Tumor classification and prediction using robust multivariate clustering of multiparametric MRI

Alexis Arnaud, Florence Forbes, Nicolas Coquery, Benjamin Lemasson & Emmanuel Barbier

Multiparametric MRI

- Several physiological parameters can be mapped with MRI.
- How to integrate and interpret all these maps simultaneously?
- How to use such multi-parametric information to characterize brain tumors?
- ► Proposed approach : Extract and characterize voxels with similar parameter values using mutlivariate and robust clustering techniques [2].

Multiparametric data set

Relevance of the dictionnary

Leave-one-out procedure to assess the signature predictive power :
84.6% of good detections in a previous study [1]
97.3% of good detections with the proposed Student distributions

Conclusion

Mixtures of generalized Student distributions allow to improve data quality control by allowing automatic outlier detection and to identify discriminative tumor signatures with improved predictive power.

37 rats with 4 brain tumor models 9L, C6a, C6b, F98.
5 physiological parameters :

- \rightarrow **ADC** : apparent diffusion constant
- \rightarrow AUC : vessel pemeability
- $\blacktriangleright \mathbf{CBV}: \mathrm{cerebral} \ \mathrm{blood} \ \mathrm{volume}$
- $\blacktriangleright \mathbf{CBF}$: cerebral blood flow
- \Rightarrow StO₂ : tissue oxygen saturation
- 3 regions of interest manually defined :

Future work : whole brain analysis

- Clustering using whole brain slices (vs manually selected ROI)
 Automatic determination of ROIs as atypical regions
 Markov modelling to account for voxels spatial dependencies
 Sensitivity analysis to identify discriminative parameters
- ➡ Futur data analysis pipeline :

Clustering voxels into groups

- Unsupervised clustering with a mixture of generalized multivariate Student distributions
- Number of clusters automatically determined using Bayesian Information Criterion (BIC) : 10 clusters

Tumor signatures from cluster proportions in each ROI

- Outlier detection : 1 rat was discarded based on its atypical signature for its « healthy »ROI (here the striatum ROI)
- A tumor signature dictionary is built to discriminate rats according to their tumor model

Main references

 N. Coquery, O. Francois, B. Lemasson, C. Debacker, R. Farion, C. Rmy, E. Barbier. Microvascular MRI and unsupervised clustering yields histology-resembling images in two rat models of glioma. Journal of Cerebral Blood Flow & Metabolism, 2014 Aug; 34(8) :1354-62.

2. F. Forbes and D. Wraith. A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweights : Application to robust clustering. Statistics and Computing, 2014 Nov; 24(6) :971-984.

