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The problem of multimodal clustering arises whenever the data are gath-
ered with several physically different sensors. Observations from dif-
ferent modalities are not necessarily aligned in the sense there there is
no obvious way to associate or compare them in some common space. A
solution may consist in considering multiple clustering tasks indepen-
dently for each modality. The main difficulty with such an approach is
to guarantee that the unimodal clusterings are mutually consistent. In
this letter, we show that multimodal clustering can be addressed within
a novel framework: conjugate mixture models. These models exploit the
explicit transformations that are often available between an unobserved
parameter space (objects) and each of the observation spaces (sensors).
We formulate the problem as a likelihood maximization task and de-
rive the associated conjugate expectation-maximization algorithm. The
convergence properties of the proposed algorithm are thoroughly inves-
tigated. Several local and global optimization techniques are proposed
in order to increase its convergence speed. Two initialization strategies
are proposed and compared. A consistent model selection criterion is
proposed. The algorithm and its variants are tested and evaluated within
the task of 3D localization of several speakers using both auditory and
visual data.

1 Introduction

The unsupervised clustering of multimodal data is a key capability when-
ever the goal is to group observations that are gathered using several physi-
cally different sensors. A typical example is the computational modeling of
biological multisensory perception. This includes the issues of how a human
detects objects that are both seen and touched (Pouget, Deneve, & Duhamel,
2002; Ernst & Banks, 2002), seen and heard (Anastasio, Patton, & Belkacem-
Boussaid, 2000; King, 2004, 2005), or how a human localizes one source
of sensory input in a natural environment in the presence of competing
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stimuli and a variety of noise sources (Haykin & Chen, 2005). More gener-
ally, multisensory fusion (Hall & McMullen, 2004; Mitchell, 2007) is highly
relevant in various other research domains, such as target tracking (Smith
& Singh, 2006) based on radar and sonar data (Naus & van Wijk, 2004;
Coiras, Baralli, & Evans, 2007), mobile robot localization with laser range
finders and cameras (Castellanos & Tardos, 1999), robot manipulation and
object recognition using both tactile and visual data (Allen, 1995; Joshi &
Sanderson, 1999), underwater navigation based on active sonar and under-
water cameras (Majumder, Scheding, & Durrant-Whyte, 2001), audiovisual
speaker detection (Beal, Jojic, & Attias, 2003; Perez, Vermaak, & Blake, 2004;
Fisher & Darrell, 2004), speech recognition (Heckmann, Berthommier, &
Kroschel, 2002; Nefian, Liang, Pi, Liu, & Murphy, 2002; Shao & Barker,
2008), and so forth.

When the data originate from a single object, finding the best estimates
for the object’s characteristics is usually referred to as a pure fusion task,
and it reduces to combining multisensor observations in some optimal
way (Beal et al., 2003; Kushal, Rahurkar, Fei-Fei, Ponce, & Huang, 2006;
Smith & Singh, 2006). For example, land and underwater robots fuse data
from several sensors to build a 3D map of the ambient space regardless of
the number of objects present in the environment (Castellanos & Tardos,
1999; Majumder et al., 2001). The problem is much more complex when
several objects are present and when the task implies their detection, iden-
tification, and localization. In this case, one has to consider two processes
simultaneously: segregation (Fisher, Darrell, Freeman, & Viola, 2001), which
assigns each observation to either an object or an outlier category, and esti-
mation which computes the parameters of each object based on the group
of observations that were assigned to that object. In other words, in addition
to fusing observations from different sensors, multimodal analysis requires
the assignment of each observation to one of the objects.

This observation-to-object association problem can be cast into a
probabilistic framework. Recent multisensor data fusion methods able
to handle several objects are based on particle filters (Checka, Wilson,
Siracusa, & Darrell, 2004; Chen & Rui, 2004; Gatica-Perez, Lathoud, Odobez,
& McCowan, 2007). Notice, however, that the dimensionality of the pa-
rameter space grows exponentially with the number of objects, causing
the number of required particles to increase dramatically and augmenting
computational costs. A number of efficient sampling procedures were sug-
gested (Chen & Rui, 2004; Gatica-Perez et al., 2007) to keep the problem
tractable. Of course, this is done at the cost of loss in model generality, and
hence these attempts are strongly application dependent. Another draw-
back of such models is that they cannot provide estimates of the accuracy
and importance of each modality with respect to each object. The sampling
and distribution estimation are performed in the parameter space, but no
statistics are gathered for the observation spaces. Recently Hospedales and
Vijayakumar (2008) extended the single-object model of Beal et al. (2003)
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to multiple objects: several single-object models are incorporated into the
multiple-object model, and the number of objects is selected by an addi-
tional hidden node, which thus accounts for model selection. This method
also suffers from exponential growth in the number of possible models.

In the case of unimodal data, the problems of grouping observations and
associating groups with objects can be cast into the framework of standard
data clustering, which can be solved using a variety of parametric or non-
parametric techniques. The problem of clustering multimodal data raises
the difficult question of how to group together observations that belong to
different physical spaces with different dimensionalities (e.g., how to group
visual data with auditory data). When the observations from two different
modalities can be aligned pairwise, a natural solution is to consider the
Cartesian product of two unimodal spaces. Unfortunately, such an align-
ment is not possible in most practical cases. Different sensors operate at
different frequency rates, and hence the number of observations gathered
with one sensor can be quite different from the number of observations gath-
ered with another sensor. Consequently, there is no obvious way to align
the observations pairwise. Considering all possible pairs would result in
a combinatorial blow-up and typically create an abundance of erroneous
observations corresponding to inconsistent solutions.

Alternatively, one may consider several unimodal clusterings, provided
that the relationships between a common object space and several observa-
tion spaces can be explicitly specified. Multimodal clustering then results in
a number of unimodal clusterings jointly governed by the same unknown
parameters characterizing the object space.

The original contribution of this letter is to show how the problem of
clustering multimodal data can be addressed within the framework of mix-
ture models (McLachlan & Peel, 2000). We propose a variant of the EM
algorithm (Dempster, Laird, & Rubin, 1977; McLachlan & Krishnan, 1996)
specifically designed to estimate object-space parameters that are indirectly
observed in several sensor spaces. The convergence properties of the pro-
posed algorithm are thoroughly investigated, and several efficient imple-
mentations are described in detail. The proposed model is composed of a
number of modality-specific mixtures. These mixtures are jointly governed
by a set of common object-space parameters (which will be referred to as
the tying parameters), thus esnsuring consistency between the sensory data
and the object space being sensed. This is done using explicit transforma-
tions from the unobserved parameter space (object space) to each of the
observed spaces (sensor spaces). Hence, the proposed model is able to deal
with observations that live in spaces with different physical properties such
as dimensionality, space metric, and sensor sampling rate. We believe that
linking the object space with the sensor spaces based on object-space-to-
sensor-space transformations has more discriminative power than existing
multisensor fusion techniques and hence performs better in terms of mul-
tiple object identification and localization. To the best of our knowledge,
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there has been no previous attempt to use a generative model, such as ours,
for the task of multimodal data interpretation.

In section 2 we formally introduce the concept of conjugate mixture
models. Standard gaussian mixture models (GMM) are used to model the
unimodal data. The parameters of these gaussian mixtures are governed
by the object parameters through a number of object-space-to-sensor-space
transformations (one transformation for each sensing modality). Through
the letter, we will assume a very general class of transformations: nonlin-
ear Lipschitz continuous functions (see below). In section 3 we cast the
multimodal data clustering problem in the framework of maximum like-
lihood, and we explicitly derive the expectation and maximization steps
of the associated EM algorithm. While the E-step of the proposed algo-
rithm is standard, the M-step implies nonlinear optimization of the ex-
pected complete-data log likelihood with respect to the object parameters.
We investigate efficient local and global optimization methods. More specif-
ically, in section 4 we prove that, provided that the object-to-sensor func-
tions as well as their first derivatives are Lipschitz continuous, the gradient
of the expected complete-data log likelihood is Lipschitz continuous as
well. The immediate consequence is that a number of recently proposed
optimization algorithms specifically designed to solve Lipschitzian global
optimization problems can be used within the M-step of the proposed algo-
rithm (Zhigljavsky & Žilinskas, 2008). Several of these algorithms combine a
local maximum search procedure with an initializing scheme to determine,
at each iteration, good initial values from which the local search should be
performed. This implies that the proposed EM algorithm has guaranteed
convergence properties. Section 5 discusses several possible local search
initialization schemes, leading to different convergence speeds. In section 6
we propose and compare two possible strategies to initialize the EM al-
gorithm. Section 7 is devoted to a consistent criterion to determine the
number of objects. Section 8 illustrates the proposed method with the task
of audiovisual object detection and localization using binocular vision and
binaural hearing. Section 10 analyzes in detail the performances of the pro-
posed model under various practical conditions with both simulated and
real data. Finally, section 11 concludes the letter and provides directions for
future work.

2 Mixture Models for Multimodal Data

We consider N objects n = 1, . . . , N. Each object n is characterized by a
parameter vector of dimension d , denoted by sn ∈ S ⊆ R

d . The set s =
{s1, . . . , sn, . . . , sN} corresponds to the unknown tying parameters. The ob-
jects are observed with a number of physically different sensors. Although,
for clarity, we consider two modalities, generalization is straightforward.
Therefore, the observed data consist of two sets of observations denoted, re-
spectively, by f = { f 1, . . . , f m, . . . , f M} and g = {g1, . . . , gk, . . . , gK } lying
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in two different observation spaces of dimensions r and p, f m ∈ F ⊆ R
r

and gk ∈ G ⊆ R
p.

One key ingredient of our approach is that we consider the transforma-
tions {

F : S → F

G : S → G
(2.1)

that map S, respectively, into the observation spaces F and G. These transfor-
mations are defined by the physical and geometric properties of the sensors,
and they are supposed to be known. We treat the general case when both F
and G are nonlinear.

An assignment variable is associated with each observation, thus indi-
cating the object that generated the observation: A = {A1, . . . , Am, . . . , AM}
and B = {B1, . . . , Bk, . . . , BK }. Hence, the segregation process is cast into
a hidden variable problem. The notation Am = n (resp. Bk = n) means that
the observation f m (resp. gk) was generated by object n. In order to ac-
count for erroneous observations, an additional N + 1-th fictitious object is
introduced to represent an outlier category. The notation Am = N + 1 (resp.
Bk = N + 1) means that f m (resp. gk) is an outlier. Note that we will also use
the following standard convention: uppercase letters for random variables
(A and B) and lowercase letters for their realizations (a and b). The usual
conditional independence assumption leads to

P(f, g|a, b) =
M∏

m=1

P( f m|am)
K∏

k=1

P(gk |bk). (2.2)

In addition, all assignment variables are assumed to be independent:

P(a, b) =
M∏

m=1

P(am)
K∏

k=1

P(bk). (2.3)

As discussed in section 11, more general cases, could be considered. How-
ever, we focus on the independent case, for it captures most of the features
relevant to the conjugate clustering task and because more general de-
pendence structures could be reduced to the independent case by using
appropriate variational approximation techniques (Jordan, Ghahramani,
Jaakkola, & Saul, 1998; Celeux, Forbes, & Peyrard, 2003).

Next we define the following probability density functions for all n =
1 . . . N, N + 1, for all f m ∈ F, and for all gk ∈ G:

PF

n ( f m) = P( f m|Am = n), (2.4)

PG

n (gk) = P(gk |Bk = n). (2.5)
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More specifically, the likelihoods for an observation to belong to an object
n are gaussian distributions whose means F(sn) and G(sn) correspond to
the object’s parameter vector sn mapped to the observation spaces by the
transformations F and G:

PF

n ( f m) =N ( f m; F(sn),�n), (2.6)

PG

n (gk) =N (gk; G(sn),�n), (2.7)

with

N ( f m; F(sn),�n) = 1
(2π )r/2|�n|1/2 exp

(
−1

2
‖ f m − F(sn)‖2

�n

)
, (2.8)

where the notation ‖v − w‖2
� stands for the Mahalanobis distance (v −

w)��−1(v − w) and � stands for the transpose of a matrix. The likelihoods
of outliers are taken as two uniform distributions:

PF

N+1( f m) =U( f m; V), (2.9)

PG

N+1(gk) =U(gk; U), (2.10)

where V and U denote the respective support volumes. We also define
the prior probabilities π = (π1, . . . , πn, . . . , πN+1) and λ = (λ1, . . . , λn, . . . ,

λN+1):

πn = P(Am = n), ∀m = 1, . . . , M, (2.11)

λn = P(Bk = n), ∀k = 1, . . . , K . (2.12)

Therefore, f m and gk are distributed according to two (N + 1)-
component mixture models, where each mixture is made of N gaussian
components and one uniform component:

P( f m) =
N∑

n=1

πnN ( f m; F(sn),�n) + πN+1U( f m; V), (2.13)

P(gk) =
N∑

n=1

λnN (gk; G(sn),�n) + λN+1U(gk; U). (2.14)

The log likelihood of the observed data can then be written as

L(f, g, θ ) =
M∑

m=1

log

(
N∑

n=1

πnN ( f m; F(sn),�n) + πN+1U( f m; V)

)
+

+
K∑

k=1

log

(
N∑

n=1

λnN (gk; G(sn),�n) + λN+1U(gk; U)

)
, (2.15)
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Figure 1: Graphical representation of the conjugate mixture model. Circles
denote random variables and the plates (rectangles) around them represent
multiple similar nodes, their number being given in the plates.

where

θ ={π1, . . . , πN, πN+1, λ1, . . . , λN, λN+1, s1, . . . , sN,

�1, . . . ,�N,�1, . . . ,�N} (2.16)

denotes the set of all unknown parameters to be estimated using a maximum
likelihood principle.

The graphical representation of our conjugate mixture model is shown
in Figure 1. We adopted the graphical notation introduced in Bishop
(2006) to represent similar nodes in a more compact way: the M (resp.
K ) similar nodes are indicated with a plate. The two sensorial modali-
ties are linked by the tying parameters s1, . . . , sN shown between the two
plates.

3 Generalized EM for Clustering Multimodal Data

Given the probabilistic model just described, we wish to determine the pa-
rameter vectors associated with the objects that generated observations in
two different sensory spaces. It is well known that direct maximization of
the observed-data log likelihood equation 2.15, is difficult to achieve. The
expectation-maximization (EM) algorithm (Dempster et al., 1977; McLach-
lan & Krishnan, 1996) is a standard approach to maximize likelihood func-
tions of type 2.15. It is based on the following representation, for two arbi-
trary values of the parameters θ and θ̃ :

L(f, g, θ ) = Q(θ, θ̃ ) + H(θ , θ̃ ), (3.1)

with Q(θ, θ̃ ) = E[log P(f, g, A, B; θ ) | f, g; θ̃ ], (3.2)

and H(θ , θ̃ ) =−E[log P(A, B | f, g; θ )|f, g; θ̃ ], (3.3)

where the expectations are taken over the hidden variables A and B. Each
iteration q of EM proceeds in two steps:
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� Expectation. For the current values θ (q ) of the parameters, compute the
conditional expectation with respect to variables A and B:

Q(θ, θ (q )) =
∑

a∈{1...N+1}M

∑
b∈{1...N+1}K

P(a, b|f, g; θ (q ))

× log P(f, g, a, b; θ ). (3.4)

� Maximization. Update the parameter set θ (q ) by maximizing equation
3.4 with respect to θ :

θ (q+1) = argmax
θ

Q(θ, θ (q )). (3.5)

It is well known that the EM algorithm increases the target function
L(f, g, θ ) in equation 2.15, that is, the sequence of estimates {θ (q )}q∈N sat-
isfies L(f, g, θ (q+1)) ≥ L(f, g, θ (q )). Standard EM deals with the parameter
estimation of a single mixture model, and a closed-form solution for equa-
tion 3.5 exists in this case. When the maximization 3.5 is difficult to achieve,
various generalizations of EM are proposed. The M step can be relaxed by
requiring just an increase rather than an optimum. This yields generalized
EM (GEM) procedures (McLachlan & Krishnan, 1996, see Boyles, 1983), for
a result on the convergence of this class of algorithms). The GEM algorithm
searches for some θ (q+1) such that Q(θ (q+1), θ (q )) ≥ Q(θ (q ), θ (q )). Therefore, it
provides a sequence of estimates that still verifies the nondecreasing likeli-
hood property, although the convergence speed is likely to decrease. In the
case of conjugate mixture models, we describe in more detail the specific
forms of the E and M steps in the following sections.

3.1 The Expectation Step. Using equations 2.3 to 2.12, we can decom-
pose the conditional expectation 3.4 as

Q(θ, θ (q )) = QF (θ , θ (q )) + QG(θ , θ (q )), (3.6)

with

QF (θ , θ (q )) =
M∑

m=1

N+1∑
n=1

α(q )
mn log

(
πn P( f m|Am = n; θ )

)
, (3.7)

QG(θ , θ (q )) =
K∑

k=1

N+1∑
n=1

β
(q )
kn log

(
λn P(gk |Bk = n; θ )

)
, (3.8)

where α
(q )
mn and β

(q )
kn denote the posterior probabilities α

(q )
mn = P(Am =

n| f m; θ (q )) and β
(q )
kn = P(Bk = n|gk; θ (q )). Their expressions can be derived
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straightforwardly from Bayes’ theorem, ∀n = 1, . . . , N:

α(q )
mn = π

(q )
n N ( f m;F(s(q )

n ),�(q )
n )∑N

i=1 π
(q )
i N ( f m;F(s(q )

i ),�(q )
i ) + V−1π

(q )
N+1

, (3.9)

β
(q )
kn = λ

(q )
n N (gk; G(s(q )

n ),�(q )
n )∑N

i=1 λ
(q )
i N (gk;G(s(q )

i ),�(q )
i ) + U−1λ

(q )
N+1

, (3.10)

and α
(q )
m,N+1 = 1 − ∑N

n=1 α
(q )
mn and β

(q )
k,N+1 = 1 − ∑N

n=1 β
(q )
kn . When equations 2.6

to 2.10 are used, the expressions above further lead to

QF (θ , θ (q )) = −1
2

M∑
m=1

N∑
n=1

α(q )
mn

(‖ f m − F(sn)‖2
�n

+ log((2π)r |�n|π−2
n )

) −

−1
2

M∑
m=1

α
(q )
m,N+1 log(V2π−2

N+1), (3.11)

QG(θ , θ (q )) = −1
2

K∑
k=1

N∑
n=1

β
(q )
kn

(‖gk − G(sn)‖2
�n

+ log((2π)p|�n|λ−2
n )

) −

−1
2

K∑
k=1

β
(q )
k,N+1 log(U2λ−2

N+1). (3.12)

3.2 The Maximization Step. In order to carry out the maximization,
equation 3.5, of the conditional expectation equation 3.4, its derivatives with
respect to the model parameters are set to zero. This leads to the standard
update expressions for priors, more specifically, ∀n = 1, . . . , N + 1:

π (q+1)
n = 1

M

M∑
m=1

α(q )
mn, (3.13)

λ(q+1)
n = 1

K

K∑
k=1

β
(q )
kn . (3.14)

The covariance matrices are governed by the tying parameters s(q+1)
n ∈ S

through the functions F and G, ∀n = 1, . . . , N:

�(q+1)
n (s(q+1)

n ) = 1∑M
m=1 α

(q )
mn

M∑
m=1

α(q )
mn( f m − F(s(q+1)

n ))( f m − F(s(q+1)
n ))�,

(3.15)
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�(q+1)
n (s(q+1)

n ) = 1∑K
k=1 β

(q )
kn

K∑
k=1

β
(q )
kn (gk − G(s(q+1)

n ))(gk − G(s(q+1)
n ))�.

(3.16)

For every n = 1, . . . , N, s(q+1)
n is the parameter vector such that

s(q+1)
n = argmax

s
Q(q )

n (s), (3.17)

where

Q(q )
n (s) =−

M∑
m=1

α(q )
mn(‖ f m − F(s)‖2

�n(s) + log |�n(s)|) −

−
K∑

k=1

β
(q )
kn (‖gk − G(s)‖2

�n(s) + log |�n(s)|). (3.18)

We stress that the covariances �n(s) and �n(s) in equations 3.15 and 3.16
are considered functions of s ∈ S. Hence, at each iteration of the algorithm,
the overall update of the tying parameters can be split into N identical
optimization tasks of the form 3.18. These tasks can be solved in parallel.
In general, F and G are nonlinear transformations, and hence there is no
simple closed-form expression for the estimation of the tying parameters.

3.3 Generalized EM for Conjugate Mixture Models. The initial param-
eters selection of the proposed EM algorithm for conjugate mixture models
uses the procedure Initialize that is given in section 6. The maximization
step uses two procedures, referred to as Choose and Local Search, which are
explained in detail in sections 4 and 5. To determine the number of objects,
we define the procedure Select that is derived in section 7. The overall EM
procedure is outlined below:

1. Apply procedure Initialize to initialize the parameter vector:

θ (0) =
{
π

(0)
1 , . . . , π

(0)
N+1, λ

(0)
1 , . . . , λ

(0)
N+1, s(0)

1 , . . . , s(0)
N ,�

(0)
1 , . . . ,

�
(0)
N ,�

(0)
1 , . . . , �

(0)
N

}
.

2. E step: Compute Q(θ, θ (q )) using equations 3.9 to 3.12
3. M step: Estimate θ (q+1) using the following substeps:

(a) The priors. Compute π
(q+1)
1 , . . . , π

(q+1)
N+1 and λ

(q+1)
1 , . . . , λ

(q+1)
N+1 using

equations 3.13 and 3.14;
(b) The tying parameters. For each n = 1, . . . , N:



V. Khalidov, F. Forbes, and R. Horaud 527

• Apply procedure Choose to determine an initial value, denoted
by s̃(0)

n , as proposed in section 5;
• Apply procedure Local Search to each Q(q )

n (s) as defined in equa-
tion 3.18 starting from s̃(0)

n and set the result to s(q+1)
n using the

equation 3.19 specified below.
(c) The covariance matrices. For every n = 1 . . . N, use equations 3.15

and 3.16 to compute �(q+1)
n and �(q+1)

n .
4. Check for convergence: Terminate; otherwise go to step 2.
5. Apply procedure Select. Use equation 7.1, specified below, to deter-

mine the best N.

This algorithm uses the following procedures:

� Initialize. This procedure aims at providing the initial parameter val-
ues θ (0). Its performance has a strong impact on the time required for
the algorithm to converge. In section 6, we propose different initial-
ization strategies based on single-space cluster detection.

� Select. This procedure applies the BIC-like criterion to determine the
number of objects N. In section 7, we propose the consistent criterion
for the case of conjugate mixture models.

� Choose. The goal of this procedure is to provide at each M-step initial
values s̃(0)

1 , . . . , s̃(0)
N which are likely to be close to the global max-

ima of the functions Q(q )
n (s) in equation 3.18. The exact form of this

procedure is important to ensure the ability of the subsequent Local
Search procedure to find these global maxima. We will use results on
global search algorithms (Zhigljavsky & Žilinskas, 2008) and propose
different variants in section 5.

� Local Search. An important requirement of this procedure is that it
finds a local maximum of the Q(q )

n (s)’s starting from any arbitrary
point in S. In this work, we will consider procedures that consist in
iterating a local update of the form (ν is the iteration index)

s̃n
(ν+1) = s̃n

(ν) + H(q ,ν)
n ∇Q(q )

n (s̃n
(ν)), (3.19)

with H(q ,ν)
n being a positive definite matrix that may vary with ν.

When the gradient ∇Q(q )
n (s) is Lipschitz continuous with some con-

stant L (q )
n , an appropriate choice that guarantees the increase of

Q(q )
n (s̃(ν)) at each iteration ν is to choose H(q ,ν)

n such that it verifies
‖H (q ,ν)

n ‖ ≤ 2/L (q )
n . Different choices for H(q ,ν)

n are possible, and they
correspond to different optimization methods that in general be-
long to the variable metric class. For example H(q ,ν)

n = 2
L (q )

n
I leads to

gradient ascent, while taking H(q ,ν)
n as a scaled inverse of the Hes-

sian matrix would lead to a Newton-Raphson optimization step.
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Other possibilities include Levenberg-Marquardt and quasi-Newton
methods.

4 Analysis of the Local Search Procedure

Each instance of equation 3.18 for n = 1, . . . , N can be solved independently.
In this section, we focus on providing a set of conditions under which each
iteration of our algorithm guarantees that the objective function Q(q )

n (s)
in equation 3.18 is increased. We start by rewriting equation 3.18 more
conveniently in order to perform the optimization with respect to s ∈ S. To
simplify the notation, the iteration index q is sometimes omitted. We simply
write Qn(s) for Q(q )

n (s).
Let ᾱn = ∑M

m=1 α
(q )
mn and β̄n = ∑K

k=1 β
(q )
kn denote the average object weights

in each one of the two modalities. We introduce αn = ᾱ−1
n (α(q )

1n , . . . , α
(q )
Mn)

and βn = β̄−1
n (β (q )

1n , . . . , β
(q )
K n), the discrete probability distributions obtained

by normalizing the object weights. We denote by F and G the random
variables that take their values in the discrete sets { f 1, . . . , f m, . . . , f M}
and {g1, . . . , gk, . . . , gK }. It follows that the expressions for the optimal
variances 3.15 and 3.16 as functions of s can be rewritten as

�(q+1)
n (s) = Eαn [

(
F − F(s)

)(
F − F(s)

)�
], (4.1)

�(q+1)
n (s) = Eβn [

(
G − G(s)

)(
G − G(s)

)�
], (4.2)

where Eαn and Eβn denote the expectations with respect to the distributions
αn and βn. Using some standard projection formula, it follows that the
covariances are

�(q+1)
n (s) = V f + v f v

�
f , (4.3)

�(q+1)(s) = Vg + vgv
�
g , (4.4)

where V f and Vg are the covariance matrices of F and G, respectively,
under distributions αn and βn, and v f and vg are vectors defined by

v f = Eαn [F ] − F(s), (4.5)

vg = Eβn [G] − G(s). (4.6)

For convenience, we omit the index n for V f , Vg , v f , and vg . Let f̄ n = Eαn [F ]
and ḡn = Eβn [G]. This yields

f̄ n = ᾱ−1
n

M∑
m=1

α(q )
mn f m, (4.7)
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ḡn = β̄−1
n

K∑
k=1

β
(q )
kn gk, (4.8)

V f = ᾱ−1
n

M∑
m=1

α(q )
mn f m f �

m − f̄ n f̄ �
n , (4.9)

Vg = β̄−1
n

K∑
k=1

β
(q )
kn gk g�

k − ḡn ḡ�
n . (4.10)

Next we derive a simplified expression for Qn(s) in equation 3.18 in order
to investigate its properties. Notice that one can write equation 3.18 as the
sum Qn(s) = Qn,F (s) + Qn,G(s), with

Qn,F (s) = −
M∑

m=1

α(q )
mn(‖ f m − F(s)‖2

�
(q+1)
n (s)

+ log |�(q+1)
n (s)|), (4.11)

and a similar expression for Qn,G(s). Equation 4.11 can be written as

Qn,F (s) =−ᾱn(Eαn [(F − F(s))��(q+1)
n (s)−1(F − F(s))]

+ log |�(q+1)
n (s)|). (4.12)

The first term of equation 4.12 can be further divided into two terms:

Eαn [(F − F(s))��(q+1)
n (s)−1(F − F(s))] =

= Eαn [(F − f̄ n)��(q+1)
n (s)−1(F − f̄ n)] + v�

f �
(q+1)
n (s)

−1
v f . (4.13)

The Sherman-Morrison formula applied to equation 4.3 leads to

�(q+1)
n (s)−1 = V−1

f − V−1
f v f v

�
f V−1

f /(1 + Dn,F (s)), (4.14)

with

Dn,F (s) = ‖F(s) − f̄ n‖2
V f

. (4.15)

It follows that equation 4.13 can be written as the sum of

Eαn [(F − f̄ n)��(q+1)
n (s)−1(F − f̄ n)] = C f − Dn,F (s)

1 + Dn,F (s)
, (4.16)
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and of

v�
f �

(q+1)
n (s)

−1
v f = Dn,F (s)

1 + Dn,F (s)
. (4.17)

Hence the first term of equation 4.12, namely 4.13, is equal to C f ,
which is constant with respect to s. Moreover, applying the matrix de-
terminant lemma to the second term of equation 4.12, we successively
obtain

log |�(q+1)
n (s)| = log |V f + v f v

�
f | = log |V f | + log(1 + v�

f V−1
f v f ) =

= log |V f | + log(1 + Dn,F (s)). (4.18)

It follows that there is only one term depending on s in equation 4.12:

Qn,F (s) = −ᾱn
(
C f + log |V f | + log(1 + Dn,F (s))

)
. (4.19)

Repeating the same derivation for the second sensorial modality, we obtain
the following equivalent form of equation 3.18:

Qn(s) = −ᾱn log(1 + Dn,F (s)) − β̄n log(1 + Dn,G(s)) + C, (4.20)

where C is some constant not depending on s.
Using this form of Qn(s), we can now investigate the properties of its

gradient ∇Qn(s). It appears that under some regularity assumptions on
F and G, the gradient ∇Qn(s) is bounded and Lipschitz continuous. The
corresponding theorem is formulated and proved. First, we establish as
a lemma some technical results required to prove the theorem. In what
follows, for any matrix V, the matrix norm used is the operator norm
‖V‖ = sup

‖v‖=1
‖Vv‖. For simplicity, we further omit the index n.

Lemma 1. Let V be a symmetric positive definite matrix. Then the function

ϕ(v) = ‖Vv‖/(1 + v�Vv)

is bounded by ϕ(v) ≤ Cϕ(V ) with Cϕ(V ) = √‖V‖/2 and is Lipschitz continuous:

∀v, ṽ ‖ϕ(v) − ϕ(ṽ)‖ ≤ Lϕ(V )‖v − ṽ‖,

where Lϕ(V ) = ‖V‖(1 + μ(V )/2) is the Lipschitz constant and μ(V ) =
‖V‖‖V −1‖ is the condition number of V .



V. Khalidov, F. Forbes, and R. Horaud 531

Proof. We start by introducing w = Vv so that ϕ(v) = ϕ̃(w) = ‖w‖/(1 +
w�V−1w). As soon as w�V−1w ≥ λmin‖w‖2 (where we denoted by λmin

the smallest eigenvalue of V−1, so that in fact λmin = ‖V‖−1), to find the
maximum of ϕ̃(w) we should maximize the expression t/(1 + λmint2) for
t = ‖w‖ ≥ 0. It is reached at the point t∗ = λ

−1/2
min . Substituting this value

into the original expressions gives ϕ(v) ≤ √‖V‖/2.
To compute the Lipschitz constant Lϕ we consider the derivative,

‖∇ϕ̃′(w)‖ =
∥∥(1 + w�V−1w)w − 2‖w‖2V−1w

∥∥
‖w‖(1 + w�V−1w)2

≤ 1 + 2‖V−1‖‖w‖2

(1 + w�V−1w)2
,

from where we find that ‖∇ϕ̃′(w)‖ ≤ 1 + μ(V)/2, and so Lϕ = ‖V‖(1 +
μ(V)/2).

This lemma yields the following main result for the gradient ∇Q:

Theorem 1. Assume functions F and G and their derivatives F ′, and G ′, are
Lipschitz continuous with constants LF , LG , L ′

F , and L ′
G , respectively. Then the

gradient ∇Q is bounded and Lipschitz continuous with some constant L.

Proof. From equation 4.20, the gradient ∇Q can be written as

∇Q(s) =∇QF (s) + ∇QG(s) =

= 2ᾱF ′�(s)V−1
f ( f̄ − F(s))

1 + DF (s)
+ 2β̄G ′�(s)V−1

g ( ḡ − G(s))

1 + DG(s)
. (4.21)

It follows from lemma 1 that ‖∇QF (s)‖ ≤ 2LF ᾱCϕ(V−1
f ) and ‖∇QG(s)‖ ≤

2LG β̄Cϕ(V−1
g ). The norm of the gradient is then bounded by

∥∥∇Q(s)
∥∥ ≤ 2LF ᾱCϕ(V−1

f ) + 2LG β̄Cϕ(V−1
g ). (4.22)

Considering the norm ‖∇QF (s) − ∇QF (s̃)‖, we introduce v1 = f̄ − F(s)
and v2 = f̄ − F(s̃). Then we have

∥∥∇QF (s) − ∇QF (s̃)
∥∥ ≤ 2ᾱ

⎛
⎝

∥∥∥∥∥∥
(F ′(s) − F ′(s̃))�V−1

f v1

1 + ‖v1‖2
V f

∥∥∥∥∥∥ +

+
∥∥∥∥∥∥
F ′�(s̃)V−1

f v2

1 + ‖v2‖2
V f

− F ′�(s̃)V−1
f v1

1 + ‖v1‖2
V f

∥∥∥∥∥∥
⎞
⎠ . (4.23)
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Using lemma 1 with V−1
f we have

∥∥∇QF (s) − ∇QF (s̃)
∥∥ ≤ 2ᾱ

(
L ′
FCϕ(V−1

f ) + L2
F Lϕ(V−1

f )
)‖s − s̃‖.

The same derivations can be performed for ∇QG(s), so that finally we get

∥∥∇QG(s) − ∇QG(s̃)
∥∥ ≤ L‖s − s̃‖, (4.24)

where the Lipschitz constant is given by

L = 2ᾱ
(

L ′
FCϕ(V−1

f ) + L2
F Lϕ(V−1

f )
)

+ 2β̄
(
L ′
GCϕ(V−1

g ) + L2
G Lϕ(V−1

g )
)
.

(4.25)

To actually construct the nondecreasing sequence in equation 3.19, we
make use of the following fundamental result on variable metric gradient
ascent algorithms.

Theorem 2 (Polyak, 1987). Let the function Q : R
d → R be differentiable on

R
d and its gradient ∇Q be Lipschitz continuous with constant L. Let the matrix

H be positive definite, such that ‖H‖ ≤ 2
L . Then the sequence Q(s̃(ν)), defined by

s̃(ν+1) = s̃(ν) + H∇Q(s̃(ν)), is nondecreasing.

This result shows that for any functionsF andG that verify the conditions
of theorem 1, using equation 3.19 with H = 2

L I, we are able to construct a
nondecreasing sequence and an appropriate Local Search procedure. Notice
however, that its guaranteed theoretical convergence speed is linear. It can
be improved in several ways.

First, the optimization direction can be adjusted. For certain prob-
lems, the matrix H can be chosen as in variable metric algorithms, such
as the Newton-Raphson method, quasi-Newton methods, or Levenberg-
Marquardt method, provided that it satisfies the conditions of theorem 2.
Second, the optimization step size can be increased based on local properties
of the target function. For example, at iteration ν, if when considering the
functions F and G on some restricted domain S

(ν) there exist smaller local
Lipschitz constants L (ν)

F , L (ν)
G , L ′(ν)

F and L ′(ν)
G , H can be set to H = 2

L (ν) I with
L (ν) smaller than L . It follows that ‖s̃(ν+1) − s̃(ν)‖ ≤ 2

L (ν) ‖∇Q(s̃(ν))‖, which

means that one can take the local constants, L (ν)
F , L (ν)

G , L ′(ν)
F , and L ′(ν)

G if they
are valid in the ball Bρ(ν) (s̃(ν)) with

ρ(ν) = 2
L (ν)

(
2L (ν)

F ᾱCϕ(V−1
f ) + 2L (ν)

G β̄Cϕ(V−1
g )

)
. (4.26)
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5 Global Search and the Choose Procedure

Theorem 1 allows us to use the improved global random search techniques
for Lipschitz continuous functions (Zhigljavsky, 1991). These algorithms
are known to converge, in the sense that generated point sequences fall
infinitely often into an arbitrarily small neighborhood of the optimal points
set. (For more details and convergence conditions see theorem 3.2.1 and the
discussion that follows in Zhigljavsky, 1991.) A proper choice of the initial
value s̃(0) not only guarantees finding the global maximum, but can also be
used to increase the convergence speed. A basic strategy is to draw samples
in S, according to some sequence of distributions over S, that verifies the
convergence conditions of global random search methods. However, the
speed of convergence of such an algorithm is quite low.

Global random search methods can also be significantly improved by
taking into account some specificities of the target function. Indeed, in our
case, function 4.20 is made of two parts for which the optimal points are
known and are, respectively, f̄ and ḡ. If there exists s̃(0) such that s̃(0) ∈
F−1( f̄ ) ∩ G−1( ḡ), then it is the global maximum, and the M step solution is
found. Otherwise one can sample S in the vicinity of the setF−1( f̄ ) ∪ G−1( ḡ)
to focus on a subspace that is likely to contain the global maximum. This set
is generally a union of two manifolds. For sampling methods on manifolds,
we refer to Zhigljavsky (1991). An illustration of this technique is given in
section 8.

Another possibility is to use a heuristic that function 4.20 does not change
much after one iteration of the EM algorithm. Then the initial point s̃(0) for
the current iteration can be set to the optimal value computed at the previous
iteration. However, in general, this simple strategy does not yield the global
maximum, as can be seen from the results in section 9.

6 Algorithm Initialization and the Initialize Procedure

In this section we focus on the problem of selecting the initial values θ (0)

for the model parameters. As is often the case with iterative optimization
algorithms, the closer θ (0) is to the optimal parameter values, the less time
the algorithm would require to converge. Within the framework of con-
jugate mixture models, we formulate two initialization strategies, namely,
the observation space candidates (OSC) strategy and the parameter space
candidates (PSC) strategy, that attempt to find a good initialization.

The OSC strategy consists of searching for cluster centers in single modal-
ity spaces F and G to further map them into the parameter space S and select
the best candidates. More specifically, we randomly select an observation
f m (or gk) and run the mean shift algorithm (Comaniciu & Meer, 2002)
in the corresponding space to find local modes of the distribution, which
are called candidates. The sets of candidate points { f̂ i }i∈I and { ĝ j } j∈J are
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further rarefied, that is, if ‖ f̂ i1 − f̂ i2‖ ≤ εf for some i1 �= i2 and for some
threshold ε > 0, we eliminate one of these points. These rarefied sets are
then mapped to S. If one of the observation space mappings, for example
F , is noninjective, for each f̂ i we need to select a point si ∈ F−1( f̂ i ) that
is the best in some sense. We consider observation density in the other
observation spaces around an image of si as the optimality measure of
si . This can be estimated through calculation of the kth nearest neighbor
distance (k-NN) in the corresponding observation space. The final step is
to choose N points out of these candidates to initialize the cluster centers
{s1, . . . , sN}, so that the intercluster distances are maximized. This can be
done using, for example, hierarchical clustering. The variances �1, . . . ,�N

and �1, . . . ,�N are then calculated by standard empirical variance formulas
based on observations that are closest to the corresponding class center. The
priors π1, . . . , πN+1 and λ1, . . . , λN+1 are set to be equal.

The PSC strategy consists of mapping all the observations to the pa-
rameter space S and performing subsequent clustering in that space. More
specifically, for every observation f m and gk , we find an optimal point from
the corresponding preimage F−1( f m) and G−1(gk). The optimality condi-
tion is the same as in the previous strategy, that is, we compare the local
observation densities using k-NN distances. Then one proceeds with select-
ing local modes in space S using the mean-shift algorithm and initializing
N cluster centers {s1, . . . , sN} from all the candidates thus calculated. The
estimation of variances and priors is exactly the same as in the previous
strategy.

The second strategy proved to be better when performing simulations
(see section 10). This can be explained by possible errors in finding the
preimage of an observation space point in the parameter space. Thus, map-
ping a rarefied set of candidates to the parameter space is less likely to make
a good guess in that space than mapping all the observations and finding
the candidates directly in the parameter space.

7 Estimating the Number of Components and the Select Procedure

To choose the N that best corresponds to the data, we perform model
selection based on a criterion that resembles the BIC criterion (Schwarz,
1978). We consider the score function of the form

BICN = −2L(f, g, θ̂ N) + DN log(M + K ), (7.1)

where θ̂ N is the ML estimate obtained by the proposed EM algorithm,
L(f, g, θ ) is given by equation 2.15 and DN = N

(
d + 2 + 1

2 (r2 + p2 + r + p)
)

is the dimensionality of the model.
As in the case of (nonconjugate) gaussian mixture models, we cannot

derive the criterion from the Laplace approximation of the probability
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P(f, g|N = N0) because of the Hessian matrix of L(f, g, θ ) that is not neces-
sarily positive definite (Aitkin & Rubin, 1985; Quinn, McLachlan, & Hjort,
1987). Nevertheless, we can use the same arguments as those used in Keribin
(2000) for gaussian mixture models to show that the criterion is consistent,
that is, if N∗ is the number of components in the real model that generated
f and g, then

NBIC → N∗ a.s., when M, K → ∞, (7.2)

provided variances �1, . . . , �N,�1, . . . , �N are nondegenerate and the
sequence M

M+K has only one accumulation point (i.e., has a limit).
The BIC-like criterion 7.1 shows good performance on both simulated

and real data (see section 10), choosing correctly the number of objects in
all the cases.

8 Clustering Using Auditory and Visual Data

We illustrate the method in the case of audiovisual (AV) objects. Objects
could be characterized by both their locations in space and their auditory
status, that is, whether they are emitting sounds or not. These object char-
acteristics are not directly observable and hence need to be inferred from
sensor data (e.g., cameras and microphones). These sensors are based on
different physical principles, they operate with different bandwidths and
sampling rates, and they provide different types of information. On one
side, light waves convey useful visual information only indirectly, on the
premise that they reflect onto the objects’ surfaces. A natural scene is com-
posed of many objects and surfaces, and hence the task of associating visual
data with objects is a difficult one. On the other side, acoustic waves convey
auditory information directly from the emitter to the receiver, but the ob-
served data are perturbed by the presence of reverberations, of other sound
sources, and of background noise. Moreover, very different methods are
used to extract information from these two sensor types. A wide variety
of computer vision principles exists for extracting 3D points from a single
image or from a pair of stereoscopic cameras (Forsyth & Ponce, 2003), but
practical methods are strongly dependent on the lighting conditions and
the properties of the objects’ surfaces (e.g., presence or absence of texture,
color, shape, reflectance). Similarly, various algorithms were developed to
locate sound sources using a microphone pair based on interaural time dif-
ferences (ITD) and on interaural level differences (ILD) (Wang & Brown,
2006; Christensen, Ma, Wrigley, & Barker, 2007), but these cues are difficult
to interpret in natural settings due to the presence of background noise
and other reverberant objects. A notable improvement consists in the use
a larger number of microphones (Dibiase, Silverman, & Brandstein, 2001).
Nevertheless, the extraction of 3D sound source positions from several
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microphone observations results in inaccurate estimates. We show below
that our method can be used to combine visual and auditory observations
to detect and localize objects. A typical example where the conjugate mix-
ture models framework may help is the task of locating several speaking
persons.

Using the same notations as above, we consider two sensor spaces. The
multimodal data consist of M visual observations f and of K auditory
observations g. We consider data that are recorded over a short time interval
[t1, t2], such that one can reasonably assume that the AV objects have a
stationary spatial location. Nevertheless, it is not assumed here that the
AV objects (e.g., speakers), are static: lip movements and head and hand
gestures are tolerated. We address the problem of estimating the spatial
locations of all the objects that are both seen and heard. Let N be the number
of objects, and in this case each object is described by a three-dimensional
parameter vector sn = (xn, yn, zn)�.

The AV data are gathered using a pair of stereoscopic cameras and a pair
of omnidirectional microphones (i.e., binocular vision and binaural hear-
ing). A visual observation vector f m = (um, vm, dm)� corresponds to a 2D
image location (um, vm) and to an associated binocular disparity dm. Con-
sidering a projective camera model (Faugeras, 1993), it is straightforward
to define an invertible function F : R

3 → R
3 that maps s = (x, y, z)� onto

f = (u, v, d)�:

F(s) =
(

x
z
,

y
z
,

1
z

)�
and F−1( f ) =

(
u
d

,
v

d
,

1
d

)�
. (8.1)

This model corresponds to a rectified camera pair (Hartley & Zisserman,
2000) and it can be easily generalized to more complex binocular geome-
tries (Hansard & Horaud, 2007, 2008). Without loss of generality, one can
use a sensor-centered coordinate system to represent the object locations.

Similarly one can use the auditory equivalent of disparity, namely, the in-
teraural time difference (ITD) widely used by auditory scene analysis meth-
ods (Wang & Brown, 2006). The function G : R

3 → R maps s = (x, y, z)�

onto a 1D audio observation:

g = G(s) = 1
c

(
‖s − sM1‖ − ‖s − sM2‖

)
. (8.2)

Here c is the sound speed, and sM1 and sM2 are the 3D locations of the
two microphones in the sensor-centered coordinate system. Each isosur-
face defined by equation 8.2 is represented by one sheet of a two-sheet
hyperboloid in 3D. Hence, each audio observation g constrains the location
of the auditory source to lie on a 2D manifold.

In order to perform audiovisual clustering based on the conjugate EM
algorithm, theorem 1 must hold for both equations 8.1 and 8.2 namely, the
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functions F and G and their derivatives are Lipschitz continuous. We prove
the following theorem:

Theorem 3. The functions F , F ′, G, and G ′ are Lipschitz continuous with con-
stants LF = z−1

min

√
3, L ′

F = z−2
min, LG = ‖sM1 − sM2‖(c R)−1 and L ′

G = 3(c R)−1 in
the domain S = {|z| > zmin > 1} ∩ {min{‖s − sM1‖, ‖s − sM2‖} > R > 1}.

Proof. The derivatives of F and G are given by

F ′(s) = 1
z

⎡
⎣ 1 0 −x/z

0 1 −y/z
0 0 −1/z

⎤
⎦ (8.3)

G ′(s) = 1
c

(
s − sM1

‖s − sM1‖
− s − sM2

‖s − sM2‖
)

. (8.4)

The eigenvalues of F ′(s) are 1/z and −1/z2, so ‖F ′(s)‖ ≤ max{z−1, z−2} ≤
z−1

min, from which it follows that LF can be taken as LF = z−1
min

√
3. Also

‖F ′(s) − F ′(s̃)‖ ≤ max{|z−1 − z̃−1|, |z−2 − z̃−2|} ≤ z−2
min‖s − s̃‖, so that L ′

F can
be set to L ′

F = z−2
min.

Introducing e1 = s−sM1
‖s−sM1 ‖ and e2 = s−sM2

‖s−sM2 ‖ , it becomes ‖e1‖ = ‖e2‖ = 1

and G ′(s) = 1
c (e1 − e2). Provided that ‖s − sM1‖ and ‖s − sM2‖ are both

greater than R, it follows that ‖G ′(s)‖ = 1
c ‖e1 − e2‖ ≤ ‖sM1 − sM2‖(c R)−1,

and so LG = ‖sM1 − sM2‖(c R)−1. Then, the second derivative of G is given by

G ′′(s) = 1
c‖s − sM1‖

(I − e1e�
1 ) − 1

c‖s − sM2‖
(I − e2e�

2 ).

so that

‖G ′′(s)‖ ≤
∣∣∣∣ 1
c‖s − sM1‖ − 1

c‖s − sM2‖
∣∣∣∣

+ sup
‖v‖=1

2e1e�
1 v

c min{‖s − sM1‖, ‖s − sM2‖} ≤ 3(c R)−1,

and L ′
G can be set to L ′

G = 3(c R)−1.

This result shows that under some natural conditions (the AV ob-
jects should not be too close to the sensors), the conjugate EM algo-
rithm described in section 3.3 can be applied. The constant L given by
lemma 1 guarantees a certain (worst-case) convergence speed. In prac-
tice, we can use the techniques mentioned in sections 4 and 5 to ac-
celerate the algorithm. First, to speed up the local optimization step,
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local Lipschitz constants can be computed based on the current value
of parameter s̃(ν). Equation 4.26 gives the largest possible step size ρ(ν),
so setting z(ν)

min = z(ν) − ρ(ν) and R(ν) = min{‖s̃(ν) − sM2‖, ‖s̃(ν) − sM1‖} − ρ(ν),
provides local Lipschitz constants that ensure the update will not quit
S

(ν) = {|z| > z(ν)
min} ∩ {min{‖s − sM1‖, ‖s − sM2‖} > R(ν)}. Second, we propose

four possibilities to set the initial object parameter values s̃(0)
n : (1) it can be

taken to be the previously estimated object position s(q−1)
n , (2) it can be set to

F−1( f̄ ) (as soon as F is injective in S), (3) it can be found through sampling
of the manifold G−1( ḡ) by selecting the sampled value that gives the largest
Q value, or (4) similarly through sampling directly in S. Comparisons are
reported in the following sections.

9 Experiments with Simulated Data

Our algorithm is first illustrated on simulated data. For simplicity, we con-
sider (u, d) and (x, z) coordinates so that F ⊆ R

2 and S ⊆ R
2. Notice, how-

ever, that this preserves the projective nature of the mapping F ; it does
not qualitatively affect the results and leads to a better understanding of
the algorithm performance. We consider three objects defined in S by sn,
n = 1, 2, 3. We simulated three cases: well-separated objects (GoodSep), par-
tially occluded objects (PoorSep), and poor precision in visual observations
for well-separated objects (PoorPrec). The ground-truth object locations
(x, z) for the GoodSep and PoorPrec cases are the same: s1 = (−300, 1000),
s2 = (10, 800) and s3 = (500, 1500). In the PoorSep case, the coordinates are,
respectively, s1 = (−300, 1000), s2 = (10, 800), and s3 = (100, 1500). The data
in both observation spaces F and G were simulated from a mixture model
with three gaussian components and a uniform component that models
the outliers. The means of the gaussian components are computed using
F(sn) and G(sn), n = 1, 2, 3. An example of simulated data for the three
mentioned configurations is shown in Figure 2: (u, d) locations of the visual
observations and ITD values of the auditory observations.

9.1 Initialization. We compared two strategies, OSC and PSC, proposed
in section 6. Their performance is summarized in Figure 3. It shows the
mean and variance of the likelihood value L(f, g, θ ) for initial parameters
θ

(0)
OSC and θ

(0)
PSC chosen by OSC and PSC strategies, respectively. For the total

number of clusters N = 1, . . . , 5 and different object configurations, we
calculate the statistics based on 10 initializations. The analysis shows that
the PSC strategy performs at least as well as the OSC strategy, or even better
in some cases. Our explanation is that mappings from observation spaces
to parameter space are subject to absolute (and, in our case, bounded)
noise. Mapping all the observations and calculating a candidate point in
the parameter space has an averaging effect and reduces the absolute error,
compared to the strategy with candidate calculation being performed in
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Figure 3: Means and variances of log-likelihood values L(f, g, θ ) for initial pa-
rameters θ

(0)
OSC and θ

(0)
PSC chosen by OSC (solid line) and (PSC, dashed line)

strategies respectively, for different numbers of clusters N and different data
configurations.

an observation space with subsequent mapping to the parameter space.
Therefore, in what follows, all the results are obtained based on the PSC
initialization strategy.

9.2 Optimization. We compared several versions of the algorithm based
on various Choose and Local Search strategies. For the initial values s̃n

(0), we
considered the following possibilities: the optimal value computed at a
previous run of the algorithm (IP), the value predicted from visual data
(IV), the value predicted from audio data (IA), and the value obtained by
global random search (IG). More specifically:

� When initializing from visual data (IV), the average value f̄ n, calcu-
lated in the current E-step of the algorithm for every n, was mapped
to the parameter space, and s̃n

(0) was set to s̃n
(0) = F−1( f̄ n) using the

injectivity of F .
� When initializing from audio data (IA), G−1( ḡn) defines a manifold.

The general strategy here would be to find the optimal point that
lies on this surface. We achieved this through random search based
on a uniform sampling on the corresponding part of the hyperboloid
(see Zhigljavsky, 1991, for details on sampling from an arbitrary dis-
tribution on a manifold). In our experiments we used 50 samples to
select the one providing the largest Q (likelihood) value.

� The most general initialization scheme (IG) was implemented using
global random search in the whole parameter space S; 200 samples
were used in this case.

Local optimization was performed using either basic gradient ascent
(BA) or the locally accelerated gradient ascent (AA). The latter used the
local Lipschitz constants to augment the step size, as described in section 4.
Each algorithm run consisted of 70 iterations of the EM algorithm, with 10
nondecreasing iterations during the M step.
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Figure 4: Likelihood function evolution for five variants of the algorithm in
three cases. (Top left) Well-separated objects. (Top right) Poorly separated ob-
jects. (Bottom) Well-separated object but poor observation precision.

Table 1: Acronyms Used for Five Variants of the Conjugate EM Algorithm.

Acronym s̃(0) Initialization (Choose) Local Optimization (Search)

IPBA Previous iteration value Basic gradient ascent
IGAA Global random search Accelerated gradient ascent
IVAA Predicted value from visual data Accelerated gradient ascent
IPAA Previous iteration value Accelerated gradient ascent
IAAA Audio predicted manifold sampling Accelerated gradient ascent

Note: Variants correspond to different choices for the Choose and Local search procedures.

To check the convergence speed of different versions of the algorithm
for the three object configurations, we compared the likelihood evolution
graphs presented in Figure 4. Each graph contains several curves that cor-
respond to five different versions of the algorithm. The acronyms we use
to refer to the different versions (for example, IPAA) consist of two parts
encoding the initialization (IP) and the local optimization (AA) types. The
black dashed line on each graph shows the ground-truth likelihood level,
that is, the likelihood value for the parameters used to generate the data.
The meaning of the acronyms is set out in Table 1.
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As expected, the simplest version IPBA that uses none of the proposed
acceleration techniques appears to be the slowest. The other variants us-
ing basic gradient ascent are then not reported. Predicting a single object
parameter value from visual observations (IVAA) does not give any im-
provement over IPAA, where s̃(0) is taken from the previous EM iteration.
When s̃(0) is obtained by sampling the hyperboloid predicted from audio
observations (IAAA), a significant impact on the convergence speed is ob-
served, especially on early stages of the algorithm, where the predicted
value can be quite far from the optimal one. However, blind sampling of
the whole parameter space does not bring any advantage: it is much less
efficient regarding the number of samples required for the same precision.
This suggests that in the general case, the best strategy would be to sam-
ple the manifolds F−1( f̄ n) and G−1( ḡn) with possible small perturbations
to find the best s̃(0) estimate and perform an accelerated gradient ascent
afterward (IAAA). We note that IAAA succeeds in all the cases to find
parameter values that are well fitted to the model in terms of likelihood
function (likelihood is greater or equal than that of real parameter values).

Parameter evolution trajectories for the IAAA version of the algorithm
in the Good-Sep case are shown in Figures 5 and 6. The estimate changes
are reflected by the node sizes (from smaller to bigger) and shading (from
darker to lighter). The final values are very close to the real cluster centers
in all three audio, visual, and object spaces. The convergence speed is quite
dependent on the initialization. In the provided example, the algorithm
spent almost half of useful iterations to disentangle the estimates trying
to decide which one corresponds to which class. Another possibility here
would be to predict the initial values through sampling in the audio domain.
We demonstrate this strategy further when working with real data.

We compared the performance of our algorithm for the three object
configurations. For each of them, we computed absolute and relative errors
for the object parameter estimations in the different coordinate systems
(object, audio, and visual spaces). The averages were taken over 10 runs
of the algorithm for different PSC initializations, as described above. The
results are reported in Table 2. We give object location estimates ŝ = (x̂, ẑ),
f̂ = (û, d̂) and ĝ in parameter, visual, and audio spaces respectively. It
appears that the localization precision is quite high. In a realistic setting such
as that of section 10, the measurement unit can be set to a millimeter. In that
case, the observed precision, in a well-separated objects configuration, is at
worse about 6 cm. However, precision in the z coordinate is quite sensible
to the variance of the visual data and the object configuration. To get a
better idea of the relationship between the variance in object space and the
variance in visual space, F−1 can be replaced by its linear approximation
given by a first-order Taylor expansion. Assuming then that visual data
are distributed according to some probability distribution with mean μF
and variance 
F , it follows that through the linear approximation of F−1,

the variance in object space is ∂F−1(μF )
∂ f �F

∂F−1(μF )
∂ f

�
. Then the z coordinate
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Figure 5: IAAA algorithm: Parameter evolution and assignment results for
the GoodSep case in audio and visual spaces (note the scale change, which
corresponds to a zoom on the cluster centers). The initialization (white stars) is
based on the PSC strategy. Ground truth means are marked with squares. The
evolution is shown by circles from smaller to bigger, from darker to brighter.
Observations assignments are depicted by different markers (◦, ∗, and × for the
three object classes) in visual space and are coded by shading in audio space.
Due to the zoom, outliers are not visible on these figures.

covariance for an object n is approximately proportional to the d covariance
for the object multiplied by z4

n. For distant objects, a very high precision
in d is needed to get a satisfactory precision in z. At the same time, we
observe that the likelihood of the estimate configuration often exceeds the
likelihood for real parameter values. This suggests that the model performs
well for the given data, but cannot get better precision than that imposed
by the data.

9.3 Selection. To select the optimal number of clusters N, we applied
the BIC criterion 7.1 to the models, trained for that N. The BIC score graphs
are shown on Figure 7. The total number of objects N is correctly determined
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Figure 6: IAAA algorithm: Parameter evolution for the GoodSep case in object
space. The initialization (white stars) is based on the PSC strategy. Ground truth
means are marked with squares. The evolution is shown by circles from smaller
to bigger, from darker to brighter.

in all three cases of object configurations, from which we conclude that the
BIC criterion provides reliable model selection in our case.

10 Experiments with Real Data

In this section we evaluate the effectiveness of our algorithms in estimating
the 3D locations of AV objects—a person localization task. The examples
used below are from a database of realistic AV scenarios described in detail
in Arnaud et al. (2008).

The experimental setup consists of a mannequin equipped with a pair of
microphones fixed into its ears and a pair of stereoscopic cameras mounted
on its forehead (this device was developed within the POP project).1 Each
data set comprises two audio tracks, two image sequences, and the cal-
ibration information. All the recordings were performed in an ordinary
room with no special adjustments to its acoustics or appearance. Thus,
the data contain both visual background information and auditory noise—
reverberations in particular. This configuration best mimics what a person
would hear and see in a standard indoor environment.

We tested our multimodal clustering method with two scenarios: a meet-
ing and a cocktail party (see Table 3):

� The meeting scenario is a recording of a discussion held by five per-
sons sitting around a table, only three of them being visible.2 It lasts 25
seconds and contains a about 8000 visual and 600 audio observations.

1http://perception.inrialpes.fr/POP/.
2http://perception.inrialpes.fr/CAVA Dataset/Site/data.html#M1.
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Table 2: IAAA Algorithm: Object Location Estimates in Parameter, Visual, and
Audio Spaces for GoodSep, PoorSep, and PoorPrec Object Configurations.

Parameter Ground Truth Estimates Mean Absolute Error Relative Error
Space s = (x, z) ŝ = (x̂, ẑ) ea = ‖ŝ − s‖ er = ‖ŝ − s‖/‖s‖
GoodSep

Object 1 (−300, 1000) (−300.13, 997.81) 2.2 2.1 × 10−3

Object 2 (10, 800) (9.28, 804.46) 4.52 5.7 × 10−3

Object 3 (500, 1500) (513.56, 1555.23) 56.86 3.5 × 10−2

PoorSep
Object 1 (−300, 1000) (−307.47, 1028.38) 29.35 2.8 × 10−2

Object 2 (10, 800) (14.19, 895.69) 95.79 1.2 × 10−1

Object 3 (100, 1500) (105.02, 1447.49) 52.75 3.5 × 10−2

PoorPrec
Object 1 (−300, 1000) (−208.86, 698.51) 314.97 0.3
Object 2 (10, 800) (8.44, 703.97) 96.04 1.2 × 10−1

Object 3 (500, 1500) (507.65, 1533.8) 34.66 2.2 × 10−2

Visual Space f = (u, d) f̂ = (û, d̂) ea = ‖ f̂ − f ‖ er = ‖ f̂ − f ‖/‖ f ‖
GoodSep

Object 1 (−0.3, 0.001) (−0.3008, 0.001) 7.87 × 10−4 2.6 × 10−3

Object 2 (0.0125, 0.00125) (0.0115, 0.00124) 9.59 × 10−4 7.6 × 10−2

Object 3 (0.3333, 0.00067) (0.3302, 0.00064) 31.21 × 10−4 9.3 × 10−3

PoorSep
Object 1 (−0.3, 0.001) (−0.299, 0.001) 1.02 × 10−3 3.4 × 10−3

Object 2 (0.0125, 0.00125) (0.0159, 0.00112) 3.36 × 10−3 2.6 × 10−1

Object 3 (0.6667, 0.00067) (0.7131, 0.00238) 4.95 × 10−3 7.4 × 10−2

PoorPrec
Object 1 (−0.3, 0.001) (−0.299, 0.0014) 10.8 × 10−4 3.5 × 10−3

Object 2 (0.0125, 0.00125) (0.012, 0.00142) 5.38 × 10−4 4.3 × 10−2

Object 3 (0.3333, 0.00067) (0.331, 0.00065) 23.56 × 10−4 7.1 × 10−3

Audio Space g ĝ ea = | ĝ − g| er = | ĝ − g|/|g|
GoodSep

Object 1 −49.71 −49.8 0.09 1.9 × 10−3

Object 2 −8.22 −8.35 0.13 1.6 × 10−2

Object 3 34.75 34.37 0.38 1.1 × 10−2

PoorSep
Object 1 −49.71 −49.59 0.12 2.3 × 10−3

Object 2 −8.22 −7.76 0.46 5.6 × 10−2

Object 3 −0.66 −0.02 0.65 9.7 × 10−1

PoorPrec
Object 1 −49.71 −49.49 0.22 4.4 × 10−3

Object 2 −8.22 −8.28 0.06 7.6 × 10−3

Object 3 34.75 34.47 0.29 8.3 × 10−3

Note: The estimates are calculated based on 10 runs of the algorithm with PSC
initializations.
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Figure 7: BIC score graphs for the three object configurations, evaluated for
models trained for different total number of clusters N.

Table 3: Summary of the Main Characteristics of the Two Scenarios Used to
Evaluate the Multimodal Clustering Algorithm.

Visible Speaking Visual Audio Occluded Audio
Scenario Persons Persons Background Noise Speakers Overlap

Meeting 3 5 Yes Yes No Yes
Cocktail party 3 3 Yes Yes Yes Yes

The three visible persons perform head and body movements while
taking speech turns. Sometimes two persons (visible or not) speak
simultaneously.

� The cocktail party scenario shows a dynamic scene with three per-
sons walking in a room and taking speech turns.3 Occasionally one
speaker is hidden by another person and two persons may speak si-
multaneously. Speakers may go in and out of the two cameras’ field of
view. Moreover, there are sounds emitted by the persons’ steps. The
recording lasts 30 seconds and contains about 12,500 visual and 3400
audio observations.

10.1 Preprocessing and Algorithm Initialization. Visual observations,
f, are obtained as follows. First, we detect points of interest (POI) in both the
left and right images and select those points that correspond to a moving
scene object. Second, we perform stereo matching such that a disparity
value is associated with each matched point.

In practice we used the POI detector described in Harris and Stephens
(1988). This detector is known to have high repeatability in the presence
of texture and to be photometric invariant. We analyze each image point
detected this way and select points associated with a significant motion pat-
tern. Motion patterns are obtained in a straightforward manner. A tempo-
ral intensity variance σt is estimated at each POI. Assuming stable lighting

3http://perception.inrialpes.fr/CAVA Dataset/Site/data.html#CTMS3.



V. Khalidov, F. Forbes, and R. Horaud 547

conditions, the POI belongs to a static scene object if its temporal inten-
sity variance is low and nonzero due to a camera noise only. For image
points belonging to a dynamic scene object, the local variance is higher
and depends on the texture of the moving object and the motion speed. In
our experiments, we estimated the local temporal intensity variance σt at
each POI from a collection of five consecutive frames. The point is labeled
“motion” if σt > 5 (for 8-bit gray-scale images); otherwise it is labeled as
“static.” The motion-labeled points are then matched and the associated
disparities estimated using standard stereo methods. In practice, the results
shown in this letter are obtained with the method described in Hansard and
Horaud (2007) using the INTEL’s OpenCV camera calibration software.4

Overall, this provides the (u, v, d)� to (x, y, z)� mapping (see equation 8.1).
Examples are shown in Figure 8. Alternatively, we could have used the
spatiotemporal point detector described in Laptev (2005). This method is
designed to detect points in a video stream having large local variance in
both the spatial and temporal domains, thus representing abrupt events in
the stream. However, such points are quite rare in our data set.

Auditory observations, g, are obtained as follows. Our method uses
interaural time differences (ITD), which are detected through the analysis
of the cross-correlogram of the filtered left- and right-microphone one-
dimensional signals for every frequency band (Christensen et al., 2007). Like
any other audiovisual fusion method, one needs to perform audiovisual
calibration to estimate the positions of the microphones and the positions
and orientations of the cameras in a common world coordinate system. This
is done using the method described in Arnaud et al. (2008).

In order to initialize the algorithm’s parameter values, we used the
PSC initialization strategy described in section 6. Although real-data
distributions do not strictly correspond to the case of gaussian mixtures,
the initialization strategy that we have adopted remains relevant. This orig-
inates from the fact that parameter space sampling with configuration re-
strictions plays the role of a global optimization method similar to Monte
Carlo sampling in the method of generations (Zhigljavsky & Žilinskas,
2008). It helps to avoid local maxima and allows quickly finding a set of
appropriate initial parameters. Local distribution density modes occur to
be good candidates to initialize cluster centers. As in the case of simulated
data, we used the BIC score (see section 7) to select the optimal number of
audiovisual clusters.

10.2 Results and Discussion. The experimental validation described
below was performed with two goals in mind. First, we wanted to check
that our method was stable and robust with real data gathered in complex
situations, that it correctly finds the number of clusters, and that it efficiently

4http://www.intel.com/technology/computing/opencv.
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Figure 8: This figure illustrates how the audiovisual data are preprocessed. Vi-
sual points of interest (POI) associated with scene motion are matched between
the left and right images. The histograms of the interaural time difference (ITD)
observations correspond to a segment of 0.3 seconds. The audiovisual calibra-
tion allows us to filter out auditory data that fall outside the field of view of the
two cameras. Notice the large number of auditory perturbations corresponding
to noise, reverberations, as well as to speakers outside the visual field of view.
In these examples, there are two simultaneous speakers: (a) S1 and S4 and (b)
S1 and S2. Notice that S4 is easily eliminated because its associated ITD falls
outside the visual field of view.

determines the model’s parameters—the 3D positions of the audiovisual
objects composing a scene. Second, we wanted to test the model’s capability
to deal with dynamic changes in the scene, yet in the presence of acoustic
noise and reverberations and visually occluded persons, for example. Below
we provide a detailed account of the results obtained with the meeting and
cocktail party audiovisual sequences.

The audiovisual recordings are split into segments, each segment lasting
0.3 seconds. At 25 frames per second, this corresponds to approximately
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eight video frames. The initialization method described in section 6 and the
model selection method described in section 7 are combined and applied
to the first segment in order to find initial parameter values and estimate
the number of components (the number of audiovisual objects) to be used
by the conjugate EM algorithm. Consequently, the parameters estimated
for one segment are used to initialize the parameters for the next segment,
while the number of components remains constant:

� Quasi-static scene. The meeting situation corresponds to the well-
separated case referred to as GoodSep in the previous section. The
initialization strategy performs well, and the candidate configuration
obtained by the initialization step is relatively close to the optimal
one found by the EM algorithm described in detail in section 3.3. In
fact, the likelihood evolution reported in Figure 9 shows that conver-
gence is reached in about 20 iterations of EM, three times faster than
in the simulated GoodSep case reported in Figure 4. The 3D position
estimates are quite accurate; in particular, the natural alignment of
the speakers along the table is clearly seen in the XZ plane. Although
in practice, the data are not piecewise gaussian and the outliers are
not uniformly distributed, our method performs quite well, which
illustrates its robustness when dealing with real data distributions.
Figure 10 shows sequential results obtained in this case. The speech
sources are correctly detected even in the case when two persons are
simultaneously active.

� Dynamic scene. The cocktail party situation corresponds to the partially
occluded case, referred to as PoorSep in the previous section. In this
case, the locations of the audiovisual objects vary over time, as well as
their number. Nevertheless, we assume that these changes are rather
slow. We did not attempt to tune our algorithm to the dynamic case.
Hence, we use the same initialization strategy as in the quasi-static
case which is briefly summarized above. Figure 11 shows the results
obtained in this case.

Overall, the proposed method performs well on data collected in a nat-
ural environment. The initialization strategy and the model selection crite-
rion proved to be robust to noise and minor deviations from the gaussian
distribution assumption. It possesses the features of a global optimization
method that enables finding initial parameter values that are close to opti-
mal ones. In both examples, the parameter initialization and model selection
were performed on the first audiovisual data segment. This certainly biases
the overall results. Indeed, in both cases, the initialization and model se-
lection algorithms dealt with a case where the objects were well separated.
One could rerun initialization and model selection on every data segment
at the cost of a less efficient procedure.

The conjugate clustering method automatically weights the auditory
and visual modalities, in terms of precision and amount of observations,
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Figure 9: An example of applying the proposed EM algorithm to a time interval
of 20 seconds of the meeting scenario. The results are shown in the visual
and auditory observation spaces as well as in the parameter space. The initial
parameter values are shown with three stars, while the parameter evolution
trajectories are shown with circles of increasing size. The final observation-to-
cluster assignments are shown in dark colors for the three gaussian components
and in light color for the outlier component. The log-likelihood curve (bottom
right) shows that the algorithm converged after 20 iterations.

to infer the parameter values. We noticed that in general, the visual data
are considered by the algorithm as more reliable. This can be explained by
the fact that in practice, the auditory signals are contaminated with noise
and reverberations. This typically smooths the histogram peaks in the ITD
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Figure 10: Results obtained in the case of the meeting scenario shown over-
lapped onto the left image. Sixty frames (1001 to 1060) were split into six seg-
ments. Parameter initialization and model selection were performed on the first
segment (frames 1–10) and are not shown. The “visual” covariance matrices
associated with the three gaussian components are projected onto the image
plane. The white dots correspond to the projected 3D locations estimated by the
algorithm. The gray-level dots encode the observation-to-cluster assignments,
and the active speaker is marked with a corresponding symbol. The algorithm
correctly estimates speech sources, even in the case when two speakers are
active.
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Figure 11: Results obtained in the case of the cocktail party scenario shown
overlapped onto the left image. As in the previous case, sixty frames (181 to 240)
were split into six segments. Parameter initialization and model selection were
performed on the first segment (frames 1–10) and are not shown. As expected,
well-separated objects, (a–c), are correctly handled. Although partial occlusion,
(d–e) is also handled correctly, the algorithm fails to deal with a complete
occlusion, (f).
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domain and adds false peaks, as can be seen in Figures 10 and 11. As re-
verberations are natural for most of the environments and sound sources,
we added auditory cluster variances to model the local smoothing effect,
as well as an outlier category to treat false peaks. In general, if the data
are gathered using a small time interval, reverberations and noise have a
higher effect, the observations are scattered, and auditory spatial localiza-
tion is poor. At the same time, widening the time interval would result
in sharper peaks for sound sources that are smoothed due to reverbera-
tions and dynamics of the scene, and hence the auditory temporal local-
ization will be less accurate. Thus, the auditory data are typically sparse
in both time and space. The temporal discontinuity of the auditory data,
together with the lack of resolution, makes it less reliable than the visual
data.

Although our multimodal clustering model has no built-in dynamic
capability, as is the case with target-tracking methods based on the Kalman
filter, the implemented algorithm performs quite well in the case of partial
visual occlusions, as illustrated in the cocktail party scenario.

11 Conclusion

We proposed a novel framework to cluster heterogeneous data gathered
with physically different sensors. Our approach differs from other existing
approaches in that it combines in a single statistical model a number of
clustering tasks while ensuring the consistency of their results. In addition,
the fact that the clustering is performed in observation spaces allows one to
get useful statistics on the data, an advantage of our approach over particle
filtering models. The task of simultaneous clustering in spaces of differ-
ent nature, related through known functional dependencies to a common
parameter space, was formulated as a likelihood maximization problem.
Using the ideas underlying the classical EM algorithm, we built the conju-
gate EM algorithm to perform the multimodal clustering task while keeping
attractive convergence properties. The analysis of the conjugate EM algo-
rithm and, more specifically, of the optimization task arising in the M-step,
revealed several possibilities for increasing convergence speed. We pro-
posed to decompose the M-step into two procedures, the Local Search and
Choose procedures, which allowed us to derive a number of acceleration
strategies. We exhibited appealing properties of the target function, which
induced several implementations of these procedures, resulting in a signifi-
cantly improved convergence speed. We introduced the Initialize and Select
procedures to efficiently choose initial parameter values and determine the
number of clusters in a consistent manner, respectively. A nontrivial au-
diovisual localization task was considered to illustrate the conjugate EM
performance on both simulated and real data. Simulated data experiments
allowed us to assess the average method behavior in various configurations.
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They showed that the obtained clustering results were precise regarding the
observation spaces under consideration. They also illustrated the theoretical
dependency between the precisions in observation and parameter spaces.
Real data experiments then showed that the observed data precision was
high enough to guarantee high precision in the parameter space.

One of the strong points of the formulated model is that it is open to
different useful extensions. It can be easily extended to an arbitrary number
J of observation spaces F1, . . . , FJ . The main results, including Local Search
and Choose acceleration strategies, stay valid with minor changes. The sum
of two terms, related to spaces F and G, would have to be replaced by a
sum of J terms corresponding to F1, . . . , FJ in the formulas of section 3.

In particular, adding gaussian priors on parameters (i.e., priors, covari-
ance matrices, and object locations) would not essentially change the for-
mulas. For a large class of dynamics equations, the update expressions 3.13
to 3.16 for priors and variances will remain in closed form, whereas the
function Q(q )

n (s) in equation 3.18 will receive an additional term log P(s).
For instance, multimodal dynamic inference of parameter values for Brow-
nian dynamics (van Kampen, 2007) can be performed by means of the
formulated model. Gaussian priors would add a quadratic term similar
to the others in equation 3.18 that can be viewed as an observation from
the ambient space modality. Thus, the optimization algorithm would not
require any changes and would give an unbiased estimate.

Also, the assumption that assignment variables a and b are indepen-
dent could be relaxed. An appropriate approach to perform inference in
a nonindependent case would be to consider variational approximations
(Jordan et al., 1998) and in particular a variational EM (VEM) framework.
The general idea would be to approximate the joint distribution P(a) by
a distribution from a restricted class of probability distributions that fac-
torize as P̃(a) = ∏M

m=1 P̃(am). For any such distribution, our model would
be applicable without any changes so that for a variational version of the
conjugate EM algorithm, all the results from section 3 would hold.

It appears that as a generalization of gaussian mixture models, our model
has larger modeling capabilities. It is entirely based on a mathematical
framework in which each step is theoretically well founded. Its ability to
provide good results in a nontrivial multimodal clustering task is partic-
ularly promising for applications requiring the integration of several het-
erogeneous information sources. Therefore, it has advantages over other
methods that include ad hoc processing while being open to the incorpora-
tion of more task dependent information.
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