Tumor classification and prediction using robust multivariate clustering of multiparametric MRI

Alexis Arnaud, Florence Forbes, Nicolas Coquery, Benjamin Lemasson & Emmanuel Barbier

Multiparametric MRI
- Several physiological parameters can be mapped with MRI.
- How to integrate and interpret all these maps simultaneously?
- How to use such multi-parametric information to characterize brain tumors?

Proposed approach: Extract and characterize voxels with similar parameter values using multivariate and robust clustering techniques [2].

Multiparametric data set
- **37 rats** with 4 brain tumor models 9L, C6a, C6b, F98.
- 5 physiological parameters:
 - ADC: apparent diffusion constant
 - AUC: vessel permeability
 - CBV: cerebral blood volume
 - CBF: cerebral blood flow
 - StO2: tissue oxygen saturation
- 3 regions of interest manually defined:
 - Tumor
 - Cortex
 - Striatum

Clustering voxels into groups
- Unsupervised clustering with a mixture of generalized multivariate Student distributions.
- Number of clusters automatically determined using Bayesian Information Criterion (BIC): 10 clusters.

Tumor signatures from cluster proportions in each ROI
- Outlier detection: 1 rat was discarded based on its atypical signature for its "healthy" ROI (here the striatum ROI).
- A tumor signature dictionary is built to discriminate rats according to their tumor model.

Relevance of the dictionary
Leave-one-out procedure to assess the signature predictive power:
- **84.6%** of good detections in a previous study [1]
- **97.3%** of good detections with the proposed Student distributions.

Conclusion
Mixtures of generalized Student distributions allow to improve data quality control by allowing automatic outlier detection and to identify discriminative tumor signatures with improved predictive power.

Future work: whole brain analysis
- Clustering using whole brain slices (vs manually selected ROI)
- Automatic determination of ROIs as atypical regions
- Markov modelling to account for voxels spatial dependencies
- Sensitivity analysis to identify discriminative parameters

Futur data analysis pipeline

Main references