in the JPDE case (MSEJDE =
0.020 and MSEJPDE = 0.025). However, estimated HRFs show
that the new approach allows retrieving more accurate HRFs due to
the new mixture prior. Fig. 1[left] shows reference and estimated
HRFs using both methods (red and yellow curves correspond to the
HRF expectation across each parcel). From a qualitative viewpoint,
it is worth noticing that the proposed method better estimates the
HRF tail compared to JDE. In terms of MSE, obtained values con-
firm the superiority of our approach from a quantitative viewpoint
(MSEJDE = 1.7010−5 and MSEJPDE = 3.0910−7).
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Fig. 1. Ground truth and estimated HRFs using JDE and JPDE.
The second experiment has been conducted to validate the robust-
ness of the proposed approach when the HRF properties of the
considered parcels are really different (two actual HRF groups).
For estimation, K = 2 is still assumed for JPDE while JDE can-
not account for more than one HRF group. Fig. 1[right] illustrates
reference and estimated HRFs with both methods (red and yellow
curves correspond to the HRF expectation across each parcel). It
is clear that the proposed approach allows retrieving accurate HRF
estimates for each parcel, while JDE estimates a HRF which lies
between the two groups (Parcel 1: MSEJPDE = 5.3410−6,
MSEJDE = 1.1010−4; Parcel 2: MSEJPDE = 1.4410−6,
MSEJDE = 1.3610−4). This results confirms the superiority
of the proposed approach in allowing variability of HRFs across
voxels compare to the single HRF model assumed in JDE.
As regards activation detection, Fig. 2 plots the ROC curves for both
algorithms. These activation classification results show that JPDE
allows well detecting activations, and even slightly outperforms
JDE.

Fig. 2. ROC curves for activation classification using JDE and JPDE.

5. CONCLUSION
We proposed an extension (JPDE) to the joint detection-estimation
framework that does not depend on the choice of an initial brain
parcellation. Preliminary experiments showed that this approach
achieved similar and even better results than the standard JDE
and future work includes the application of our method to real 3D
datasets on the whole brain. In addition, this new framework raises
the question of model selection, in particular the issue of choosing
the right number of HRF groups at best i.e. in a sparse manner so
as to capture the spatial variability in hemodynamic territories while
enabling the reproducibility of parcel identification across fMRI
datasets. This question should be the most critical to validate our
approach but also the most interesting to neuroscientists in case of
success. For this specific point, we shall investigate variational ap-
proximations of standard information criteria such as the Bayesian
Information Criterion.


